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ON THE BETWEENNESS CONDITION OF ROLLE'S THEOREM 

THOMAS CRAVEN AND GEORGE CSORDAS 

1. Introduction. Rolle's theorem, in its simplest form, when applied 
to real polynomials/(x), states that (1) between any two consecutive real 
zeros of f(x) there is an odd number of zeros of the derivative, Df(x); 
and consequently, (2) the polynomial Df(x) has no more nonreal zeros 
than/(x) has. Generalizations of this second property have been explored 
in [1, 2]. Let T7 = {fk} be a sequence of real numbers and for an arbitrary 
real polynomial/(x) = £?=o akxk define 

(1.1) r[f(x)] = £akrkxK 

We recall that a sequence r = {yk} of real numbers is called a multi
plier sequence of the first kind if/7 takes every real polynomial f(x) which 
has only real zeros into a polynomial r[f{x)] (defined by (1.1)) of the same 
class. (For the various properties of multiplier sequences of the first kind 
we refer the reader to Pólya and Schur [7], Obreschkoff [6] and Craven 
and Csordas [1, 2]). The relationship between these sequences and Rolle's 
theorem is suggested by the fact that for the multiplier sequence r = 
{0, 1,2, . . .}, we have r[f(x)] = xf\x). 

The purpose of this paper is to generalize the betweenness condition of 
Rolle's theorem. We shall show (Corollary 2.4) that the class of linear 
transformations T7, defined by (1.1), which satisfy the betweeness property 
(see Definition 2.1) is precisely the class of nonconstant arithmetic se
quences, all of whose terms have the same sign. Our main theorem is a 
quantitative result on the location of the zero of r[f(x)] between two 
consecutive real zeros a and b of/. This result gives the best possible 
bounds for the zero of r[f(x)] depending only on T7, a, b and the degree of 
/ . This generalizes an old theorem of Laguerre for derivatives [6, p. 121] 
and its subsequent extension to a larger class of polynomials by Nagy [5]. 

We conclude the paper with some open problems. 

2. The betweenness property. The precise formulation of the betweenness 
property is as follows. 

DEFINITION 2.1. Let f(x) be an arbitrary real polynomial. A real se-
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quence r — {T^}£LO
 ÌS sa*d to possess the betweenness property if the 

polynomial r[f(x)] has at least one real zero between any two real zeros 
a and b,a < b, of f(x). 

REMARK 2.2. If the real sequence T = {7-*} possesses the between
ness property, then for any real polynomial f(x), we have deg r[f(x)] = 
deg f(x). In particular, yk # 0, for k = 1, 2, 3, . . . . This assertion fol
lows from the observation that the polynomial 

r[x*(l + *)] = x*[Tk + Tk+1 x], k = 1, 2, 3, . . ., 

must have a root between — 1 and 0. Thus, j-^k+i > 0 for /: = 1, 2, 3, 
. . . . In addition, the polynomial 

r[(x* - 1)] = [T2x* - roi 

has a root between —1 and 1, so that 7-27*0 è 0. This inequality, when 
combined with 7̂ 7̂ +1 > 0, k = 1, 2, 3, . . ., implies that the terms of the 
sequence r = {7-*} all have the same sign, with 7-0 possibly equal to zero. 

Our first result shows that if the sequence r = {7-*} possesses the be
tweenness property, then T7 is a multiplier sequence of the first kind. 
Moreover, the following theorem provides a simple representation for the 
Jensen polynomials, that is for the polynomials gn(x) = r[{\ + x)n], 
n = 0, 1, 2, . . ., associated with T. 

THEOREM 2.3. Suppose thai the real sequence r = {7-*} possesses the 
betweenness property. Then r is a multiplier sequence of the first kind. 
Moreover, for each n, n = 1, 2, 3, . . ., the Jensen polynomial gn(x) as
sociated with r is given by 

gn(x) = 71(1 + xY] = (1 + x)»-i[ro + (nTl - (n - \)ro)x]. 

PROOF. Let n be a fixed, but arbitrary, positive integer. Let {ahk}, . . ., 
{an>k} be n real sequences such that (1) for each fixed /:, aitk < a2tk 

< - • • < ank < — 1 ; and (2) lim^w?/,* = — 1, for y = 1, . . ., n. Let 

fk(x) = ft (x + ajik\ k = 1, 2, 3, . . . . 

