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MORE q-BETA INTEGRALS 

RICHARD ASKEY1 AND RANJAN ROY 

ABSTRACT. TWO new ^-extensions of Barnes' beta integral are 
found. A third one found by Watson is reproved, and in the course 
of doing this another <?-beta integral is discovered. 

1. Introduction. Barnes [7] evaluated an integral of the product of four 
gamma functions which usually goes under the name of Barnes' lemma. 
This integral is an extension of Euler's classical beta function, so we will 
call it Barnes' beta integral. When Re(#, b, c, d) > 0 this integral is 

( 1 1 ) = r(a + c)r(a + d)r(b+ c)r(b + d) 
r(a + b + c + d) 

To see that this extends Euler's beta integral replace b by b — iw, d 
by d 4- iw and set t = wx. Then Stirling's formula can be used to obtain 

where x+ = x if x ^ 0, x+ = 0 if x < 0. 
Watson [12] found a ^-extension of (1.1). This will be given in §3. There 

are others, and the easiest way to find them was given by Titchmarsh 
[11, pp.193-194]. Here is his proof of (1.1). Take Euler's beta integral on 
[0,o)) 

n ^ f ~ *"-1 dt = r(a)r(ß) 
u } Jo (i + ty+ß r(a + ß) 
and consider it as a Mellin transform. Then use the L2 theory of Mellin 
transforms. One of these results is the following. If 

?A*) = J o **-i fj(t)dt 

then 

Supported in part by NSF grant DMS-840071. 
Received by the editors on August 22, 1984 

Copyright © 1986 Rocky Mountain Mathematics Consortium 

365 



366 R. ASKEY AND R. ROY 

(1.4) ^fi{t)f2{t)dt = ± J ^ F1(ix)F2(l - ix)dx 

under suitable assumptions or\fi{t) and/2(0- See [11, (2.1.12)] 
To obtain (1.1) take 

Mt) = /«(I + t)-«-r,Mt) = t^-Hi + 0 - ^ . 

To find ^-extensions of (1.1) it is natural to look at ^-extensions of (1.3) 
and use an appropriate L2 theory. 

We would like to thank G. Gasper for drawing our attention to Wat
son's paper and for a couple of useful comments. 

2. Two q-extensions of Barnes' integral. Ramanujan found two identities 
which extend (1.3). Before stating them the standard notation will be 
recalled. Let \q\ < 1 be given and define 

oc 

(Ö;<?)OO = n o - a(ln) 

(2.1) »4> 

(a;q)n = (a;q)J(aqn;q)00. 

For 0 < q < 1 the g-gamma function is defined by 

(2.2) rq(x) = {q- q)J\ - q)^\{q- ?)„. 

One of Ramanujan's extensions of ( 1.3) is 
n 3i f »„ -1 {-ctg^y;q)xdt = rjx)I\l - x)fq(y) 
{ ' Jo {-et- q)m c*rç(i - x)rt(x + j) • 
Take 

M ) ' (-';q)m 

f ( t ) - tS-\-tq«^r+i;q)oo 
Mt) (-tq°+r-q)ca • 

Then 

i f » r(a+is)r( i - a - is)rq(r - ts)r{5 - «) n i - <s+is)rq(ß+is)ds 
2x J -„ fq( 1 - a - is)fq(a + r)rq{ \-d + is)fq(ß + ô)q<a+^ «-»> 

J.""+ 
(-t;q)„ rq(l-a-o)rq(cc + ß + r + o) 

or 
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%_ f ~ fq(ß + is)rq{r - is)g{a+r)^ds 
2 J -co rq{ 1 - a - is)rq{ 1 - ö + is) sin %{a + is) sin n(ö - is) 

-n<a+r)8 rqa+r)na+ö)rq(ß+r)rq(ß+d)ni-cc-o) _ 
(2.4) q rq(a + ß + r + W 1 - a - « 

—oo 

L f A « + " ) A(fi + «) A(f - w)/\d - «) A1 - a - is) A1 - ô + is)q (»+r' "<fa 
2TTJ / ' ( l _ a _ ö ) r ( i - 5 + fc) 

