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FOURIER COEFFICIENTS OF NON-ANALYTIC AUTOMORPHIC 
FUNCTIONS OF SEVERAL VARIABLES 

V. VENUGOPAL RAO 

1. Introduction. A well known theorem of H. Hamburger [2] states that 
the Riemann zeta function can be determined from its functional equa
tion, under certain conditions of regularity. This result has been general
ized by E. Hecke [3] to the zeta function of an imaginary quadratic field, 
over the field of rational numbers. Since then the general problem of 
determining all meromorphic functions, <fi(s), which are expressible as a 
Dirichlet series absolutely convergent in some right half plane and satisfy
ing functional equations of the type £j(s) = £(k — s), with 

,w=(i)-(TO,(,(0(,(-i))v,A 

has been studied. This problem has been solved for the functional equa
tions of the type satisfied by the Dedekind zeta function for a real qua
dratic field over the field of rational numbers by H. Maass [5]. For 
this purpose Maass has introduced analogues of analytic automorphic 
functions, which he called non-analytic automorphic functions. Such 
functions are defined as complex valued functions, f(z), of the two real 
variables x and y, with z = x 4- iy9 satisfying the wave equation 

in the upper half plane y > 0 and possessing transformation properties for 
the transformation group generated by the mappings r -» r + A, z -+ — 1/r 
(similar to analytic automorphic forms in the classical sense), and with 
the further requirement that/(r) has growth restrictions as z approaches 
the boundary of the upper half plane z = x + iy, y > 0. Later, Maass 
[6] generalized these functions of two real variables to functions of several 
variables and he called these functions non-analytic automorphic func
tions of several variables. The precise definition of these functions is as 
follows. 

We consider the k + 1 dimensional hyperbolic space as a subspace of 
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the euclidean space (x0, xl5 . . . , xk), with xk > 0, is endowed with the 
fundamental metric form 

, 2 _ dx\ + dx\ + • • • -t- dx\ 

4 
The wave equation corresponding to this metric takes the form 

(1) k|i(^i) + ('! + TÌ>= f t 

Here we have replaced the usual wave parameter ft2 by r2 + /c2/4, where 
r is, like //, an arbitrary parameter which we hereafter assume to be real. 
The motions of this hyperbolic space have been characterised by K. Th. 
Valen [8] using the Clifford number system. Let Ck denote the Clifford 
number system of rank 2k+l generated over the field of real numbers by the 
hypercomplex units z1; f2» • • • > h-> satisfying the relations 

i\ + 1 = 0, ipig + iqip = 0 (/?, q = 1, 2, . . . , k\ p ± q). 

Let Vk denote the subspace of vectors 

u = u0 + u^ + u2i2 + • • • + ukik (up real, p = 0, . . . , k) 

of Ck. Then, to every point (x0, x b . . . , xÄ) of the hyperbolic space, there 
corresponds a unique vector x = x0 + x ^ + • • • + xÄ/Ä, with the 
(k + l)th component positive. 

The proper motions of the hyperbolic space can be represented as linear 
fractional transformations 

x -> (ax + /3) (7* + 5)-1 

with suitable coefficients a, ß, 7% 5 e CÄ_i. We consider the hyperbolic 
motions represented by the vector transformations x -+ x + a, x -> — x - 1 , 
where a e KÄ_1# We choose a fixed lattice Tin Vk_x. 

By a non-analytic autamorphic function of the k + 1 variables, x0, 
x1? . . . , x*, we mean a complex valued function, f(x) = /(x0, xl5 . . . , xk\ 
defined in the upper half space xk > 0 (which is a subspace of KÄ), satisfying 
the following conditions: 

(a)/(x) is a twice continuously differentiable function in the sub-
space xk > 0 and is a solution of the wave equation (1); 

(b)/(x) satisfies the growth conditions /(x) = O(x^) as xk -> oo 
(2) and/(x) = 0(x^2) as x* -» 0, uniformly in x0, xl5 . . . , xk_i 

for some positive constants Ai and X2I 
(c) / (x -f a) = f(x) for all a in T, where r i s a fixed lattice in 

