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Dedicated to the Memory of E. G. Straus and R. A. Smith 

1. Introduction. The elementary method of Chebyshev for studying the 
distribution of primes begins with the beautiful formula 

p^n 

For convenience, we take logarithms, getting 

2 logy = S ([n/p] + [/i/p2] + . . . ) log p. 
j<n p<n 

Since the left hand side is easily seen to be asymptotic to n log n we deduce 
that there exist primes, that they are not too few (or too many), and not 
all small. 

More generally, consider a sequence of non-negative reals, jtf = 
{«!, tf2> • • •}> perhaps the characteristic function of an "interesting" set 
S of integers. 

As is the case with sieve methods we attempt to derive information 
from the sums 

A(X,d) = 2 an 
n^X 

»=0W) 

which we write as 

A(X9 d) = A(X)lf(d) + R(X, d) 

where A(X) — A(X, 1) and where we regard R(X9 d) as an error term. 
The function / is assumed to be multiplicative. (This usually occurs in 
practice ; in fact we shall need it only in §3). We proceed to make a number 
of assumptions familiar from sieve theory. (These are by and large strong­
er than necessary, being made with a view to §3.) 

(Al) For some real / c ^ O w e have 

2 A(m)lf(m) = K log X + 0(1). 
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(A2) fX A(t) dtjt = o {A{X) log X). 

The Chebyshev identity is now 

(1.1) 2 a„ log n = 2 a„ 2 /1(J) = 2 /1(<*M(*> «*)• 

Partial summation together with (A2) show that the left hand side of 
(1.1) is asymptotic to A(X)log X. To proceed further we need an assump­
tion that the remainders are small on average: 

(A3) For some positive real 0 < AT1, and Y = Xd, we have 

E A(d)R(X9 d) = o(A(X)\og X). 

The right hand side of (1.1) may be written as 

A(X) £ -4S- + 2 A(d)R(X, d) + £ A(d)A(X, d). 
d^Y J iß) d^Y d>Y 

From (Al) and (A3) we deduce 

(1.2) 2 A(d)A(X, d) ~ (1 - *0M(X)log * 

and, if we may neglect the higher prime powers by means of, say, 

(A4) 2 A(X, p>) = o(A(X)) 
pk>Y 
k^2 

we then have 

(1.3) S A(X9p)logp - (1 - K0)A(X)log X. 
Y<p^P 

Here we have denoted by P, the largest prime factor of any n g X for 
which #w > 0. 

We deduce that there exist an ^ 0 with n ^ X divisible by some 
p > Y. One would like to deduce that the set in question contains primes. 
This requires the sequence to have the property an ^ 0, p \ n => ap ^ 0, 
and this almost never happens. In the case an = 1 V« we have the re­
quired property and we get Chebyshev's lower bound for n{X). In the 
case where we take an to be the number of ideals of norm « in a fixed 
number field, we get the property often enough to give [4] bounds which 
are not known to follow from analytic arguments. 

2. The Chebyshev-Hooley method. In most sets of interest the Chebyshev 
method does not allow one to detect primes, only integers with large 
prime factors (as opposed to the integers with few prime factors detected 
by the sieve) and it is of interest to estimate how large. Much of the work 
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on this aspect of the method was done by Hooley in a number of beautiful 
papers; see, e.g., [9, 10, 11]. 

The problem in general resolves itself into two components. 
1. How large can we take 0 and still get (A3) and thus (1.3)? Sometimes 

there will be a trivial value for 0 (obtained for J^d<Y A(d) | R(X, d) |) which 
may be improved (again as in the case with sieve methods) by expressing 
R(X, d) in terms of exponential sums for which a non-trivial estimate may 
be given or in terms of Dirichlet polynomials which may be attacked by 
Cauchy's theorem. 

II. It may be possible by means of an upper bound sieve to obtain 
bounds 

2 A(X, p)£ Z A(X, m) £ ld 
T<p^2T T<m<2T dim 

leading to 

2 A(X,p)\ogp <cA(X)\ogX 
Y<p^Po 

for some P0 > Fand some c < 1 — KO. This, by comparison with(1.3), 
gives the lower bound P > P0. 

EXAMPLES. 

1 . 5 = {m2 4- 1 S X}. Here one has the trivial estimate 0 = 1 / 2 — e. 
Hooley in his pioneering paper [9] showed that one could use the sieve in 
conjunction with estimates for Kloosterman sums to obtain PQ = Xn/2°. 
This has since been improved, the best estimate at this time being P0 = 
X3/5 due to Deshouillers-Iwaniec [2]. 

2. The integers in the interval (X - Z, X] where Z = Xa, 1 > a > 0 
fixed. Here 6 = a — e is trivial. Ramachandra [16] obtained P0 = Xa+Ô(a) 

with the aid of van der Corput estimates and Jutila [12] obtained d = a + 
d'(a) with an improved ò' by using Vinogradov's method. (Vaughan's 
identity can also be used for this.) It should be mentioned that in the case 
where a is small (A4) is not known to hold and this somewhat complicates 
the argument. 

3. 5 = {p + a | p ^ X}. In this case there is no trivial value of 6 but 
6 = 1/2 — e is an immediate consequence of the Bombieri-Vinogradov 
theorem. With the aid of this and Brun-Tichmarsh, Goldfeld [7] and 
Motohashi [13] independently obtained P0 = Xa/2)+ô with a ö which has 
been improved several times most recently by Deshouillers and Iwaniec 
[3]. 

There are a number of other interesting examples of results of this type, 
in particular a two-variable version due to Greaves [8] which gives es­
timates for large prime factors of binary forms and a conditional treatment 
due to Hooley [11] of the analogue to example 1 for cubic polynomials. 
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It is also possible [5, 6] to adapt the method to prove that stronger quanti­
tative results hold when one asks only for large prime factors amongst 
"almost all" sequences of a given type. Finally, it should be mentioned that 
there are, in the case where sé is an arithmetic progression, results of the 
same type. These seem not to have been investigated in the literature. 