Since r possesses the betweenness property, the polynomial r[fk(x)]9 

k = 1, 2, 3, . . ., has at least n — 1 real zeros. But by the above Remark 
2.2, deg r[fk(x)] = deg fk(x). Consequently, r[fk(x)] has precisely n real 
zeros. Since 

(*) Hm iyk(x)] = 71(1 + x)»]9 

and the convergence is uniform on compact subsets of the plane, we 
conclude that r[(l + x)n] has only real zeros for each positive integer n. 
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Moreover, since the Tk's all have the same sign (see Remark 2.2), the zeros 
of r[{\ + x)n] are all real and negative. Hence by a well-known theorem 
of Pólya and Schur [7, p. 100], T7 is a multiplier sequence of the first kind. 

The above argument thus shows that the polynomial r[fk(x)] has n real 
negative zeros for each k = 1, 2, 3, Hence, the betweenness property 
of r together with (*) imply that r[(\ + x)»] has x = - 1 as a zero of 
order at least n - 1. Since the constant sequence {c, c, . . .} does not 
enjoy the betweenness property, we conclude that the order of the zero 
x = - 1 of r[(l + x)n] is precisely n - 1. Thus we have shown that 

gn(x) = r[(\ + x)«] = (1 + x)"-HaH + ßHx)9 n = 1, 2, 3, . . ., 

where an and ßn are real constants. If n = 0, then g0(jc) = r o . Since 
£«(0) = ro, we have an = r0 for w = 0, 1, 2, 

It remains for us to show that ßn = nyx - (n - l ) ^ for n = 1, 2, 
3, . . . . To this end we consider the polynomial g%(x) = xn gn(\/x) and 
note that d g*(x)/dx = /!£*_! (JC). Thus, with the aid of the above repre
sentation for gn(x) and gn-\(x), we obtain 

£(\ + x)»-HTQx + /3„) = n(\ + x)«-2(ro* + /3„_!). 

Simplifying this expression yields the simple difference equation 
(n - 0/3„ = nßn_x - y0, n = 2, 3, . . ., ßx = 7 ,̂ whose solution is ßn = 
nïi - (n - 1)7-0, n = I, 2, 3, This completes the proof of the theorem. 

With the aid of this theorem we are now in position to present several 
conditions which are equivalent to the betweenness property for a se
quence r of real numbers. 

COROLLARY 2.4. Let r = {Tk}f=o be a sequence of real numbers. Then 
the following statements are equivalent. 

(i) r possesses the betweenness property. 

(») 0(x) = sr=K)(r*/*!)** = tro + (n - ro)*K » ^ r o ( n - ro) ^ 

(iii) T7 /j a nonconstant arithmetic sequence all of whose terms have the 
same sign. 

(iv) For any real polynomial f(x) with two consecutive real zeros a and b, 
a < b, r\f(x)] has an odd (even) number of zeros between a and bifab^O 
(ab < 0). 

PROOF. We will show that (i) => (ii) => (iii) => (iv) => (i). 
(i) => (ii). If r possesses the betweenness property, then by Theorem 

2.3 and Remark 2.2, we know that r is a multiplier sequence of the first 
kind all of whose terms have the same sign and j-l ^ j-0. Hence, by the 
transcendental characterization of these sequences ([7,] [6, Chapter 2]), 
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0(x) = H(j'klkl)xk is a real entire function of order at most one with 
only real, nonpositive zeros. Furthermore, 0(x) = limM_+00gM(x/«), where 
gn(

x) = E2=o(2) Tkxk and the convergence is uniform on compact sub
sets of the plane. Thus, by Theorem 2.3, 

S*»(T) = !™ 0 + îrTV + (* - (' - i>°>] 
= fro + (n - ro)*kx, n * ro, 

Since all the zeros of &(x) are nonpositive, we also have that 70(71 — To) = 0. 
(ii) => (iii). This implication is obvious since 

E?=or***/*f. = fro + (n - ro)*k* 
says that n = r o + * ( n - r o ) , Ä: = 0, 1, 2, 

(iii) => (iv). Suppose that T7 = {7^} is a nonconstant arithmetic se
quence all of whose terms yk = a + kß, ß ^ 0, k = 0, 1, 2, . . ., have the 
same sign. Thus, we may assume without loss of generality, that ß = 1 
and r = {a + k}^L0, where a ^ 0. Now, let f(x) be an arbitrary real 
polynomial with two consecutive zeros a and b, a < b. Then a straight
forward calculation shows that 

r[f(x)] = ccÄx)+xf'(x), a è O , 

Thus, by Rolle's theorem /"[/] has an odd number of zeros between a 
and bit ab ^ 0; andr[f] has an even number of zeros between a and b 
it ab < 0. 