Ramanujan found a second extension of (1.3). It is 

(25) f (*•;?>~^ - ( a * ; g ) " ( « : g ) > ; g ) ^ ; « ) . 

or 

(2-6) 2 («;?),-- ^ ; ^ f e ; g ) j g ; ^ ( i ; g I 

when |#| < 1, \x\ < 1, |ft/ajc| < 1. 
See [5] or [8] for simple proofs of (2.6) and [4] for the connection with 

(1.3). 
Take x — reid in (2.6) and then x = se~id with {a, b) replaced by (b, c) 

in the second case. Multiply the series and integrate on [ — 7c9 %]. The 
result is 

J - f* {p>r&*\ q)<Äqe~idlar\ q)Jbse~ie\ g)00(get'e/bs; g)0 

2TC J _* (reie; q) Joe'* jar, q)00(se-id; q)00(ceie/bc; q\ 
2dd 

~ « y - - 7 - j /oov- - / --- 7 -I/OOV-- 7 i / o o \ - - i- - i H)o 

= (b; q)oo(q/b; g)00(ars; q)00(qlars; g^jc/a; g)^ 
(q; q)coirs; q)00(c/ars; q)Jbla\ q)Jçlb\ q)^ 

Replace a, c, r, s using r -> a, c/bs -> b, s -> e, ò/ar -» d and relabel the 
original b as/ . Formula (2.7) becomes 

JLf* (fe»ld; q)Jqde-"lf\ q)Jcfe'*\ g)Jge*\cf\ g)» dd 
lit J ^ (ae<e; g)Jf>e*\ q)Jce^\ q)Jdtr*\ q)„ 

(2.8) 
= (abcd> ^)°°(/> ^)Q°(^//> <l)oo(cfld> <J)S(jd\cf\ q)*> 

(ac\ q)Jad\ q)Jbc\ g)oo(bd; q)Jq\ q)m 

when maxfltfl, \a\, \b\, \c\, \d\) < 1 and cdf * 0. 
Take/ = #1/2É> and let g — 0. The result is the elementary integral 
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j_ f * de 
2xJ-* (1 - aei9){\ - beid)(\ - ce-id){\ - de~ie) 

(2.9) 
_ 1 — abed 
~ (1 - ac)(\ - ad)(\ - bc){\ - bd) 

when max(|a|, \b\, |c|, \d\) < 1. 
This integral was stated by Li and Soto-Andrade [10], and was the 

reason we decided to look for a ^-extension of Barnes' beta integral. 
Since 

lim rq{x) = r(x) 

[4], it is clear that (2.4) generalizes (1.1). To see that (2.8) also does take 
0 < q < 1 and set 

eid = qit^ a = qccfr — qßc = qr^ d = q8,f= q£. 

Then the integral can be rewritten as 

4- f~%/Xogq rq{a + it)rq{ß + it)rq(r - n)rq(ö - u)wq{t)dt 
(2.10) **nogq 

_ rq(a + r)rq(a + ö)fq(ß + r)m + W - g) 
rq(a + ß + r + ö)[-\ogq] 

where 

w m = (g£-ô+it; g)oo(gô+1-£-u; g)oo(gr+'-*; ^)coto1"r"£+^; g)«, 

Using the triple product for the theta function 
CO 

(2.11) (a; qUq/a; q)Jq; q)M = 2 ( - 1)» q^~^ a" 
—co 

(see [2] or [4] for simple proofs) and the modular transformation 

CO CO 

y* e-Tzrflt+2ninz _ ^-1 /2 V1
 e~ic{n+z)Vt 

— CO —CO 

(see [9] for a proof) it is easy to show that 

lim wq(t) = 1. 

Since l i m ^ - log q/(\ - q) = 1 it is clear that (2.10) becomes (1.1) 
when q -> 1. 