3. Other aspects of the method. From the point of view of generating 
functions Chebyshev's method is nothing more than the trivial identity 

(3.1) (-cw/cw)cw= -a*). 
One can think of this as "undoing a sieve". In §2 we were concerned 

with finding in sé integers with factors (large primes) which survive a sieve. 
One can replace that sieve by others. Thus, for example, in the case where 
one wishes to find large squarefree factors, one has the equally trivial 
identity 

(3.2) (as)ia2s)K(2s) = m-
We restrict our consideration here to the integers in the interval (X — 

Z, X] as in example 2. We have 

X-Z<n^X r^X H(f \l/2" 

r>Y r<Y 

say where Y is chosen (as large as possible) so that 

X - Z \w 
(3.3) 

r<Y r 

since 

(*i'2 - (X - Z)1/2) 2 tm 
ÎÉY (r1/2) 

provided Y = o(X), we deduce that 

= o(Z). 

« z 1 / 2 ZA'- l y l / 2 = o(Z), 

z ~ E A?} 
r>Y 

X\V2- X - Z\ 1 / 2 ' } 
and that the interval contains an integer with a squarefree factor > Y. 

The trivial estimate for (3.3) allows only the same estimate as for the 
largest prime factor but the relevant exponential sums 

z*HW. 
can be estimated somewhat more efficiently than the corresponding sums 
[12] for primes. 
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If instead of square-free factors, one is interested in factors which are 
almost-primes, as for instance when the sequence sé has a larger value of 
K (e.g., reducible polynomials) then an appropriate identity is given by 

(3.4) ( ( - l)r ^(sK(s)K(s) = ( - !K ( r )C0. 

Here 

where the generalized von Mangoldt functions Ar, see, e.g., [1], have the 
properties: 

AM) £ 0, 

AM) > 0 <=> 1 ^ v(n) ^ r> and 

2 Ar(d) = log'/i. 
din 

Arguing as in §1, 

= ^00 S 4 ï # - + 2 AW)Ä(Jr, d) + E Ar{d)A{x,d) 
d&r J(a) d&r d>Y 

and, replacing (A3) by the assumption 

(A5) 2 Ar(d)R(X, d) = o(A{X)\og'X), 
d^Y 

we deduce that 
(3.5) £ Ar(d)A(X, d) ~ C(K, r, 6)A(X)iogf'X, 

d>Y 

where 

C(K, r, 0) = 1 - flr * ( * + ' ) - ( * + / - - ! ) 

This may be proved by induction on r with the aid of the identity 

Ar+iOt) = Ar{n)\og « + L Ar(d)A(n/d) 
din 

which also follows by induction on r. 

4. Integers without large prime factors. In this section we discuss briefly 
the problem complementary to that in §2. For definiteness we again con­
fine ourselves to the case of example 2, the integers in the interval (X — 
Z, X]. The results of this section represent work done jointly with J.C. 
Lagarias. 
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Consider (X - Z, X], Z = X«, Y = X9 where O < a < l a n d O < 0 < 
1 are fixed. Arguing as in §1, 

(4.1) 2 A(X9 p)\og p < ( l - 0 + o(l))Z log X 
p>Y 

(Recall that we do not have (A4) but, for this problem, the inequality goes 
the right way and we can neglect higher powers of primes.) 

Suppose now that each n e S is divisible by some prime > Xß > Y. 
The left side of (4.1) thus exceeds ßZ log X and so ß ^ 1 — 0. 

DEFINITION 4.2. f(a) is the inf of those F such that, as X -> oo, the 
interval (X — Xa, X] contains a positive proportion of integers all of 
whose prime factors are ^XF. 

By the above argument combined with the estimate of Jutila [12] referred 
to in §2, we have : 

THEOREM 4.3. For 0 < a < 1/2, there exists d(a) > 0 such that f(a) < 
1 - a - ö. 

We remark that Turk [17] has independently proved essentially the same 
result, and that Pomerance [14], who seems to have been the first to con­
sider the complementary problem, has investigated example 3 (shifted 
primes). See also [5, 6]. 

Since/(a) is obviously non-increasing, one gets from the above, trivial 
results for a ^ 1/2. To do better, for instance, to show/(a) -> 0 as a -» 
1", one needs to have an inclusion-exclusion argument which requires in 
turn some control on the contribution from multiples of almost-primes. 
The formula (3.5) is adequate for this purpose and with its aid one can 
prove the following result. 

THEOREM 4.4. As a -> l~9f(a) -• 0 and, in fact, 

f(a) « lfjWl - f . 
log(l/(l - a)) 

Or course it is very probably true that f(a) is identically zero. It would 
be nice even to have the result that/(a) = 0 for some a < 1. 

A result like (4.4) holds (conditionally), see Pomerance [15], for the 
case of {p + a} if it is assumed that (A3) holds with 6 = a. 
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ADDED IN PROOF. Since, this paper was written J.C. Lagarias and the author (to 
appear) have greatly improved the results of §4. They prove that, for 0 < a < 1, and 
some ct 

f(a) < 1 - a - ca\\ - a), 

and that stronger results follow (by different methods) if one does not require a 
positive proportion of integers in the definition o f / 

Independently, results on this topic have now been given also by A. Hildebrand and 
G. Tenenbaum and by A. Balog and A. Sarközy. 

The topic of §2, in the case of arithmetic progressions, has now been studied by 
the author jointly with A. Balog and J. Pintz. (Studia Sci. Math. Hungar., to appear.) 




