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Let us consider a homogeneous system of congruences : 

k 

(1) 2 atJxj — 0 m ° d w,-, Ì ^ i ^ n 

where m{ ^ 2 and 

(2 ) ( Û , I , a,-* • • . ,fl,-A, w f.) = 1. 

In [2] we have proved that if H 2> 2 and a homogneneous system of the 
form (I) covers a À>dimensional cube Ck c Z* with the side length 2M_1 

and such that 0 = [0, 0, . . . , 0] e CÄthen it is a covering system, i.e., it 
covers every Â:-dimensional integer vector. We conjectured that the length 
2»-2 + 2 of the side of our cube is sufficient for the assertion and gave an 
example showing that the length 2n~2 4- 1 is not enough for the purpose. 

In this paper we show that for a fixed number of variables and con­
gruences we can check the conjecture by performing a finite number of 
operations. 

In fact we shall prove the following: 

THEOREM. If there exists a homogeneous system of congruences of k ^ 2 
variables that covers a k-dimensional cube Ck with the side length 2n~2 + 2 
and such that 0 e Ck which is not covering, then there exists a system {not 
necessary homogeneous) having the same properties which has all moduli 
less than 2max (&, 2n~2 + 2)(2W~2 + 2)*"1. 

PROOF. Suppose that (1) covers the cube Ck, 0 e Ck and is not covering. 
Certainly we can assume that no proper subset of our system has the 
same properties. We split indices / ^ n into three disjoint classes A, B, C 
as follows : 

ie A if the i-th congruence is satisfied by k 4- 1 integer points from Ck 

which form a linearly independent set. 
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/ e B if /' $ A and the /-th congruence is satisfied by k linearly inde­
pendent points from Ck. 

i e C if i $ A (J B and the /-th congruence is satisfied by r(l ^ r ^ 
k — 1) lenearly independent points from Q . 

Suppose first that / e A and let ph p2, . . . , /VK, where ps=(psi, ps2, • • • , 
/?SÄ), l ^ s ^ f c + l b e / r + l linearly independent points satisfying the 
/-th congruence of (1). 

For every r, 1 ^ r ^ H 1 we have the system of k congruences : 
k 

J^ ciijPsj = 0 mod mh s e Jr 

where / r = {1, 2, . . . , r — 1, r 4- 1, . . . , A: 4- 1}. Therefore for some 
integers Ls 

k 

(3) 2] ^7/V = m{Ls,s^Jr. 
J=i 

Applying Cramer's Rule to (3) we find 

(4) aij = miWrj!Vr 

where Vr = det[psj]l^j^k)SE,Jr and Wrj are determinants as desired. Since a{j 
e Z then from (4) it follows that 

(5) m{\ Vraih 1 ^ r g A + 1,1 Sj^kJeA 

and using (2) we obtain 

(6) wf-| Kr for every 1 ^ r ^ Ä: -f 1. 

By virtue of the following identity 

I l P\\ Pl2 ' " Plk 

£) _ ( j e t ! 1 P2I P22 ' ' ' P2k 

Pk+ll Pk+12 ' ' ' Pk+lk 

k+l 

= 2 ( - i ) - i ( / r 
r= l 

and (6) it follows that m^D. 
On the other hand it is known that \D\ = k\d(pl9 . . . pk+i), where 

J(/?i, . . . , Pk+i) denotes the k - dimensional measure of the simplex 
determined by the points pu . . . , pk+1. (See, e.g., [1]) Since ph p2,. . . , 
pk+1 e Ck then |Z)| ^ (2»~2 + 2)* so m{ ^ (2«"2 + 2)*. 

Let M be the least common multiple of all moduli mh i e A. All prime 
divisors of M are less then (2n~2 + 2)k. Now we show that for every n 
and k ^ 2 there are at least « prime numbers between Z7 and 2 / \ where 

T7 = max(£, 2»-2 + 2)(2»"2 + 2)*"i. 
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Suppose first that k è 2n~2 + 2, so that 

r = *(2»-2 + 2)*-i. 

We use the following inequality of P. Finsler [3]: 

7i(2y) - %{y) > y/(3 log 2y). 

