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ANOTHER FAMILY OF ^-LAGRANGE INVERSION FORMULAS 

IRA GESSEL AND DENNIS STANTON 

ABSTRACT. A ^-analog of Lagrange inversion is stated for (xj 
(1 — xr)b). Applications to basic hypergeometric series, identities 
of the Rogers-Ramanujan type, and orthogonal polynomials are 
given. 

1. Introduction. The generalized Lagrange inversion problem is: given 

CO 

(1.1) Gk(x) = 2 V , * = 0,1,..., 
n=k 

for some lower triangular non-singular matrix Bnh and a formal power 
series 

CO 

(1-2) Ax) = Zfnx", 
n=Q 

find constants ak such that 
CO 

(1.3) f{x) = J^akGk{x). 

It is clear that 

(1-4) L = S Bnka„. 
Thus to find ak it is sufficient to find the inverse matrix B^}\ 

(1.5) ak = JlB;}f,. 

The usual Lagrange inversion formula takes Gk(x) = yk, where y(x) 
is a formal power series in x such that y(0) = 0 and y'(0) ^ 0. 

In a recent paper [10] we gave a ^-analog of Bnk, B^}, and Gk(x) for 
G^(x) = xk/(\ — x)a+ib+1)k. In this paper we similarly find a ^-Lagrange 
inversion formula for a ^-analog of Gk(x) = xkj{\ — xr)a+ib+1)k for r = 
1, 2, • • •. Our main theorem is stated as Theorem 2.3. Just as in [10], 

* This work was partially supported by NSF grants MCS 8105188 and MCS 8300872. 
Received by the editors on September 20, 1984 

Copyright © 1986 Rocky Mountain Mathematics Consortium 

373 



374 I. GESSEL AND D. STANTON 

we give some applications of Theorem 2.3. These include transformations 
for basic hypergeometric series, identities of Rogers-Ramanujan type, and 
connections with orthogonal polynomials. 

We use the standard notation for ^-binomial coefficients and basic 
hypergeometric series [9]. When not specified, the base is always q, but 
sometimes we will use other bases. Thus 

(1.6) (A)n= l f ( l -Aqi), 

(1.7) (B;p)n = nïï(l -Bpî). 

At the beginning of section 2 we momentarily consider the q = 1 case; 
there 

(1.8) (a)k = a(a+ 1) . . . (a + k - 1) 

is the usual shifted factorial. 
Recall that the ^-difference operator Dq 

(1.9) (DJ) (x) = ^ifS^ 

satisfies [11, Eq. [2.6.]) 

(-l)**(**1)-W/lto*). (l.io) («7- i ) " ( -*yW)(x)=£; 

Given a formal Laurent series/(x), we let R e s ^ x ) denote the coefficient 
of \/x inf(x). 

2. The main theorem. In this section we give our ^-Lagrange inversion 
formula for a ^-analog of Gk(x) = xk(l — xr)~a~{b+1)k. First we state the 
matrices Bnk and B~j;} for the q = 1 case. According to (1.1) here we have 

(2.1) Bnk = l ((n-k)/r)l v 

i 0 , otherwise. 

The Lagrange inversion formula implies 

(2.2) Bj}=l ((k-/)/r)\ 
[ 0 , otherwise. 

Our object is to give a ^-analog of (2.1) and (2.2). This is accomplished by 
Theorem 2.3. 
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THEOREM 2.3. (q-Lagrange inversion for xj{\ — xr)b+1) Let Bnk be the 
lower triangular matrix 

{M'qk/r;p)(n-kwr q-nw9 n _ k ^ 0(mod r) 
Bnk = <̂  Win-® tr 

{ 0 , otherwise. 

Then 

((Apk/r Xqk/r\p 1 ) ( < ; _ / ) / r _ 1 ^ __Aptlrq/tr\( iyk-/)/rqS(k-/)/(r+l)\+/k/r2 

BJ} = , k - / s 0 (mod r) 

0 , otherwise. 

In order to derive (2.1) and (2.2) from Theorem 2.3 put q = prb+r-i 
and A = pa. Then 

lim B - l i m (/>g+*+**;/>)(*-*>/r lim # wAr - iim é+r_x. Drb+r-i\t fcw 

= (g_+ff + Og(r*)/r (rfe + r _ lyk-nVr. 
((/i - fc)/r)! 

This agrees with (2.1) except for the scaling factor (rb -f r — l)**-»)'*-. 
In this case 

oo 

(2.5) Gk(x) = 2 (lim £wAf)x» = **(1 -* ' / ( r6 + r - 1))-«- (*+1)*. 