Vk-i-, 
d) /(x) satisfies the transformation formula / ( — x_1) = f(x). 
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The conditions a), b), and c) yield [6], for/(x), the Fourier expansion 

(3) f(x) = u(xk) + 2 a(ß)x^Kt.r(27i:\ß\xk)e^^. 
ß*0 

The summation on the right side of (3) is over all the vectors ß of a 
lattice S determined uniquely by the given lattice T as follows. Let cc\, 
. . . , ak be an arbitrary basis of T. Let ßi, . . . , ßk be vectors satisfying 
Re (apb») = 5^, for ^, v = 1, 2, . . . , / : , <5̂ y being the Kronecker symbol. 
The lattice 5, then, is generated by the vectors ßi, . . . , ßk. S can be char
acterized as the set of all vectors ß e Vk_x, satisfying Re(a/3) = 0(1), 
for a e T. The relation between the lattices 7" and S is symmetric. Further, 
\ß\ denotes the length of the vector ß9 Re a denotes the real part of the 
element a e Ck, and Kv(z) the Bessel function of "purely imaginary argu
ment" usually so denoted [11] and which is a solution of the differential 
equation 

9 d2w âw , « . 9, A 

having the asymptotic behaviour Kv(z) ~ \/ % ßz e~z as z -> oo. 
Further, 

r v = f «i 4 / 2 + î > + «2*î/2~'r, for r # 0, 
( j " W I ax 4 / 2 + a2 xf2 log JC„ for r = 0 

#!, û2 being constants. 

Our aim here is to consider the averages Lo<i/3i2^*,/9es a(ß)Pn(ß) (x — 
\ß\2)r, and express them as a convergent series of analytic functions for 
suitable positive real numbers j . Here, a(ß) denotes the Fourier coefficient 
occurring in (3) and Pn(ß) = Pn(b0, bl9 . . . , V i ) (j3 = b0 + b^ + • • • + 
bk_iik-i) is an arbitrary spherical function of order n in k variables in 
the sense of E. Hecke [4] and x is a positive real number. Problems of the 
type mentioned here, namely to express Eo<<z„̂ * an(x ~~ n)r a s a series of 
analytic functions, an being an arithmetical function or the Fourier coef
ficient of an analytic modular form in the classical sense, have been 
considered by various authors like Voronöi, Hardy, Landau, Walfisz, 
Wilton and others. For instance, it is well known that if an denotes the 
number of ways of expressing the integer n as the sum of m squares, then 

0<n<x 
an(x - n)r = c0xr+™ + Pr(x), 

where Pr(x) - -XT + 7 r r / 7 ( r + 1) E£=i a^x/n)«'^'* jm/2+r(2n Vnx), 
JM(x) being the Bessel functional of the first kind, with the series on the 
right converging absolutely for 7- > (\ß)(m - 1), conditionally for a > 
(1/2) (m — 3) and summable by Riesz typical means (R, n, / ) for 0 ^ 7- ^ 
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(1/2) (m - 3), where / > (1/2) (m - 3) - y. We adopt the usual conven
tion that in Tio<n<,x an(x - n)ri if 7- = 0 and x is an integer representable 
as a sum of m squares, the last term in the sum is to be multiplied by 1/2. 
Thus, in this classical case of "number of representations of n as the sum 
of squares", the series of analytical functions is a series involving Bessel 
functions of the first kind. If an denotes the number of positive divisors of 
n then the series involve the Bessel functions Yv(x) and Kv{x) and the 
functions become more and more complicated as the Fourier coefficients 
an become more "complicated". The author has earlier considered two 
such cases. In the first instance [9], an represents the "measure of repre
sentation" of integral representations of « by an indefinite, integral guadra-
tic form in m variables, and in the second instance [10], an is the Fourier 
coefficient of a non-analytic automorphic form of a certain type con
sidered by Maass [7]. In the second case the analytic functions occurring 
are very complicated and can be identified in terms of known functions 
only in special cases. In the present paper, we express TaQ<\ß\^xtß^s a(ß) 
PAß) (x — \ß\2)r a s a series of analytic functions and we will identify the 
analytic function as a Meijer function of the type G£;?(.y|£1

1,fl2'fl3'fl4,fl5) or 
a s G4',o(y\ai> a2i <?3> 04)» depending on the parameter r being non-zero or 
zero respectively. 

