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Last July after I returned to Hungary from a meeting on number theory 
in the Netherlands, I heard the sad news that my friend and collaborator, 
E. Straus, died of a heart attack on July 12, 1983. I had known for a long 
time that he had diabetes and in fact we were together in 1948 in Princeton 
when this was diagnosed. I also knew that he had several earlier heart 
attacks. Nevertheless, I did not expect that the end would come so soon. I 
cannot write at such short notice a complete description of his far-reaching 
mathematical activities, so I will restrict myself to the history of our 
friendship and collaboration. 

This is a very strong restriction since his most important work was 
probably on the connection between arithmetic and algebraic properties of 
entire functions, a subject about which I could only write after consider
able preparation and for which there is now no time. Since I have been 
asked to finish this report in two to three weeks I must rely a great deal 
on my poor old memory. This last restriction is really my own fault; 
but, enough of the excuses, and let me start my subject. I will begin at 
the end. Let me state two of our relatively recent results which are "lost"; 
i.e., the proofs were supposed to be in more or less complete form in 
Ernst's possession, but we could find no trace of the manuscript and 
there is little hope that they can be found. Most likely they never existed. 
First, a result due to Ernst, Selfridge and myself. 

Let n > n0(e). Then 

(1) nl = axa2 • • • an, ~ (1 - e) < ax ^ • • • g an 

is always solvable in integers aÌ9. . ., an. This result is certainly not of great 
importance, nevertheless, it pleased us since it is the best possible. Since 
n\l/n = (1 4- o(\)) (n/e), it is clear that in (1), {nje) (1 - e) < at cannot 
be replaced by (n/e) (1 + s) < ax. Nevertheless, we managed to prove a 
slightly stronger form of (1). Let c be sufficiently large and n > n0(c). 
Then in (1), all the a's can be taken to be larger than (n/e) (1 — c/log n). 

Ernst claimed that he had a nearly completed manuscript of the proof of 
(1). Perhaps this manuscript was lost or, perhaps, his memory deceived 
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him. In any case, Selfridge and I will have to reconstruct our proof, which 
will be an onerous but not too difficult task. It might also be of some 
interest to determine the dependence of «0 on e;e.g., determine the smallest 
n0 so that for every n > «0, n ! is the product of n integers all greater 
than w/3. We have not yet carried out this task; but we hope to do so in 
time for our paper to be included in the collected papers of E. Straus, 
which I hope will be published in a few years. 

Now to our second missing paper. This paper was supposed to have 
appeared in this Proceedings, and I should have prepared it after I heard 
of Ernst's death. Besides my laziness, I have an excuse; Ernst assured me 
that he had a nearly complete manuscript which was never found. Here is 
our result: Denote by F(n; k) the least common multiple of « + 1, . . ., 
n 4- k and by/(/i; k) the least common multiple of n — 1, n — 2, . . . 
n — k. We would expect that usually F(n; k) > f(n; k) holds and, in fact 
if, say k > en, then for all, n, F(n\ k) > f(n; k) is easy to see. We prove that 
for almost all n there is a k so that 

(2) f(n; k) > F(n; k) 

and conjectured with some trepidation that there are infinitely many 
integers n for which, for every k < n, 

(3) F(n; k) > f(n; k) 

holds. We never came to a firm conclusion if (3) is true or not. It might 
be of some interest to try to determine the largest possible value of k = 
k(n) for which f(n\ k) > F(n; h) can hold. It is easy to see that k must be 
o(n) but must it be o(n£)l Also, can one estimate the number of integers 
k for which (2) holds? We planned to investigate this in the future, but, 
unfortunately, fate prevented us. These problems are probably not of great 
importance ; but it often happened before that seemingly special questions 
in number theory unexpectedly lead to interesting developments. 

