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ON POLYNOMIAL FACTORIZATION 

HANS ZASSENHAUS 

Dedicated to the memory of E.G. Straus 

Introduction. This note originated in response to the paper [3] by 
A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovâsz. 

In that paper an earlier/7-adic method of polynomial factorization over 
the rational integer ring Z which the author had communicated only 
orally is proven to be feasible in polynomial time in terms of the degree 
n > 0 of a given separable monic polynomial 

(la) f=t» + a^"-1 + ••• + an 

with rational integer coefficients # b . . ., an and the positive definite 
quadratic form (lb) 

(lb) | / | 2 = 1 + f l 2 + . . . + < 4 

Moreover, the authors establish a new elegant and powerful method of 
polynomial factorization based on the reduction theory of positive de
finite quadratic forms. 

1. Use of the maximal order. Some time ago the author of this note 
observed that the maximal Z-order 

(2) omax = C/(Z[t]/f) 

of the unital hypercomplex system 

(3) A = Q[t]/f 

determined by / a s the algebra over the rational number field Q generated 
by an element 

(4) x = tlf 

with defining relator 

(5) f(x) = 0 

Received by the editors May 28, 1983. 
Copyright © 1985 Rocky Mountain Mathematics Consortium 

657 



658 HANS ZASSENHAUS 

contains all the idempotents of A . In particular, if el9. . ., es are the 
primitive idempotents of A so that 

(6) A = © A{ 

is the algebraic sum of the finite extensions 

(7a) A t = et-A 

of the fields ef Q isomorphic to Q, then 

(7b) omax 

where the component rings 

(7c) e{omax 

are the maximal Z-orders of At-, 

= 

= 

© *V°max 

omax n A 

Moreover, the author observed that the multiplicative semigroup A* 
of A contains a unique maximal finite subsemigroup MF(A) of the form 

(8a) MF(^) = © MF(A{) 

where the maximal finite subsemigroup MF(Aj) consists of 0 and the 
(cyclic) torsion subgroup Tor U{At) of the unit subgroup U(At). 

Using the positive definite quadratic form 

(9a) Q: A -* R^° 

defined on the «-dimensional Q-linear space A by means of 

(9b) Q(x) = 2 |0f.(*)l2, 

where 01? . . . , dn are the distinct non zero Q-homomorphisms of A into 
the complex numberfield C, we characterize the elements of MF(^4) as 
follows. 

PROPOSITION 1. The element xofA* belongs to MF(A) if and only if 

(10a) x G o m x 

(10b) Q(x) = d im Q x^ . 

In fact for any element y ofomax not beinging to M F ( ^ ) we have 

(10c) Q(y) > dimQ>v4. 

PROOF. Denoting by 

(11a) n{ = dim A{ (1 ^ / ^ s) 
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the degree of the finite extension A{ over etQ, we may number 0l9 

in such a way that 

(lib) Ot(Aj) = 0 U±h) 

and 

(lie) 0<\Ah*0, 

where 

(lid) mh = J^nk < i g 2>*> 
k<h k^h 

and, hence, the restrictions 

(He) dmh+g\Ah (I £g£nh) 

are the distinct monomorphisms of Ah in C. 
For any element j> of >4 we have 

(12a) 

where 

(12b) 

but 

(12c) et-y = 0 if / ^ /*!,... , ikiy). 

1 

e{ 

IIA
 

^ 

;M" 
Kv) 

= e ̂ ,> 

k(y) e Zs0 

' i < 

# 0 

•• < hw è s 

(1 èjè k{y)) 

Hence, 

(12d) dimQjvf = £nij9 

kiy) 

and j ; belongs to omax if and only if 

(12e) eïjyee,.omax (1 £j£k(y)). 

But if (12e) is satisfied, then it follows that the product of the conjugates 
Om.+g(y)(l ^ g ^ nt) is equal to the norm of the non-zero algebraic 
integer et- of At over e{. Q, hence 

(i2f) \{\emi.+g(y)\ à i 

and by the arithmetic geometric mean inequality 

(12g) 2 \emi+s(y)2 è m 
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with equality if and only if 

(12h) \0mi/+g(y)\ = 1 (1 è g è /i,,), in other terms; 

(I2i) eity e Tor Ueé.omax = Tor U(Ai;). 