2. Non-analytic automorphic functions of several variables and their 
associated Dirichlet series. For every vector ß = b0 + b^i + • • • + 
bb^xh-i m Q> w e define its conjugate vector ß' as b0 — bJx — • • • — 
bk_iik_i and, for any spherical function Pn(ß) = PJJb^ bl9 . . . , bk_i), we 
define its conjugate function P'n by P£ß) = Pn(ß'). We define PQ(ß) = 1. 
Let f(x) = f(x0, xi, . . . , xk) be a non-analytic automorphic function, as 
defined by (2), with the Fourier expansion (3). Let 

(5) FH(y, Pn) = un(y) + £ a(ß)PH(ß)y*'*+" Kir(2n\ß\y), 
8ŒS 
ß*0 

where 

[ u(y), for n = 0 
(6) un{y) = 

10, for n > 0 

with u(y) as defined in (4). Then it follows [6] that 

F,(i- , Pn)=(-\)«Fn(y,P^ 

for n = 0, 1, 2, . . . and for any spherical function Pn of order n in k 
variables. Further, Maass has shown [6] that to every such non-analytic 
automorphic function, one can associate a meromorphic function, 
<f)(s, Pn), having the following properties: 
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(7) 

and 

(8) 

/*oo 

4 (FJy, P„) - uH(y))y*—»*-idy 
Jo 

= ir» r(s + £ ) r(s - 40 fa P„) -, 

s - ±j£K-)(s - ±^\<t>{s, P0) and Ms, /»„), 

for n > 0, are entire functions of s of finite genus. 
The functional equation 

S 4- + » - * P.) = ( - 1)" Ç& Pn) (for « ä 0) (9) 

is valid, where 

(io) £(*, P„) = *-* r(* + £ ) r(* - ^) #*, />„)• 

The functions 0(.y, P„) can be expressed as Dirichlet series 

( i n Ms P) = V a(ß)Pn(ß) 

with a finite abscissa of absolute convergence. Conversely, to every such 
system of functions, (j>{s, Pn), it is possible [6] to associate a non-analytic 
automorphic function of the type described by (2). The coefficients aÌ9 a2 

in u(y) are determined by the conditions that 

fa, Po) -
lai 2a? 

M ( S - ^ ) M 4 s -
k — ir 

and 

fa, Po) -
2ax _ 2a2 r < * ) log?r <*2 

< - $ 
M0 M0\r/Jc\ 

are entire functions of s, according as r ^ 0 or r = 0 respectively, where 

3. Proof of the main result. We consider the Dirichlet series 

^ s lprs 

8*0 



558 V. V. RAO 

which converges absolutely for Re s > aQ = (n + A2)/2 4- (3k)/4. By 
Perron's formula in the theory of Dirichlet series, it follows that (for x > 
0 and a è 0) 

(13) 

£ ' a(ß)Pn(ß)(X - \ß\2)a 
0<\ß\^x 

ß~S 

-^A«+i)^r"-sr(j )^ , / ,- )^ 
2TT/ J M-OO ^ (a + 1 + 5 ) 

(c > 0, e ^ ai) where the dash on the left of the summation sign in (13) 
indicates that if a = 0 and x = |/3|2, where ße S, the last term in the 
summation has to be multiplied by 1/2 and the line Re(s) = o\ lies in the 
half plane of absolute convergence of the Dirichlet series (11). We now 
choose o\ so that o\ > 0 and then we can choose c to be av We wish to 
transform the integral on the right of (13) to an integral taken on the line 
Re(s) = k/2 + n — (7Ì9 and for this purpose we need an estimate for the 
integrand on the right of (13) in the strip k/2 + n — o\ ^ Re(s) ^ o\. 
Since the Dirichlet series (f>(s, Pn) converges absolutely for a è 0\, it 
follows that 

(j>(s, Pn) = O(l) for a Z <7i. 