So it is more accurate to call Theorem 2.3 a ^-analog of Lagrange in­
version for x(l - xrl(rb + r - 1))~*_1. The same type of scaling factors 
occurred in [10, Th. 3.7]. In this case we cannot put b = (1 — r)/r so 
we state the theorem for x/(l — xr)l/r separately. 

THEOREM 2.6. (q-analog of Lagrange inversion for x/(\ — xr)1/r). Let 
Bnk be the lower triangular matrix 

—?l\^n'IUÜL %~nklr2> n - k = ° ( m o d r) 
t-k)/r 

0 , otherwise 

Bnk = { (?) <*-*>/ 

Then 

( W ^ L I ^ \yk-,)>rq(ik-s),(r+i)y,k,r^ k __ / = 0(mod r) 
Bh) = < w)(*-/)/r 

[ 0 , otherwise. 

Theorem 2.3 has the disadvantage that it is not in general possible to 
evaluate 
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(2.7) Gk{x) = g BHkx" = **$r*** g ( ^ 7 y r ; ^ (xr q-ktTym 
n=k n=0 \H)n 

However, there are special cases which can be evaluated by the ^-binomial 
theorem [14; Eq. (3.2.2.11)] 

(2.8) Gk(x) = x>q-#"*(Xrq-i<'r{\ - Aq*'r))^ (p = 1) 

(2.9) Gk(x) = X^-^(Axrq^r)J^rg-k/r)oo9 { p = q ) 

and 

(2.10) G Ax) = x'q-Mixrq-Ur^ (A=0). 

For Theorem 2.6 we see that 

(2.11) G Ax) = x>q-»"*(Ax')J(?Cq-'>")a,. 

PROOF OF THEOREM 2.3. We need to show that 

(2.12) {*) = t,BnkB^}=dn/. 

If n — / ja 0 (mod r), then clearly this sum is zero. So we assume n — / 
= 0 (mod r). Then, after replacing k by / -f rk 

(2.13) (*) = q^-nwAl-Ap^q^) <«g*r(/i - / ) / r l ( _ j^m^-io/r 
(#)(«-/)/r H L & J? 

. ( ^ / r + V / ^ ; / ? ) ( w _ / ) / r i > 

Note that (2.13) can be rewritten with the ^-difference operator Dq, and 
(1.10) implies 

(2.14) 

where 

(2.15) 

(*) = q,U-H)/*(l-Ap"'q'") (Dr,)/rf)(x) 

Ax) = (Ap«^q'"x;p){n-/)/r-l. 

If n — / > 0, f(x) is a polynomial in x of degree (« — /)/r — 1. Thus 
Dqn~/)/rf = 0. The proof of Theorem 2.3 is completed by checking the 
n = / = k case. 

In fact, Theorem 2.3 can be shown to be equivalent to Theorem 3.7 of 
[10], which is ^-Lagrange inversion for x/(l — x)b+l. This is not surprising 
because Theorem 2.3 should correspond to an r-section of Theorem 3.7 
of [10]. Carlitz [8] and Al-Salam and Verma [1, p. 416] had previously 
stated theorems equivalent to Theorem 3.7 of [10]. Carlitz used the q-
binomial theorem, while Al-Salam and Verma used the ^-difference 
operator for their proof. They did not refer to ^-Lagrange inversion, and 
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[10] did not prove Theorem 3.7. So we have included the simple proof. 
The proof of Theorem 2.6 is similar, and it corresponds to an r-section of 
Theorem 3.3 of [10]. 

Krattenthaler [12, p. 343] has given four examples of inverse relations. 
His first, second, and fourth examples are equivalent to Theorem 3.3, 
Theorem 3.2, and the p = 1 case of Theorem 3.7 in [10]. His second 
example is equivalent to the r = 2 and p = q case of Theorem 2.3. We 
could not derive our Theorem 2.3 from his Theorem 2. However, Theorem 
2.6 does follow in this way. In Theorem 2 of [12], put hn(z) = Hk{z) = 1, 
0Cn = ßn = 1, 

(2.16) gn(z) = (az')n/r, 

(2.17) Gk(z) = (az')*/r+i, 

and 

(2.18) F(z) = / z r V , 

where 

(2.19) (y)a = i ^ L 

(In Krattenthaler's notation (2.4), (y)a = Pa(l , y).) Then the matrix dnk 

given by his Theorem 2 is equivalent to Bnk in Theorem 2.6. 
In Theorem 2.3 we can clearly switch the factor (1 — Ap//rq//r) from 

B^} to (1 - Apn/rqn/r) in Bnk. This changes the function Gk(x) to the 
"derivative form", as in [10]. 