Since the implication (iv) => (i) is clear, the proof of the corollary is 
complete. 

Let r be a real sequence as in Corollary 2.4 and let a and b be two con
secutive real zeros of a polynomial f(x). Let c be a zero of r[f] between 
a and b. By way of generalization of a theorem of Laguerre [6, p. 121], 
we will provide a sharp estimate of the relative position of c in the interval 
between a and b. The original theorem of Laguerre was valid only for 
polynomials with only real zeros. Our theorem generalizes a subsequent 
extension by Nagy [5]. 

THEOREM 2.5. Let a and b denote two consecutive real zeros of the 
nth degree polynomial f(x) with real coefficients and no zeros in the inte
rior of the circle with diameter [a, b]. Let a ^ 0. If c is a zero of F{x) = 
af(x) + xf'(x) between a and b (a < c < b), then c satisfies the inequalities 



BETWEENNESS CONDITION 

a+<ft^c^b— <p, 

725 

(2.6) 

where 

^ = b(a + n+\)-a(g+\)-sgn(c)([a(b-a) + (n-l)b-a]2 + 4(n-l)aby^ 
<p=-

and 

2(a + n) 

<p = 
= b(a + l)-a(a + n + l) + sgn(c)([a(b-a) + b-(n--l)a]2 + 4(n-\)aby/2 

2(a + n) 

PROOF. We begin by assuming c > 0 and consider the upper limit. We 
also assume, for the moment, that f(x) has only real zeros. We shall 
estimate the logarithmic derivative off(x); that is 

/'(*) f. ! 
fix) -&X-XJ-

Let sj;(j = 1, . . ., m\ m g n - 1) denote the zeros of f(x) such that 
sj g a and let tj (j = 1, . . ., A:; A: <; /7 - 1) denote the zeros of/(*) such 
that b g /y. Assume that, contrary to the conclusion, we have 

(2.7) b — cp < c < b. 

Now a lengthy, but tedious calculation shows that b - a - <p > 0 
(cf. Remark 2.10(i) below). Then the first inequality of (2.7) implies that 
(c - a)~l < (b - a - (pYl. Moreover, for j = 1, . . ., m, we have the 
estimate 

(2.8) 1 1 
C — S; c — a b — a — <p ' 

Inequality (2.7) also yields 

(2.9) - L 7 T < - - L -
c - b <p 

Thus, if F(c) = 0, then we have 

0=cr + c 

= a + c 

f'(c) 
Ac) 

ti 

<cc + c 

(2.10) ^ a + c 

m , y* —J— 
b-a-ip Z j y = 1 c - 0 

n - 1 + 1 
|_6 — a — p - b 

(using (2.8)) 

( m ^ » - l ; c - l y < 0 ) 
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<a + e 
n - 1 

= a — 

< a 

b — a — <p <j 

c(b — a — mp) 
<p(b - a - y>) 

(b — (p)(b — a — n<p) 
<p(b - a - <p) 

(using (2.9)) 

The last inequality uses (2.7) and the fact that (b — a — n(p)cp~l{b — 
a — (p)~l is nonnegative. This latter assertion is a consequence of an in
volved, but elementary, computation which shows that 

(b — <p) (b — a — n<p) _ 
<p(b - a - <p) a, 

where a ^ 0 by assumption. Continuing the chain of inequalities, we 
thus have 

<p(b - a - <p) 

This is the desired contradiction. 
The proof for the lower limit, c ^ a 4- (jj, is accomplished in a similar 

manner. Assume, on the contrary that a < c < a + <p, so that 

1 1 1 
c — ti c — b a - b - <P 

and also (Jj~l < (c — a)'1, where we have used the fact that a — b + <p < 
0. Computing as before, we obtain, for F(c) = 0, the inequalities 

(2.11) 

0 = a 4- c 

— a 4- c 

> a + c 

> a + c 

= a + c 

Ac) 

" l /i - l " 
_c — a a — b + (jj _ 

" 1 /i - 1 " 
0 a — b + (J; _ 

a — b + nxjj 
(J){a - b + ^) 

^ (a 4- 0) (g - Z> + /i0) _ 0 

= a + 0(a - b + 0) 
a contradiction as before. 