(We are assuming as usual that s = a + it, a and t real.) Since <f>(s, Pn) 
satisfies the functional equation (9), it follows that 

r(k+n_s+iL)rfk+n_s_jr 
<J>(S, P„) = ( - 1)" Zi^-2n^Â 2 / y . L 

4 + T ) 4 - T 
x^(} + «-^ ^} 

We set s = fc/2 + n — o\ + it in the above and, using the Sterling ap
proximation, 

r(a + it) ~ VSr*-* /2m l'I*-172 as |r| -> oo, 

we obtain 

Since 0(5, />„), for n > 0) and ( $ - ( £ + /r)/2) ($ - (fc - *>)/2)$>, P0) 
are entire functions of finite genus, it follows by the principle of Phrag-
mén-Lindelof, that 

<t>(a + it, Pn) = 0(1*|*('>), 
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as |/| -» oo, uniformly in the strip k/2 + n — G\ ̂  a ^ Gi, where T(G) 
is the linear function passing through the points (k/2 + n - Gi, 4<?I -
k — 2n) and (<7b 0) and we obtain Z(G) = 2{p\ - o). We thus obtain 

(14) <j>(s, Pn) = 0(\t\^-k'2% for |;| -> oo, 

uniformly in k/2 + n — G\ ^ a ^ G\. 
We consider the integral of (xsr(s)<f>(s, Pn))/(r(a + 1 + s)) over the 

rectangle with vertices at o\ ± /T and k/2 + n — G ± iT described in the 
positive sense. For \T\ large, there are, at most, poles at k ± ir/2 and 
the poles of r(s) in the rectangle. We denote the sum of the residues 
in the rectangle by Qa(x). We prove that the integral on the horizontal 
lines G ± iT, k/2 + n — G\ ^ G tz 0\ tends to zero, as \T\ -• oo, if a is 
large. Using Sterling's approximation for r(s) and the estimate (14), it 
follows that 

| ~ * Xsr{S)Ç(s, Pn) ^s _ Q/^ffi ljM4gi-*-2n-g-l\ 

(15) h/2+n-<n±iT r(a + 1 4- s) 
= 0(1) as ID -> oo, if a > 4ax - k - 2n - 1. 

We assume that a satisfies this condition. We then obtain 

/3GES 

<r=k/2+n-al
 v 7 

= A« +1) He«w + (- \y~ \ —, 4 ( 
1 2?r' J r ( a+i+-*+«-*) (7=<7i 

4±ift=Lw ^(4+„_s+iy(4+„_s_D ds 

on using the functional equation (9) for <f>(s, Pn). Since (j>(s, Pn) can be 
represented as a Dirichlet series for a è <?i, we write <fi(s, P^ = 
Sâ*o(a(i3)̂ >»(i3))/(l̂ l2s) in the above integral and obtain, for the right side 
of (13), 

r(a + 1 )x«ÌQa(x) + ( - 1 yXl"2+nnk+2n 1 f ^ 2 Z_ 
I 2OTj*="/Ya+l+A + „ -

(16) V 2 

+„- ì +rWÌ+»-*-4£ì SS K51 J 
^4+—+TH4+-'-T) 0*0 
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The order of summation and integration in (16) can be interchanged if the 
series 

/3eS 

07) _,_- r(±- + n-sy(s +JLy(s -J£.y^x\ß\2)s 

converges absolutely. 