Now let me come back to the beginning. In 1944 Ernst Straus visited me 
with his fiancee, Louise, in Princeton. He was interested in various 
geometric problems about convex sets. These problems are not very 
popular now, but let me mention only one question which we then dis
cussed and which is still open. Let / b e a Jordan curve. Is it always possible 
to find four points on J which are the vertices of a square? I do not know 
who first formulated this pretty conjecture, and as far as I know it is still 
open. Let me add a little story which I remember. We had lunch together 
with the great algebraist Claude Chevalley, who was never much inter
ested in elementary geometry but noticed "bosses", i.e., girls. He said 
about Louise: "What a pretty girl, I hope we will see more of her". 

Our next contact with the Strauses was in the summer of 1948. Louise 
and Ernst were married by then and all three of us were in Princeton. We 
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then made the following pretty conjecture. Is it true that, for every in
teger n, A/n = l/x + \/y + 1/z is solvable in positive integers x, y, z? 
This interesting conjecture is still open. It is settled for many arithmetic 
progressions and also, if it fails, then the smallest such n must be quite 
large. Schinzel and Sierpinski have the following extension. For every a 
there is an n0(a) so that, for every n > n^a), 

n x ^ y ^ z 

is solvable in positive integers x, y, z. In memory of Straus, I offer five 
hundred dollars for a proof or disproof of this conjecture. 

The paper On the representation of fractions as sum and difference of 
three simple fractions (Jointly with M.V. Subbarao), deals with the 
Schinzel conjecture that, for every given positive integer a and all suf
ficiently large n, the equation a/n = l/x ± l/y ± l/z has integral solu
tions x, y, z. It has been proved there that the conjecture holds for all a 
less than 40, and that at least in the cases a g 35, the fraction l/x can be 
chosen among the three nearest neighbours of a/n. Further, the paper 
gives some conjectures each of which implies the Schinzel conjecture. 
One such conjecture states that 

lim sup d(" +,s) = oo. 
n-+oo 5^0 S + 1 

Our first joint paper was in fact written when we both were at UCLA. 
Ernst was at the University of California and I at the Institute for Numeri
cal Analysis. I have to add here a personal note (perhaps when my obi-
turary will be written (soon?) this should be mentioned). John Curtiss was 
then head of the Institute for Numerical Analysis and he created for me 
the so called Curtiss condition, i.e., I was paid only when I was there and 
I could leave without asking for a leave of absence but it was up to the 
Institute to decide if I got paid while I was away (since then I have been 
fortunate enough to have posts only under these conditions). 

In our paper we answer the following question of Dvoretsky. Let xÌ9 

x2, . . . be an infinite sequence of unit vectors in a Banach space which 
are linearly independent in the algebraic sense. Is it then true that there 
is a subsequence which is linearly independent in a stronger sense? We 
prove, among other things, that there always is a subsequence for which 
ESi 4 , ^ - = 0 implies/w< = 0. 

We were together again in Colorado in 1959 and 1963. We proved the 
following theorems : Let nh be an increasing sequence of positive integers 
and assume lim sup nl/nh+i g l,Nh< cnh+i where Nh is the least common 
multiple of«!, . . . , nh. Then £ ^lnh1S rational only if nh+i = n\ — nh -f 1 
for all h > h0. It is not impossible that the conditions Nh < Cnh+l are 
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superfluous. We could weaken it but could not eliminate it entirely. We 
wrote several more papers on the irrationality of infinite series. Here I 
mention only one problem of ours which has never been published. 

It is easy to see that if nx ^ • • • is a sequence of integers for which 
Ht=\ ^lnk is rational, then we must have 

lim n\/2k < oo 

and this is best possible. Let 
CO j CO 1 

k=\ nk k=i nk l 

both be rational. How fast can nk increase? David Cantor observed that 
this holds for nk = (£) and we could never decide if nk can increase ex
ponentially or even faster. We observed that the set of points (x, y) in the 
plane (nx < n2 < • • •, nk integers), given by 

x = H^-^y= L - — r > 
k nk k nk — 1 

contains open sets and this no doubt generalises for higher dimen
sions. Perhaps we missed the nicest conjecture (due to Stolarsky) which 
states as follows. Let nx < n2 < • • • be an infinite sequence for which 
2 l/nk < oo. 

