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1. Introduction. Let x be a real number and [x], {x} denote respectively
the integral part and the fractional part of x. Let k be a positive integer
and let a be a real number. The purpose of this paper is to give an asymp-
totic formula for ¥, ne{x/n}.

Smith and Subbarao [5] obtained an asymptotic expression for this
sum when a =0, Kk =1 and n = b(m). More recently MacLeod [4]
studied it when a is an integer and k is a positive integer.

To obtain our result, we shall use a result which can be considered as an
inversion formula for a class of arithmetic sums. That will be the subject
of the following section.

2. Preliminaries. Let f be an arbitrary arithmetic function, arithmetic
sums of the form Y,., f(n) [x/n] occur in many situations in the theory
of numbers. For example, we have the well-known results

Lo =55 (5 +[5)

and
PEOEES)) ﬂ(n)[%T + 1

where ¢ is the sum of the divisors of #, ¢ is Euler’s totient and y represents
the Mdbius function, which are used to obtain the average orders of

a(n) and ¢(n).

Let k& be any non negative integer and let
k

fin) = Se@) ()

where g is any arithmetic function. Then we have
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(1) LA = Dem (142 4+ o+ [2]),
and using the well-known identity

Sk T ae e k3
n=1

=0

where B; are Bernoulli’s numbers defined by

2(=D"Y(2n)! C(Zn)
Qn)?

BO=1,BI=_'%"B2n+1=09 By, = n=1,2,...,

and { stands for the Riemann zeta function, equation (1) becomes (for
k=1

o Zamegh ()n g 5] ) pel3]

This last transformation is quite trivial. However, let us note that recently
Harris and Subbarao [2] found an interesting transformation formula for
the sums of the type

hX g(n)<lk F 2o [%T)

n=x
(n,m") , =1

where (n, m), is the greatest r** power common divisor of n and m.
Now, we state a result which can be considered as an inversion formula
for a class of arithmetic sums.

THEOREM 1. Let k be any non negative integer and let f(n) = X ,,8(d)
-(n/d)*, where g is an arbitrary arithmetic function. Then

3) DA = S (1542 + o+ 2])
if and only if
ozl en hpa)

Proor. The proof is trivial for £ = 0, and, consequently, we will now
suppose k = 1.

We shall first establish necessity. Since (3) is equivalent to (2), then we
can write (3) in the form

B = by B[54 paol]

n=x

1 k+1 i1
Tk x 12< j >B"ngxg(”)[ﬂ ’
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and thus we obtain

() S Am) = B 2
RG]

ik ,
5 (ﬂ'i—{) > <k RN C [ﬂ"“””")

k+1—-j &

ARy

NP i) n

In this last expression, the coefficient of [x/n] is — L/k(*1) + 1/2(%1) =0
whereas the coefficient of [x/n)i™™, 1 < m < k —1,1s

(—l)m+1<k+l> (= 1<k+l>+"’2 (=1 <k+l><k+l—j)B ’
k—m\m+2) 2 m+1 k+1T—j\j+1)\m+1—j) mti=

The value of this last sum is also zero. Indeed, since

1 <k+l><k+l—j>_ 1 _<k+l><m+l>
k+ 11— j\j+tl)\m+l=j) " m+1-,\m+1)\m—j)

it follows that
(—l)’””1<k+l> mi (=1 <k >< >
2 \m+l 3k + 1 —j\J+ mHl=d

1 (k + 1 ml (= 1)m+l- J<m+l> )
— (— |)ymt+1 .
(i) (G- 8 SR (n L)) B
and, from the well-known identity ("§?) Bo + (™ B+ -+ + (2 B,
= 0, we can deduce that

J__'"'l_(_—_‘_)ﬁil’_’<m+1>3 R N
2 SEm+l—j\m— )it Ty

and consequently, we have the result of the first part.
The details of the proof of sufficiency are almost identical with those of
necessity and thus we shall omit it.

3. Some examples.

THEOREM 2. Let a be any real number and let k be a positive integer, then
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S| 2 = S(-0(;5,) B 00 asy®),

n=x 7=0
where g(n) = X 4,d°.

PROOF. Let g(n) = ne, then f(n) = nko,_,(n) = ne,_,(n) and thus we
obtain

n=x n
and, using Theorem 1, we get the result.
THEOREM 3. Let J,(n) be Jordan’s totient defined by
) = 5 u@) (%),

Then, for all integers k = 0, we have

émmg-“=g(—w@+02h4@

PROOF. Let g(n) = p(n). Then

X i) = ém@(u F 2%t [ﬂ‘)

n
and, using Theorem 1, we have the result.

4. The principal result.

THEOREM 4. Let k be an arbitrary positive integer. Then, for any real
number a, we have

< ¢ k'C(a+1+[_k) >xa+l
+1—k Hilla+D(@) --- (a+1+i—k

i <x”“>, ifa>k—1,

é”“{?}k = J[<1—',v—’;f(”31‘ )xk+o<log ) fa=k—1,k22,
|
l

M

X P _
(=pr+0(joey)  Fa=0k=
 0(x=11), ifa<k-—1,
where y is Euler’s constant.