Barnes showed that the restrictions Re(öf, b, c, d) > Omade for (1.1) 
can be relaxed if the path of integration is deformed to keep the poles 
of r(a + it) and r(b + it) and those of r(c - it) and r(d - it) on op
posite sides of the contour. The same can be done for (2.8). Let C be a 
contour that is a deformation of the unit circle so the zeros of 
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H O -cq»/z){l -dq*lz) 

are inside the contour and the zeros of 

oo 

\[ (1 - agnz)(\ - bqnz) 

are outside the contour. Assume that there are no poles of second order 
inside the contour and for the time being assume that \ad\ < 1 and \bc\ 
< 1. Let CN be the contour obtained by shrinking C so that N zeros of 
n^oO - cqn/z) and N zeros of n^oO - dqn\z) are outside of CN and 
the rest are inside CN. Then 

/ = l f (fild; q)oo(qd/fz; g)00(gz/cf; q)Jcflz\ q)^ dz 
liti Je (az; g)oo(bz ; q)Jcjz ; q)Jd\z ; q)^ z 

- Nfl (Wld; qUqd/cfqk; g) Jg»+i//; q)M\qk\ ^ 
jéfc (acq*; q)00(bcqk; q)^(q~k; q)k(q; q)00(d/cqk; q)^ 

I Nyl {fqk\q)oo{ql-klf\q)MMdlcf;q)^cfldq^g)^ 
^o (adq*; q)00(bdq*;q)^(cjdqk;q)00(q-k;q)k(q;q)00 

+ ̂ f . 
£TCl J CN 

When Â  -^ oo the series become 

(cf/d; q)00(qd/cf; q)Jqlf\ ?)„(/ ; q)^ (ac, be \ 
(ac; qUbd; q)Jq; qUd/c; q)„ 2<Pl\cq/d ' *> q) 

, (/; q)oo(q/fi q)Jtf\d; g)Jdglcf\ g)oo ,. (ad, bd. \ 
+ (ad; qUbd; q)œ(q; qUc/d; q)^ 2<pl\ dq/c > «> V 

(2.12) 

(2.13) 

where 

2m\ c '*> J & (c;g)n(q;q)n 
When the contour CN is taken to be bounded away from the Nth and 

(N + l)st zeros in each sequence, the integrand is bounded and the length 
of the path of integration is of the order of gN, so the integral over CN 

vanishes as N -> oo. 
Neither of the series in (2.13) can be summed but they can be combined 

into a single series that can be evaluated. To do this use Heine's trans
formation, [1, Corollary 2.3] 

2J
a' b ; i,x) = ^ ; y f m (c/b' x;q,b) 

on each series, using ac as a in the first series and bd as a in second. The 
result is 
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(/; g U g / / ; qUcf/d; gUdg/cf; g)M - d/c) 
(q\q)l{dlc\q)Jcld\q)J\ - bd) 

"Ä {{bd)-^q)n{bcY l ^ (q/ac; g)n(ad)» 
.4=1 (ac\q)n w4i (bdq;q)n 

Replace AI by — n in the second sum and use 

(g; ?)-» = (g;g)co(^"w;g)co = (bg-n;g)n = (g/b;g)n (b_\n 

(b; g)_n (ag-»\g)Jb\ g)^ (ag~n; g)n (g/a; g)n\a J 

to obtain 
(/; g)oo(g/A g)Jcfld\ g)Jdglcf\ g)^ f, {(bd)-i\g)n (hr)n 
(g; g)Udg/c, g)œ(c/d; g)J\ - bd) h (ac; g)n

 K° } ' 

This series is just Ramanujan's (2.6), and using the sum of this series 
the result is the right hand side of (2.8) as it should be. The condition 
that there is no double pole inside the unit circle is just c ^ dgk, k = 0, 
± 1, • • • . This condition insures that (c/d; ^)00(öf/c; g)^ # 0, as was needed 
in the proof. However in the final identity this condition is not needed, 
so it can be removed by continuity. The conditions \bc\ < 1 and \ad\ < 1 
were used in the convergence of Ramanujan's ^ sum. Also we needed 
the conditions ac ^ g~k and bd # g~k, k = 0, 1, • • • , so there were no 
infinite terms in this sum. Analytic continuation can be used to replace 
\ad\ < 1 and \bc\ < 1 by ad # g~k and be ^ g~k for k = 0, 1, • • • . 