Hence (10c) follows unless (12i) holds for j = 1, 2, . . . , Ar(v), i.e., y 
belongs to MF(A). 

As a consequence of Proposition 1, the minima juT forming the chain 

(13a) JU! ^ fi2 ^ '" ^ Mn 

°f ôl°max m t n e sense of reduction theory for positive definite quadratic 
forms (see [1], p. 201) are assumed precisely by elements y of MF(^) 
subject to the condition 

dimQ y A = n* = min n{ 

in case the dimension z satisfies 

(13b) z ^ {ni = n*) 

In particular, the first minimum /^ is assumed only by non zero elements 
y of omax which belong to MF(A) f] A{ with minimum value of n{. 

Either 

(14a) 
jui = n and 

/irreducible over Q 

or 

(14b) 

and, for 

(14c) 

it follows that 

(14d) 

Vi < n, 

y e Tor U(Aif) 

ni = min nk, 

Q(y) = /ii, 

y = gi(x), 

g e Q[t], 

[g] < n, 

fis reducible over Q, and the quotient o f / a n d gcd(gITor f/04<)l — 1,/) 
is an irreducible divisor of/over Q. 
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Thus, if the maximal order of A is known in terms of the equation order 
Z[f]//of/, i.e., if a minimal basis of A, say 

(15a) Wi = ht{x) (1 g / ^ n) 

with 

(15b) ht-eQ[t] (1 £ # £/ i ) , 

(15c) omax = 2 ] Z H V , 

is known already, then the application of reduction theory to Q yields 
the first minimum p.\ as well as the finite subset of MF (A) on which Q 
assumes JU\', in this way an irreducible divisor o f / i s exhibited. But the 
available maximal order embeddings (e.g., [2]) hinge on the knowledge 
of the square prime factors of the discriminant d(f) of/; it is not known 
yet whether this knowledge can be achieved in polynomial time depending 
on n and log | / | (as defined in [3]). 

2. Restriction to the equation order. In [3] it was pointed out that, for 
any monic polynomial fx in / over Z which enters a congruence factor
ization 

(16a) / = / ! / ! (mod/>Z[f]) 

modulo the prime number p in such a way that fx is monic in t over Z 
and / is irreducible modulo /?, there is precisely one irreducible monic 
polynomial h0 in t over Z which divides / and which is divisible by / 
modulo p: 

(16b) f=h0hx 

h ^ fxX (mod pZ[t}) 
(16c) 

(/?b X monic in / over Z). 

An estimate for Q(hG(x)) is obtained as follows. 
Let 

/ = na-« 
(16d) i=i 

e, = et{x) (i ^ / ̂  n) 
be a factorization of/ in linear factors in C. The magnitude of the roots 
£i, . . ., £„ is related to the computable quantity 

(16e) <p(f)= max |(flr,/(J)1/2| 

by the inequalities 
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(16f) 0 g min fol g <p(f) ^ max |&| ^ p(/)/(2i'» - 1) 

as was shown in [6]. 
Assuming that 

m 

(16g) A o = n ('-! .)> 
1 = 1 

we obtain the inequality 

n m 

(16h) Q(h0(x)) = 2 0 If; - &l2 ^ (« - ™X2 max |fj)a» 
i=m-\-l y = l 

(16i) ß(A(x) < Mf = max (« - h) (2^(/)/(21/" - 1))2* 

for any divisor h off in Z [/]. 
The main result of [3] is summed up and extended by the following 

theorem. 

THEOREM. Let (1) be a monic separable polynomial of degree n over Z. 
Let 

(17a) / = / ! / ! (mod/>*Z[f]) 

be a congruence factorization off modulo the k-th power of the prime 
number p satisfying the conditions 

(17b) p2k > nnMn
f 

and 

(17c) pKd(f) 

such thatch are monic polynomials in t over Zandf is irreducible modulo 

P-
a) The ideal 

(17d) L = p*Z[t]/f + AZW/f 

of the equation order off 

(17e) Z[t]/f=Z[x), 

where 

x = t/f 
(17f) 

Ax) = 0 

is of rank n over Z with Z-basis 

(17g) 1, x, . . . , xCW-i, / i ( j c )> _ > /X(X)JC»-W-I 
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such that upon restriction of Q to L a positive definite quadratic form Q\L 
on the n-lattice L arises. 

b) Either fis irreducible and the minimum p,ofQ\L satisfies the inequality 

(17h) [i ^p2k/n, 

or fis irreducible and 

(17i) /i < p2kln. 