Proor. Using Theorem 2, we have
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x ¥ n x ¢
SGEPECRE)
P ,
= 5 (o) g 3])
=0 n=x n

_xkzna " +Z(_1)1< >xk /Zna k+,[:]i
= xk Znak

n=x

B Een()
. Z Ll (n)>

n=x

&)

But, using Abel’s identity and the asymptotic formula (see [1]) for
X nsx04—p(n), where § is any non negative real number, we obtain

C(a_ﬁ+ l) Xa+1+0<

a1 ifa>p

+1
log x>

x6+1 .

6) ”Zglnﬁa,,_p(n) =B+ log x + 0(xA+1), ifa=4
L1=a+ph) 4 <xﬂ+1 .
R R m), ifa< B

First of all, we shall show our result for a > kK — 1, k = 1. Using (6),
equation (5) becomes

Bl - s oo+ ) S ( /)

nsx
(la—k+i+2) ,4iin <xa_k+’+1 >>
<a—k+j+l x40 log x

= xa+l<—a—_ll(ﬁ + jZi]l(— 1)/ (ﬁ)
S ] ) Sefried o (L)

= xa+1< I Zk: (- l)j<l;>

a—k+1 Ha-k+j+1

Z —1)() (a—k+1+l)+0<logx>>

Let iy be a fixed integer, | < iy £ j £ k, then the double sum of this last
equation becomes
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a= kg w1 C0(f)a -k i D

= (=1)og(a - k + iy + 1)< [’f) >,§0 ;—_ l/:ng,—J,;gl)

but

(= k — i) @ — k4D _
im @ D@ @k + it =D ( —10>

Hence

JZZ——,:I%( )’“( >C(a—k+:0+1)

<k>(k—10)'C(a—k+10+ 1
T a+ D@ - la-k+ip+ 1)

and, thus, fora > k — 1, we obtain
&
Smlx
n=x n

<a+1—-

For the case a = k — 1, we proceed as follows. From equation (5), we
have

O

k! Ca—k+i+1) > . xaﬂ)
L@t )@ a—k+iED) +0<10gx

®) : -
+ 3 (08w S 2 ).

n=x

We know the asympotic expressions of the first two sums, so the problem
now consists of estimating the sum ), .n/~1[x/n]/. But, from example
1, we have, for all j, 2 < j < k, the following equation

D[ 2] =i S w o) + B (=1, ) D oo,

n=x

Now, using (6), we obtain, for 2 < j < &,

23]

(9) n=x
= xi(log x+ 27—+ ; 07 et )+ 0{igg )
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Replacing the asymptotic expression of ¥ ,., 1/n, X<, [x/n] and X, ni1
[x/n}/ in (8), we get the result, after having used the identities

g (=17t k
:él 5 <l> g %’
and

-|)< > .
k ) . &
SRt = - 580

=2 J
Let us remark that we can also obtain an asymptotic formula for
X ae st {x/n}* in the following way. We replace the estimation of {(s)
in a neighborhood of ¢ = 1 (see [6]).

(10) Ls+2—-k= + 7406 —1+k)

_._._,,___1 —
s+ 1 -k
in (7), and we take the limit of this new equation when a — (k — 1)*.

For the last case, (¢ < k — 1), we get, after some elementary computa-

tions,
[V ol Xt
én {n} —0<logx>'

But, evidently, we have 3, na{x/n}* = 0(xe*1), so our result does not
give much information for this case.

5. An improvement. For any real numbers a with a =2 k — 1 = 0, we
can prove that

1 L\ a+ 1=k + )

a¥1=k " B @@ ~@ri-k4jy ekl

R UL
1 mzd"]l—r iC(")—‘ﬂ, fa=k—1kz2

1l -7, fa=k—-1k=1,

and then, from Theorem 4, we can state that for all positive integers k
and for all real numbers @ = k — 1, we have

Ze(al = (7 o aoen o)

We have the following improvement.

THEOREM 5. Let k be any positive integer. Then for any real number
a > 0, we have

3 ne {%}k = C xetl 4 ((xet6/13 [og?/13 x)

nsx
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where
o {t}k
c= | ik
PROOF.
Since

) {t}k _ 1
jx tot2 dr = 0<xa_+l>’
then we have
x X k
_fl t“{T} dt = Cxe+l 4 0(1),

where C is the constant defined in the statement of this result. Con-
sequently,

I

C xorl 4 0(1) + é:n{%}k - f ta{%}" dt
C xo+1 +0(x?) + jl 5 @{%}" —(n+ z)a{n x }”)d:.

I

0x=n + ¢

Now, using a result of Kolesnik [3] concerning the sum under the sign of
the integral, we have the result. Indeed, Kolesnik has proved, for all ¢,
0<tr=1,

h <na{%}k —(n+ t)a{ g }k> = O(xo+6/13 [ogT/13 x),

n=x n+t

and to obtain this result, he expands {y}* in a Fourier series and uses a
theorem of Van der Corput concerning exponential sums.
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