3. Applications. We give some applications of Theorem 2.3 and Theorem 
2.6 which are similar in spirit to those in [10]. 

Our first application is the orthogonality relation 

(3.1) S BtfB/m = ôkm. 

We see that this is 

nn ( ^ ( ^ - * > / r ; f f ) X ^ / ? ^ ^ 
\J'^) Li ( Anm/r + lnk/r. n\(n- n\(Anrn/rnm/r. nn\_ * uk™' (Ap»'r+Wr; p)M\ q)MPm,r<lm,r\ PR), 

Equation (3.1) is a bibasic well poised evaluation. 
Next we concentrate on the p — q case of Theorem 2.3 with r — 2. We 

need to choose ak so that (by (1.4)) 

(3.3) /„ = q-<\A)nZ {q)k{Ar-x. q=i)k(A)n_2k 
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is évaluable. The choice 

(3-4) ak = iqvifq\/2)k q®t*(iqV*A-v*)* 

gives 

( A\ Vnn/2 n(n-l)/2 

(3.5) /, = g - n n - i / 2 ) " {qVrq\/2)n 2<p{q 'Aqn-i I r 1 ; ^ " 1 ' 

The ^-analog of Vandermonde's theorem [14; p. 247] implies 

(3 6Ì f = g-n2/8(iA-1/2)n ^A ; qV2^n 

Finally, these values for ak and/w and (1.2), (1.3), and (2.9) imply 
y i a-nW (<A;q ) n ,. A-i/2\n 
h« (ql/2,q1/2)} } 

hWW^Äxtq-"*)«,* K }' 

This is a ^-analog of 

(3.8) (1 - x2)~a(l - 2*//(l - x2))~a = (1 - xi)~2a 

An interesting special case of (3.7) is ixAV2 = y, A -» oo and q -> q8 

* ' a to4; <?4)» " à> to4; a% q y ' 
If y = q2, the left-hand side of (3.9) can be evaluated by [15, Eq. (20)] 
to obtain 

(3 10) V ( - g 4 ^ 8 ) - ^ - 2 , = ! 

or, if y = q* we use [15, Eq. (16)] to find 

( } h W;q% q (~q2;q2Uq2;q5Uq3;q5)oo' 

Both (3.10) and (3.11) appear to be new. 
We can relate (3.10) and (3.11) to evaluations on Slater's list [15]. 

Equate even and odd powers of y in (3.9) and then set y = q2. For even 
powers (3.9) implies 

(3*12) hW\q%n h to4;?4), q ' 
/even 

Applying [15, Eq. (98)], we see that 
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/even 

For odd powers, [15, Eq. (94)] implies 

(3.14) ''odd 

= <?(<712; g40U<?28; <740U<716; <?80L(<?64; <?80U<?40; g40)^ 
(<?4; <?4)M 

If we multiply (3.10) by (#)«,(— Ô«, = (<72; #2)oo> w e s e e that (3.13) and 
(3.14) imply 

( - < ? ; <72)oo(<72; ?5)cx>(?3; tf5)oo075; ?5)oo 
(3.15) = (?2; ^ 4 ) ^ 8 ; , 1 6 ) ^ 3 2 ; ^ 0 ) ^ 4 8 ; ^ 0 ) ^ 8 0 ; ^ 

+ ? ( ? 2 ; ? 4 U ? 1 2 ; ? 4 0 ) o ^ ^ 

This identity is also new. We could apply the same steps to (3.11). 
For our choice of ak and/w the dual evaluation (1.5) is a special case of 

the very-well poised 5^4 evaluation. 
Next we give an application of Theorem 2.6 with r — 2. We need to 

choose ak such that 

9 * n/2 (Ànn/2' n-1} 
(3.16) /„ = q-»*£ (A1 >«->*-q">'*a„-2k 

k=0 \H)k 

is évaluable. If 

KÒAI) Qk~ (gl/2;q1/2)k
 q 

then 

(R' /ïl/2\ /Ä 0v n [~An(n-2)/2 nn/2 n(n-l)2 

W - A Ö ; / „ — 7TT/2. „ l / 2 \ "" * 3̂ >2 D ^ w - l ) ^ Oi7(w-2)/2l</ > * (<71/2; ql/2\ Bq<*-»'*, Bq{ 

We see that/M can be evaluated by the ^-analog of Vandermonde's theo­
rem for B = A or B = y4#~1/2. 