Next, we allow / t o have nonreal zeros on or outside the circle C with 
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diameter [a, b]. Suppose y = u + iv and f = u - iv are a conjugate 
pair of such zeros. In the expression for the logarithmic derivative in 
(2.10) we have the sum (c — y)~l + (c — f)~l. Since the imaginary parts 
cancel, we need only be concerned with the real parts, each of which equals 
(c — u)/[(c - u)2 + v2]. One easily checks that the absolute value of the 
reciprocal of this expression is the diameter of the circle Cr passing through 
c, Y and f. Now assume that u <> c. Since y is outside C and c is inside C, 
the circle Cr contains the real point a, and hence the diameter of Cr is 
greater than c - a. That is, Re (c - y)~l < (c - aYl < (b - a - <pYl 

and inequality (2.10) continues to hold under the assumption (2.7). If 
w > c, the circle Cr contains the point b. Similar considerations then 
show that Re (c - y)~l < (c - b)~l and again (2.10) holds. This same 
argument can be used in (2.11) to establish the lower bound for c when/ 
has nonreal zeros. 

Finally, if c < 0, we may apply the case already proved to g(x) = / ( - x) 
with root — c > 0 between —b and — a. This yields the desired con
clusion and ends the proof of the theorem. 

REMARK 2.10. (i). The limits given in Theorem 2.5 are best possible. 
The upper limit is taken on when/(x) = (x - a)n'l{x - 6) and the lower 
limit is taken on when/(x) = (x - a) (x - b)»-1. 

(ii). Setting a = 0, we recover the theorem of Laguerre [6, p. 121] with 
<p = (p = (b - d)\n. 

(iii). When a # 0, the formulas for tp and <p are complicated mainly 
because, unlike differentiation, our operators Tare, in general, not trans
lation invariant. The formulas do simplify significantly if either a or b is 
zero. For example, if a = 0, then <p = b/(a + n) and <j> = b(a + l)/(a + n). 

REMARK 2.11. In the case that the polynomial f(z) has complex co
efficients, the problem of obtaining sharp estimates on the location of 
zeros of f\z) or r [f] seems to be very difficult (cf. [4]). On the other hand, 
we have recently shown that the Gauss-Lucas Theorem remains valid if 
in that theorem f'(z) is replaced by / [ / ] , where T7 is an increasing multi
plier sequence [3], 

3. Open problems. The foregoing results raise several problems in the 
theory of distribution of zeros of polynomials. We will now present a few 
of these questions together with some comments. 

PROBLEM 3.1. Let R[x] denote the vector space of all real polynomials. 
Characterize all linear transformations L: R[x] -> R[x] which possess the 
betweenness property. 

COMMENT. Corollary 2.4 shows that if h{x) e R[x] and if 0 = xD, then 
the linear transformation h(0) has the betweenness property if and only 
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if h(x) has the form h{x) = a + ßx, aß ^ 0, ß # 0. On the other hand, 
if we do not restrict ourselves to linear transformations defined by (1.1), 
then it is clear that there are many other linear transformations which 
enjoy the betweenness property. 

PROBLEM 3.2. Let r be a multiplier sequence of the first kind. Describe 
the location of the real zeros of the polynomial r[f(x)]'\n terms of the real 
zeros of/(x). 

COMMENT. In Theorem 2.5 we have only provided a solution to this 
problem in the special case when T7 is an arithmetic sequence. 

While the linear transformations D = d\dx and T7, where Z7 is a multi
plier sequence of the first kind, have many properties in common (see, 
for example, [1]), there are some significant dissimilarities between these 
operators. Indeed, the differential operator D is translation invariant, 
that is, Df(x + a) = (Df) (x + a), for any scalar a. Translation leads to 
many complications for the operator r as we have seen in Theorem 2.5. 

PROBLEM 3.3. For a fixed, but arbitrary, multiplier sequence T of the 
first kind and a real polynomial f(x), determine the number of real zeros 
of r[f(x + a)] as a function of a. 

COMMENT. If r = {7-*} is a multiplier sequence of the first kind such that 
the entire function r[ex] = T*V=QTkxklk\ has an infinite number of real 
zeros, then it is known [1, Theorem 6] that there is a constant K de
pending on r and/such that, for all real a with \a\ > K, the polynomial 
r[f(x + a)] has only real zeros. For related results see also [1, Corollary 
15] and [2, Theorem 4.6]. 
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