Take y = T and let us consider the expression 

fc(2»-2 + 2)k~l 

3 log IP 3 log 2^(2^-2 + 2)*"1 ' 

If v4 > 1 then the function /(A:) = x.4*_1/(3 log 2xAx~l) is increasing. 
Therefore it is enough to show that/(2w~2 + 2) > n with A = 2W~2 _j_ 2. 
It is easy to check the inequality for n = 1, 2, 3, and for « ^ 4 w e have 
f{2n~l -h 2) ^ 2f(2n~2 4- 2) therefore the inequality follows by mathemati­
cal induction. Suppose now that k < 2n~2 4- 2, so that T7 = (2W~2 + 2)*. 
Let us consider the function 

g(k, n) = 
(2»-2 + 2)* 

3 log 2(2^-2 + 2)k 

which is decreasing with k, so taking k = 2 it is enough to show that 
g(2, n) > n for every ^ ^ 1. On the other hand the function 

h(n) = 
g(2, n) (2-2 + 2)2 

n 3 log 2(2*-2 + 2)2 

is increasing with n if n ^ 5. 

Moreover /*(5) ^ 1. If AZ = 1, 2, 3 or 4 by direct computation it is easy 
to verify that between r and 2T there are at least n primes. 

Let us denote the primes in the interval (T7, 2T7) by ql9 q2, #3, . . . . 
Let now / e B and denote our points by pl9 p2,. . .,/?*. They determine 

a & - 1 dimensional hyperplane having an equation Baxx + ^2*2 + • • • 
4- Bikxk = /?,-0. Let us consider the congruences: 

(7) MBnXi 4- MBi2x2 4- • • • 4- MBikxk = J5Z0
 m ° d <3V> ' G & 

Since ^-/ M and as we shall prove, q{\ (Ba, Bi2, . . . , Bik) the system (7) 
has a solution (x?, x§, . . . , *2). A f c - 1 dimensional hyperplane deter­
mined by the points p^ . . . , pk9 where />s = (psh ps2, . . . , /?,*), 1 ̂  j g fc, 
has an equation of the form : 

Det Pn 

*2 

PU Plk = 0. 

Phi Pk2 Pkk 
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Therefore for every 1 ^ j ^ k, i e B 

1 Pn Pi2 * * ' Pij-i Pv+i '" Pu 

B0 = det j 

Pk\ Pk2 ' * * Pkj-l Pkj+1 ' • ' Pkk\ 

Similarly, as previously \B{j\ = (k — \)\â{j)(pi, p2, . • • , A ) where 
A{j) (/?!, . . . ,/?*) is the /: — 1 dimensional measure of the simplex deter­
mined by vertices ptf\ ptf\ . . . , p]/\ where pW = (/?sl, /?s2, . . . , PsJ_l9 

Psj+h ••• >P*)-
All points p{

s
j){\ ^ s ^ k) are in the k — 1 dimensional cube Q_1?y 

with side length 2»~2 + 2. So |£ lV | ^ (2»-2 + 2)*"1 and 

0 < 2 l̂ -yl ^ ^(2W"2 + 2)*-1 ^ P 

which proves that ^ / (Ba, Bi2, . . . , 2?,-*)-
Now let / e C. For every hyperplane i / r _i( l ^ r ;g A: — 1) in /c-dimen-

sional space we can find a /: — 1 dimensional hyperplane containing Hr-\ 
and the point P = [x\M, x\M, . . . , xJüAf]. It can be done by enlarging 
the set of points ph p2. . . /?r, P if P $ {/?i, . . . , /v} or /?l5 /?2, . . . , pr if 
P e {/7l5 . . . , pr} by the points pr+2,..., pk or p r + 1 , /? r + 2 , . . . , / > * , respec­
tively, and such that the enlarged set is linearly independent. 

Let us consider for / G C equations CnXi + Q 2 x 2 + . . . 4- Qpc* = Cf-0 

such that 

CaAM + C ^ M + - • - + Q , x ° M = CiQ. 

The system of congruences : 

(8) 2 atjxj — 0 m ° d w i z G ^ 
y=i 

(9) ZBijXj = Bi0modq; ieB 
y=i 

(10) 2 Q / * / - CM m o c * #* z e C 
y=i 

covers the same /c-dimensional cube C* as the system (1), the vector 
[xjM, x\M, . . . , x^M] is a common solution and the system is not cover­
ing. If it were a covering one then using Theorem 2 [2] we would infer 
that congruences (9) and (10) are not essential and so could be omitted 
and this would contradict the assumption that the system (1) is not 
covering. 
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