Is it then true that there is an integer t for which E»*** ̂ Knk - 0 is 
irrational? 

Straus and I also considered the following question. Let a sequence 
A : ax < a2 < . . . be called non-averaging if the arithmetic mean of any 
two or more members of A is not in A. What can be said about the growth 
properties of such sequences? We proved that if ax < a2 < • • • < ak ^ 
n then k = o(n2/3) and conjectured that k < n£ for every e > 0. This was 
shown to be false by H. L. Abbott who showed that it is possible to have 
k ^ nlno. Recently, Abbott improved this to n1/5. Many interesting open 
questions remain here. (H. L. Abbott, On a conjecture of Erdös and Straus 
on non-averaging sets of integers, Proc. Fifth British Combinatorial 
Conference, Congressus Numerantium XV, (1975), 1-4). 

In 1959 at the meeting at Boulder, Colorado, Bose, Parker and Shri-
khande presented their disproof of Euler's conjecture, i.e., they proved 
that, for every n > 6, there are two pairwise orthogonal Latin squares. 
Inspired by their ideas, Chowla, Straus & I showed that the number of 
pairwise orthogonal Latin squares of order n is greater than cn£ where our 
e was > 1/91. R. Wilson considerably improved our result but perhaps 
further improvement will be possible in the future. 

Now I discuss what I think is our most important and most original 
joint work, namely our papers on Euclidean Ramsey Theorems. I hope 
that these results, and even more the problems, will outlive the authors, 



E. STRAUS 1921-1983 335 

hopefully, by centuries. A set k of Euclidean m space is called Ramsey 
if, for every r, there is an n = n0(k, r) so that, for every r coloring of 
Euclidean n space, there is a monochromatic configuration kf which is 
congruent to k. If congruent is replaced by similar, then Gallai proved 
that every finite set k is Ramsey. In our first paper on this subject we 
prove that every brick, i.e., every rectangular parallelepiped is Ramsey 
and we also prove that every set which is Ramsey must lie on an m dimen
sional sphere. We never could decide whether any of these conditions are 
necessary or sufficient. It is quite possible that the truth is somewhere in 
between. Perhaps the most interesting open problems are: Is the regular 
pentagon Ramsey? or is every triangle Ramsey or, in particular, is the 
triangle of angles 30, 30, 120 Ramsey (every acute angled triangle is the 
subset of a brick and is therefore Ramsey)? Also is it true that if we divide 
the plane into two subsets and T is any triangle, then at least one of the 
subsets contains a monochromatic congruent copy of T (i.e., the vertices 
of T) with a possible single exception of an equilateral T. We and L. 
Shader proved several special cases of this conjecture. As another nice 
problem, let 5 be a set in the plane, no two points of which are at distance 
1. Is it then true that the complement S of S contains the vertices of a 
square? R. Juhasz proved our conjecture in a more general form. She 
proved that S contains a congruent copy of any configuration of four 
points. She further showed that four cannot be replaced by 12, but the ex
act value of this number is not known, e.g., is it true for 5? (R. Juhasz, 
Ramsey type theorems in the plane, J. Combinatorial Theory (1979), 
152-170.) 

To end this short obituary I just want to remark that Ernst was not 
only a first rate mathematician, but also a superior human being, both 
intellectually and morally. I remember one occasion when, with great tact, 
insight and intelligence, he smoothed over a potentially unpleasant dis
agreement between two excellent mathematicians. I was concerned since 
they were both friends of mine and I wrote congratulating him for a suc
cess which had eluded me. "Blessed are the peace makers". UCLA, Los 
Angeles, California and the world will never be the same for me without 
him. May his theorems live forever. 
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