For B = A, we have 

nm f - 0 - A)(Aq*'*\q-i)n K2/8 .„ 
^ • 1 V ; / w (1 - ^ ^ ) tol/2; ^l /2 ) w ? 

so 
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2<Pl\ 
A>Ç2\q;AxW* 

(3.20) 
1 - A . 

+ 1 _ gl/2 lXQ 2g)l| 
">4/7l/2 J - I / 7 I / 2 

= 2 
(A; q"%(Ax*) 

& (q1/2l <71/2W*2T//2) 
J»qQs-/>)/a(jxy. 

To find of what (3.20) is the ^-analog, put A = qa/2 and let q -> 1. The re­
sult is 

2^1 

(3.21) 

'a/2, -aß, 2 

1/2 ' . 
+ aix 2 Fi •(fl + 0/2, (1 - a)/2 . -• 

3/2 ix _ 

=(l - x^Ìl - 7^?)" = ( v v ^ - ixY°-
The substitution x = sin z and [9, p. 101, Eq. (11), (12)] show that (3.21) 
is cos az + / sin az = (cos z — / sin z)~a. In this sense (3.20) is a ^-analog 
of DeMoivre's theorem. 

For B = Aq~1/2 we have 

(3.22) 

so 

f - (Aq«'Z-i;q-i) „ m 
J" {qV2;qV2)n q 

ifPi 
A' qp2 \q; Ax2 q^2] 

-1/2 (3. 23) + -{-
q
qv22 **1/8 2<Pi[Aql/2> Ce'' \qi Ax*q-

~ k (<71/2; <71/2M*2 q-//2)~ q { ) ' 
Again [9; p. 101, Eq. (11), Eq. (12)] imply that (3.23) is the ^-analog of 

cos(l — a)z . sin(l — d)z 1 , - • w-n 

^ i — - — = (cosz — i sin z)1 a. 
cos z cos z cos z 

In fact, the ^-analog of Euler's transformation shows that (3.23) is equi­
valent to (3.20). 

4. Connections with orthogonal polynomials. In [10] we showed that q-
Lagrange inversion for x/(l - x)2 is related to the little #-Jacobi poly­
nomials p,(x\ a, b; q). Put 

(4.1) rk(x) = (x; q)k. 

Then an explicit formula can be given for the connection coefficients 
Ak/m 
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(4.2) >•*(*) = S AksPÄx; a, b; q). 

This is equivalent to finding Bj} for the ^-analog of Lagrange inversion 
for x/(l — x2). In this section we show that this idea applies to a set of 
#-ultraspherical polynomials. 

The discrete #-ultraspherical polynomials [3] are defined by 

(4.3) Pn(x, a;q) = 3<p2\ 
~q~n, a2qn+1, x 

aq, -aq 
\q\ q 

However, there is another way to write Pn(x, a; q) which shows that 
Pn(x, a; q) is either even or odd [3] 

(4.4) 
^^{iq-^a-lYq-M Pn(x, a', q) 

- T (g* 2 ? 2 *" 4 *; <Ùk ff-n(n-2,)/2(^-1/2^1)W-2^(W-2fe)2/4^-2^ 
{q)n-2k{a2q\ q2)n-2k 

Let Pn(x, a; q) be the left-hand side of (4.4), and put 

(4.5) 

Then we have 

(4.6) 

_ (,g-l'2fl-l)»g«"«JC* 

* W ~ (lUa*q; q2\ 

P„(x, a;q) = £ Bnk{a)fk{x), 

where Bnk(a) is given by Theorem 2.3 with q replaced by q2, p = q2, and 
A = aq2. Thus 

(4.7) fk(x) = 2 BtKa)PAx; a, q). 
/=0 

The connection coefficient problem for P,(x; a, q) can now be solved. 
Let 

(4.8) Pn(x; b,q) = J] an/ P^x; a, q) 

so that (4.7) implies 

(4.9) an/ = 2 Bnk(b)B^\a). 

Clearly (4.9) implies that an/ = 0 if n — / is odd and 
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(4.10) 

_ ( ^ 1 + 2 , - 4 , ^ 2 ) / ( w _ 2 / ) 

M 'M-2 /" (q2',q2h q 

f, (aq™»-*",qZ)2k(bq™»-*; q*)k(q-2'; q*)k a2k 

k(bq1+2n-A/;q2hk(aqs+2»-*';q*)k(qZ;qZ)k
 q ' 

For q = 1 the right-hand side of (4.10) is summable by a theorem of 
Bailey [5, Eq. (3.42)]. A ^-analogue of Bailey's result can be given (see 
[2] and [10]), but it will not evaluate (4.10). 