Let 

G (a, k, n, r, o\\ x) = 

where the line of integration <7 = <7i is so chosen that none of the poles of 
the integrand lie on it. Using Sterling's approximation for r(s), we obtain 
for the integrand the estimate 

(is) , r r[±+n-sy\s+^y[s-^)x- ds, 

°{ |,|«+l+*+2*-4gl j (S = (?l + it), 

and hence the integral G(a, k, n, r, G\\ X) converges absolutely if a > 
4GX — k — In. The series (17) then becomes 

0/EM!TOLW/3) 
U\M wx\ßpr)a{p) 

and hence converges absolutely, since G — o\ lies in the half plane of 
absolute convergence for the series J^ßGSß*o a(ß)^n(ß)/\ß\2s-
The series (17) then becomes 

(19) S a(ß)P£ß)G(a, k, /i, r, GX; 7r4^|/3|2), 
ß*0 

absolutely convergent for a > 4ax — k — 2n. 
The function G(a, k, n, r, ax\ x) can be expressed in terms of the Meijer 

G function defined by 
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C,m,n(Y\al • • • > ap\ = C,m,n(x 
(jp<"\x\bl...,bJ - °P<I[X 

<2 ) , , ITA*/ - s )um -aj + s) 
= - ^ l —i=i é l x5*, 

J l TT A l - *,' + s) U r(aj - s) 

where an empty product is interpreted as 1, 0 g m g ^ , 0 ^ n S P and 
the parameters are such that no poles of T7^7/ — s),j = 1, . . . , m coincide 
with any pole of JT(1 — ak + s), k = 1, . . . , n. There are several choices 
for the path of integration L and we shall choose the path to run from 
—/oo, ot /oo so that all the poles of r(bj — s)J= 1, . . . , m are to the right 
and all the poles of r(\ — a}, + s), k = 1, . . . , n lie to the left of L. See 
[1] for the properties of Meijer's G function. We now will express the 
function G(a, k, n, /% <j\\ x) in terms of the Meijer function. The poles of 
r(k/2 + n — s) are at k/2 + n + m and the poles of T{s ± (/>)/2) are 
at + (/>)/2 — m, m = 0, 1 , 2 , . . . . We accordingly will choose L as the 
straight line running from c — /oo to c 4- /oo, where 0 < c < &/2 4- «. 
The path of integration for the integral representing G(a, k, n, r, o\\ x) 
is Re(s) = <7i, where 0^ is lying in the region of absolute convergence for 
the Dirichlet series (f>(s, P^). We now assume that 0\ ^ k/2 + n. We 
consider the integral of the integrand of (20) over the rectangle R with 
vertices at 0\ ± /Tand c ± iTand show that the integral on the horizontal 
lines from Oi + iT to c -f iT and <?! — /T to c — iT tends to zero as 
\T\ -> oo, if a > 4^1 - k - 2n. 

By the Sterling approximation for f(s), it follows that 

p±- K T + H 4 + T M * - T ) 
' c±iT 

- « < • 

4 + I + T + " - S M T + " - " T H T + " - ' - | 
= 0(1) as | r | -+ oo, 

x~sds 

\rf\a+l+k+2n-U 

since a > 4a — k — 2n. 
Hence, 

G(a, k, n, r, ax; x) 

i ir \ x ir , i , / , -» £ . . ir k , *V\ 
1 - y , 1 + ^ - , a + l + / : + 2^, -y + A7 + -y'~T " ~ T 
k 

+ sum of the residues of the integrand of the integral (18) at its poles in the 
rectangle R. The poles of the integrand are at k/2 4- n + m, m = 0, 1, 
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1, 2, . . ., /?, where p is an integer such that kjl + n + p < a1 <; k/2 + 
n + p + 1. Since the residue of r{s) at s = — m is ( - l)w/m!, it turns out 
that the sum of the residues at the poles in the rectangle R is 

,èo "*•' n/_. , i , ^ n / „. . / > W _ /> / 7 (a+ l - /w) / 7 ( - /w + -yJ/7^-/w 2 