In the second case JLL is assumed for finitely many elements g(x) of L, 
when g is a polynomial of t over Z and the greatest common divisor of each 
g and fis a proper monic divisor off which is divisible by h0. 

c) Upon restriction of Q to the d-sublattice Ld of L formed by the elements 
P(x) of L with P a polynomial of t of degree < d over Z or P = 0, it follows 
that the minimum of Q\Ld equals pk if d ^ [/J, it is _: p2k/njn if[f] < d ^ 
[h0l but it is < p2k/n/n if[h0] < d ^ n. 

In particular, in case [h0] < n, the minimum of Q on L^^+i is assumed 
precisely at ± h0(x). 

Proof a) was shown in [3]. 
b) That hQ(x) belongs to L is implied by (16c). Note that 

(18a) Q(h0(x) <p2k/«/n 

because of (17b), (16i). 
The norm NA/Q(y) from A over Q of any element y of L equals the 

determinant of the regular representation of L applied to y. Modulo 
pk the application of y produces linear combinations of the last «-[/J 
basis elements. Hence, pk\NA/Q(y) (y e L). In case NA/Q(y) =£ 0, there holds 
the inequality 

nio,o)i ^ pk 

which implies the inequality 

QOO = £ My)\2 ^ P2k/nln 

according to the arithmetic geometric mean inequality. 
But if NA/Q(y) = 0,y = P(x\ P e Z[f], [P] < n9 then 

0 cz yA Œ A 

h = gcd(P, f) is monic constant in Q|>1 
(18b) 

P = PA f = PiK Pi e Z[tl P2 e Z[tl 

NA/Q(P(x) * 0. 
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The equation / = hQhi with irreducible monic hQ implies that A = 
h0A © h\A, h\A = e\A with primitive idempotent ex such that h§{e\x) = 0 
and h0A = (1 — e{)A. 

If/! does not divide h modulo/?, then/i divides Pi modulopk and 

Pk\NeiA/exÇl(eiP). 

Also, by construction, 

Hence, as above, 

Q(P(x)) = Q{exP(x)) + Q{(\ - ex)P) £ ^ ^ è ^ — . 

Finally, if/j divides /? modulo /?, then /?0 divides h as was pointed out 
above. Hence, 

f*o\P, 
(18c) 

P = h0Ps, 

P3 6 Z[tl [P3] < n - [h0] 
(18d) 3 ° 

y = h0(x)P3(x). 

Because of (18a), (17b), we have shown b). From (18c) and (18d), we 
derive c). 

3. Concluding remarks. The reduction algorithm given in [3] also is ap
plicable to the positive definite quadratic form (9a) using floating point 
instead of integer programming. However, the methods contained in [4], 
[5], [6] appear to the author of this note as fast and efficient as the al
gorithm given in [3] and have the advantage of giving precise minima. 

One could also form the Z[f]//-invariant module 

M = f{L\f\lf + pk{y eA& V/(0 ^ / < n => tr yx' e Z)} 

with exponent k sufficiently large so that the minimum of Q on M is 
assumed by the idemptotent ex corresponding to / j . 

REFERENCES 

1. J.W.S. Cassels, An introduction to the Geometry of Numbers, Springer Band 99 
(1959). 

2. David James Ford, On the Computation of the Maximal Order in a Dedekind Do
main, Dissertation, Ohio State University, 1978. 



POLYNOMIAL FACTORIZATION 665 

3. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovâsz, Factoring polynomials with 
rational coefficients, Mathematische Annalen 261 (1982), 515-534. 

4. Hermann Minkowski, Diskontinuitätsbereich für Arithmetische Äquivalenz, Werke 
II, S.53-100. 

5. Michael Pohst, Peter Weiler, and Hans Zassenhaus, On Effective Computation 
of Fundamental Units. II, Math, of Comp. 38 (1982), 293-329. 

6. Hans Zassenhaus, Gauss' theory of Ternary Quadratic Forms, Ternary Quadratic 
Forms and Norms, edited by Olga Taussky, Marcel Dekker 1982, 75-135. 

MATHEMATICS DEPARTMENT, OHIO STATE UNIVERSITY, COLUMBUS, O H 43210 