There is another set of orthogonal polynomials which is related to 
Theorem 2.3. Rogers [13] defined 

(4.11) An(cosO) = S cos (n — 2m)d 

so A „(cos 6) is a polynomial of degree n in cos d. Let Tk(cos 6) = cos kd 
be the Chebyshev polynomial of the first kind. If rk(x) = 2Tk(x), k ^ 1, 
rQ(x) = 1, then (4.11) implies 

(4.12) AJLX) = ZJj^}n-2rn(x) 

so An(x) = ££=o Cnmrm{x\ where Cnm = 0 if n - m is odd and CM>w_2w = 
[*]. In Theorem 2.3 put A = 1, /? = #, and r = 2. Then, if n — m is 
even, 

(4.13) z u = <} : ffi c„m(-1)<--- ) V"/22+1) + m 
so 

(4.14) CÜ = {{-E-f^ Ä*»( - 1) ( " - * , / 2 / / | + 1 ) + ( ¥ ) 

which implies 

(4.15) rk{x) = g (1 - **) <fr-"7\ ( - l)»?(?)^,_2B(x). 
»=0 (?)*-2»(?)« 

Equation (4.15) was a key ingredient in Rogers' proof of the Rogers-
Ramanujan identities (see [6]). 

Bressoud [7] has given a matrix inverse which is equivalent to the 
connection coefficients problem for a certain set of discrete #-Jacobi 
polynomials. 

5. Krattenthaler's Theorem. Krattenthaler [12] gave a ^-Lagrange in­
version formula (his Theorem 1) for a certain class of expansions. As we 
remarked in section 2, he found several examples which correspond to 
our matrix inversion problems. In this section we show that our general 
results—Theorem 3.7 of [10] and Theorem 2.3 can be put into this form. 
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Roughly speaking, Krattenthaler took a formal power series/(x) and 
asked for the coefficients ak in the expansion 

oo 

(5.1) A*) = L fl**W*) 

where (j)k(x) satisfies a certain ^-difference equation. He gave two solu­
tions for ak (Theorem 1(A) and (B)) for two different classes of functions 
(j>k(x). We shall use our matrices to define functions <f>k(x). Then we shall 
give the solution ak in forms that correspond to Krattenthaler's Theorem 
(A) and (B). 

For Theorem 3.7 of [10], it is clear that we put 

(5.2) fax, a, p,q)=t ( g * ^ * ; p)" (xq->)>. 
n=0 \H)n 

Clearly, if (5.1) holds, then Theorem 3.7 implies 

(5.3) ak=t{qkpaVa{
rl)k-"V - ^ V ) ^ ( ^ ) + ( ^ + 1 ) ( - D - / , 

Defining 

(5.4) fa, a, „ , , ) -£; WP°+k
a{P^» q("i\-xy, 

we see that (5.3) is equivalent to 

<5'5) °k = ~T-z\ü^W R e s ( ( / W - PaApqx))Uxq->9 a, p, q)/x**}. i q p x 

Equation (5.5) corresponds to Theorem 1(B). Note also that 

(5.6) $k(x, a, p, q) = <f>-k(xqk, -a, p-\ q~l). 

A form that corresponds to Theorem 1(A) is 

(5.7) k 1 - qkpa+k 

R<p{/(*)[&(**~*> a,p, q)-pa+kqk^k(xq-k-1p-\ a, p, q)]/xk+1}. 

The ^-binomial theorem implies that §k and $k are summable if p = 1 
or p — q. These two cases are Examples 2 and 4 in [12]. 

For Theorems 2.3 and 2.6 we offer an example instead of a general 
theorem. In this example the function <f>k is summable. In Theorem 2.3 
take r = 2, A = qa, and p = q. By (2.9), let 

CO 

(5.8) /(*) = Z>***/(*2T*/2W 
*=0 

Then Theorem 2.3 implies 
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(5-9) fl* = i _ l
q.+„ Res{(*V"*/2)*+*(/(*) - rflqx))!**} 

or, equivalently 

(5.10) ak = Res{(xV-*/2)*+*-2(l - q"-^)f(x)/x^}. 
X 

For a = 0, the difference quotient in (5.9) is a ^-difference operator. 
We do not have a general theorem such as Krattenthaler's which will 

give (5.5), (5.7), (5.9), and (5.10). It is clear that <f>k satisfies a nice q-
difference equation though. 
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