ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 15, Number 2, Spring 1985

ON MULTIDIMENSIONAL COVERING SYSTEMS OF
CONGRUENCES

J. FABRYKOWSKI

Dedicated in memory of E. G. Straus

Let us consider a homogeneous system of congruences:

k

(l) ZainonmOd m;, 1 = l'_.<__n
7=1

where m; = 2 and

(2) (afl’ Q25 - - -5 iy mi) = 1.

In [2] we have proved that if » = 2 and a homogneneous system of the
form (1) covers a k-dimensional cube C, = Z, with the side length 271
and such that 0 = [0, 0, ..., 0] € C, then it is a covering system, i.e., it
covers every k-dimensional integer vector. We conjectured that the length
272 4+ 2 of the side of our cube is sufficient for the assertion and gave an
example showing that the length 27=2 + 1 is not enough for the purpose.

In this paper we show that for a fixed number of variables and con-
gruences we can check the conjecture by performing a finite number of
operations.

In fact we shall prove the following:

THEOREM. [If there exists a homogeneous system of congruences of k = 2
variables that covers a k-dimensional cube C, with the side length 272 + 2
and such that 0 € C, which is not covering, then there exists a system (not
necessary homogeneous) having the same properties which has all moduli
less than 2max (k, 272 + 2)(2#72 4 2)+L,

PROOF. Suppose that (1) covers the cube C,, 0 € C, and is not covering.
Certainly we can assume that no proper subset of our system has the
same properties. We split indices i < n into three disjoint classes 4, B, C
as follows:

i € A if the i-th congruence is satisfied by & + 1 integer points from C,

which form a linearly independent set.
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ie Bif i¢ A and the i-th congruence is satisfied by k linearly inde-
pendent points from C,.
ieCif i¢ A |J B and the i-th congruence is satisfied by r(1 < r <
k — 1) lenearly independent points from C,.
Suppose first that i € 4 and let pq, po, . . ., Pri1, Where po=(pg, Pszs - - - »
Paw), | =5 =k + 1 bek + 1 linearly independent points satisfying the
i-th congruence of (1).
For every r, | <r < k + | we have the system of k congruences:

k
> a;;ps; = 0mod m;, seJ,
=

where J, = {1, 2,....,r — I, r + 1,...,k + 1}. Therefore for some
integers L

k
(3) Z a;jPs; = mz'Ls5 SE ']r'

7=1

Applying Cramer’s Rule to (3) we find
Q) a;; = m;W,lV,

where V, = det| p;;li< =4, 5=, and W, ; are determinants as desired. Since a;;
€ Z then from (4) it follows that

(5) miVag;, 1 Sr<k+1,1<j<kicd

and using (2) we obtain

(6) m|V, forevery | < r <k + 1.
By virtue of the following identity
;l pPu Pzt Pue
D:detil P2 P22 ccc Do *=l§1(_l)r~l[/r
...................... | r=1
g Pr+1t Periz " Pr+lk!

and (6) it follows that m;|D.

On the other hand it is known that |D| = k!4(py, . .. ppr1), Where
A(py, - - ., Pre1) denotes the k - dimensional measure of the simplex
determined by the points py, ..., pp+1- (See, e.g., [1]) Since py, po, - . .,
Pir1 € Cpthen |D| £ (2772 + 2)kso m; < (2772 + 2)k,

Let M be the least common multiple of all moduli m;, i € A. All prime
divisors of M are less then (2772 4+ 2)t#. Now we show that for every n
and k = 2 there are at least n prime numbers between /" and 2/’, where

I = max(k, 272 + 2)(272 + 2)+1,
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Suppose first that & = 2772 4 2, so that
I = k(Q2r2 4 2)+1,
We use the following inequality of P. Finsler [3]:

m(2y) — n(y) > y/(3 log 2y).
Take y = I" and let us consider the expression

,K_,__]l o k(2n~2 + 2)k-1
Jlog 2I' = 3Tog 2k(2 2 + 2)F 1

If 4 > 1 then the function f(x) = xA*71/(3 log 2xA~"1) is increasing.
Therefore it is enough to show that f(2#2 + 2) > n with 4 = 2772 + 2.
It is easy to check the inequality for n = 1, 2, 3, and for n = 4 we have
f(@2n1 4+ 2) = 2f(272 + 2) therefore the inequality follows by mathemati-
cal induction. Suppose now that k < 2772 4 2, so that I' = (2772 + 2)~,
Let us consider the function

_ @42y
gk, m) = 3120w 4 oy

which is decreasing with k, so taking k = 2 it is enough to show that
g(2, n) > n for every n = 1. On the other hand the function

_ 82, n) _ (2n2 + 2)2
hn) = 2 = T log 2027 + )2

is increasing with n if n = 5.

Moreover A(S) = 1. If n = 1, 2, 3 or 4 by direct computation it is easy
to verify that between " and 2/ there are at least n primes.

Let us denote the primes in the interval (/7, 2I") by ¢1, 42, 43, - - - .

Let now i € B and denote our points by py, ps, . . ., p,. They determine
a k — | dimensional hyperplane having an equation B;;x; + Bjoxy + -+ -
+ Byx, = By. Let us consider the congruences:

(7) MB,'IXI + MB,'z.Xz + -+ MB,‘k.Xk = Bz’O mod q;, i€ B.

Since g,/ M and as we shall prove, gq; (B;1, Bss, - . . , By) the system (7)
has a solution (x?, x3, ..., x9). A k — 1 dimensional hyperplane deter-
mined by the points p,, . .., p,, where p, = (p1, Ps2» - - - - Psp), | £ 5 Lk,
has an equation of the form:

il X1 Xo cee Xp
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Therefore forevery | < j < k,ieB

bopn Pz oo Py Pyt Pu
B,; = det| : : . : :

U pu Pe2 " Prjm1 Priv1 tt DPekl

Similarly, as previously |B;;| = (k — D)'49(py, ps, ...,p:) where
A9 (py, ..., py)is the k — | dimensional measure of the simplex deter-
mined by vertices p{”, p”, ..., pi, where p) = (pg, Pszs - +» Psjt
Psj+1s -+ » pk)

All points p(1 < s < k) are in the kK — | dimensional cube C,_; ;
with side length 2772 + 2. So |B,;| < (2#2 + 2)¥ 1 and

0<3|B,l Sk@r2 4215
=1

which proves that g, { (B;1, Bio, - - -, Bi)-

Now let i € C. For every hyperplane H,_;(1 £ r £ k — 1) in k-dimen-
sional space we can find a k — | dimensional hyperplane containing H,_;
and the point P = [x}M, x3M, ..., x}M]. It can be done by enlarging
the set of points p1, py...p, P if P¢{py,...,p,} or p, ps...,p, if

Pe{py,...,p,} by the points p,.p, ..., Py OF Pri1, Prizs - -« » Pps TESPEC-
tively, and such that the enlarged set is linearly independent.

Let us consider for i € C equations C;;x; + Cioxg + ... + Cix, = Cyg
such that

CaxiM + CipxM + -+« + CyxiM = Cp,.

The system of congruences:

k

®) >ia;;x;=0modm; i€A
=1
k

9 >, Bijx; = Bymodg, i€B
=1
k

(10) Z C,'ij = Cz'O mod q; ieC

covers the same k-dimensional cube C, as the system (1), the vector
M, XM, . .., x{M] is a common solution and the system is not cover-
ing. If it were a covering one then using Theorem 2 [2] we would infer
that congruences (9) and (10) are not essential and so could be omitted
and this would contradict the assumption that the system (1) is not
covering.
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