We examine the special case of r = 0. In this case, 

(21) G(ct, A:,/7,0,<7i;x) :*l = JLf 7 ^ ) 
W J ^ ^ + 1 + } - / I - J W } + « - J 

x~sds, 

1, l , a + 1 + A - * , y + ")• 

and we can take L as a = crx. We then obtain 

G(a, k, n, 0, ax; x) = GM*" 1 

If r j=- 0, we obtain 

G(a, A:, «, r, <j\\ x) 

m=o ml r(a+l_m)r(^_m + ir_y^_m_Jr_ (22) 

where, for brevity, 

-k/2-n-m 

a 

(23) 

G14x\l[ 

= <%\\x 

i ir i . ir . 1 , 7 . - » k , t ir k i ir\ 
l-^,\+^,a + \+k + 2n,^ + n + Y,-Y + n~Y 

• + A I 

In view of (21) and (22), the series (19) can be written as 

(24) 

i;fl(/3)^(/3)G2'j(7r-4x-i|^|-2 
3<=S \ 
/3^0 

1, 1, 

a + 1 + -y - «, -|- 4- n ), if r = 0, 

and as 
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(25) 

+ La(ß)PXß)Gk(ic-*x-l\ß\ 

,3*0 

~ 2 J m\ ~ ~ " ~~J ir\ _ / 7r~\ (~lv\k/2+n+m 

2. 

if r ? 0 

w=0 m - A a + l - m ^ - m + ^ V - m - / r 

+ Za(ß)P:(ß)Gl:(7Z-*x-i\ß\ 

(7T4X)* 

ß^S 
ß*0 

ar 

bj' 

In the expression (25), (f>(k/2 + n + m, P^) is meaningful, as when r # 
0, the only possible singularities of <f>(s9 P„) are at k ± (/>)/2. 

We now obtain the final result of this paper by substituting (24) and 
(25) for the series (19). 

THEOREM. Let G = Gì lie in the half plane of absolute convergence of the 
Dirichlet series <j>(s, Pn) and <f>(s, P^), <j\ ^ k/2 + «, a H , x > 0 and 
a > 4ax — k — 2n. Then, for r = 0, 

£ ' a(ß)Pn(ß)(x - \ß\2)a = r(a + 1) x°Qa(x) 

+ (-l)T(a + 1) 

x G8;ï(»-**-Hj8|-2 

0<l/3|55i,/3eS 

(26) + ( - 1)" A « + 1) x«+*/2+» *̂+2« 2] a(ß)PXß) 
ß*0 

1, 1, a + 1 + -^--n,^-+n), 

and, for r / 0, 

2 ' a(^)/>„(/3)(x-|/3|2)« x xa+y2+n1zk+2n 
0<l/3|2Si,(3eS 

= / \ a + I) x«Qa(x) + ( - ! ) - A « + I) 

f^(-i), 4T + " + " + TMT + , , + , , , -T ) *(T+* + "^ 
\h rni ' •' A a + 1 - W) r ( - »J + - j W - m - lL\%ix)k'2+n+m 

+ Tia{ß)P"{ß)G\4x-*x-i\ß\-* 

1 _ T ' l + ^ , a + l + Ä : + 2«,-|.^ 

_L_ „ _L / r fc _L_ „ Ìr k , „ 

w/^re f/*e dashes on the left sides of the formulas (26) ««J (27) indicate that 
the last term on the summation is to be multiplied by 1/2, if a = 0 a«c/ 
•*= 1/312,/or some ßeS, Qa(x) is the sum of the residues of{xsT{s) <ß(s, Pn))/ 
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r(a 4- 1 + s) at its singularities in the strip k/2 4- n — 0\ ^ a ^ a\, 
and the series on the right of (26) and (21) converge absolutely. 

In conclusion, we remark that, in special cases, the Meijer function may 
be expressible as a combination of more elementary transcendental func
tions like the Bessel functions and the Whittakker functions. Such at
tempts may be useful even though at times frustrating. 
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