It is interesting to compare this use of Cauchy's theorem with Barnes' 
use of it. See [13, §14. 52] for his argument. Barnes needed to assume 
Re(tf + b + c + d) < I t o have convergence of the series he obtained. 
That is not necessary in the g case. Barnes could sum both of the series 
he obtained, while that cannot be done in the </-case. After summing his 
series Barnes needed to use some trigonometry to combine the two sums 
into a single one. In the g case that had to be done before summing the 
series. Watson had the same problem in evaluating his extension of 
Barnes' beta integral, and he solved it differently than we did since he was 
unaware of Ramanujan's sum (2.6) in 1910. The same problem arose 
when evaluating another ^-extension of the beta integral [3], and the argu
ment we gave above was first given there. It was repeated here since it is 
a nice argument and should be better known. 

3. Watson's q-extension of Barnes' beta integral and an extension of one 
of Ramanujan's q-beta integrals. The beta integral on [0, oo) can be written 
as 

(11) Jo° dt I\a)J\b) 
(1 + 0a+c(l + t'1)b~c P(a + b) 

This suggests consideration of 
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G 2 Ì na b c\ - f°V-i (-ya+ct> gU-g* + 1 - c f" ' ; i)~dt 

The reason for using the theta function product ( — t;q)oo( — qt~1;q)0O 

(recall (2.11)) is that it works, but there are a number of reasons for 
suspecting it is the right product to use. A pair of theta products are used 
in the second #-Barnes beta integral above, and also in the integral that 
is responsible for the orthogonal polynomials in [6]. 

To evaluate (3.2) take b - c = N, N = 0, 1, . . . , Then 

Too fc-l( 
f(a9c + N9c)=\ 1—i 

Jo ( — t, 
•q°+<t;q)00dt 

Jo X - * ; ? ) « > 
qcN^N2~N)/2f(c + N)r(l - c - N)rg(a) 

q~ lo ~ ~(-tj--»;'q)9 

= qcN+w-mn I1"*"1" xK-qu,",vt;q)aodt 

Thus 

(3.3) f(a, b, c) 

rq(\ - c - N)rq(a + N + c) 

mni - c)rq{a)rq(N + c) 
rq(c)rq{\ - c)rq(a + N-^c)' 

mry - c)rq(a)rq(b) 
rq{c)rn-c)rq(a + b) 

when b — c, c + 1, • • • , c 4- N, • • • . Both sides of (3.3) are analytic 
functions of z = qb in a neighborhood of z = 0 and agree for infinitely 
many values that have z = 0 as a limit point, so they are equal. Thus 

(3 A) (°°t^(-cia+ct;qU-qb+1^lt;q)^dt = /WO " ^ / » W 
K' } Jo (-tiqU-q/tiq)^ A(c)^( l - c ) / > + b) 

when Re a > 0, Re b > 0 and a limit is taken when c = 0, ± 1, • • • . 
When b = c this is Ramanujan's integral (2.3). 

A second fact from the L2 theory of Mellin transforms is the following. 
If / i(0 and/2(0are used to define Fi(x) and F2{x) as in the introduction, 
then 

<3-5> f 0°°/i(f)/2(OT = i f 1 FiWrmx-* «fa-

See [11, (2.1.17)]. 
If* = <7,/i(0 = f(-<r+<t; q)J(-t; q)w and /^O = f*(-?»+ 'r; ? ) J 

( —f; ^ then 
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J_ f°° rq(c - is)fq(d - is)q~is ds 
2?r J -oo /^(l — fl - / J ^ O - Z> - «) sin7r(ö + is)sin%(b + w) 

_qar{b-a)r(a+\-b) rq(a + c) />r + d)rq(b + c)/ffi + J) 
rq(b-a)rq(a + 1 - * ) " / > + é + c + rf) 

when Re(#, 6, <?, rf) > 0. 
This is Watson's ^-extension of Barnes' beta integral. He extended it 

in the same way that Barnes extended his integral, and as we did for (2.8), 
by bending the contour to separate the appropriate zeros. This can also 
done for (2.4). In each case Cauchy's theorem can be applied. The ad
vantage of the L2 theory is that it leads one to the right identities instead 
of having to guess them. In fact that is how (3.4) was discovered. First 
the argument to prove (3.6) was tried, and it led to the right Barnes type 
integral, but to the integral in (3.4). Since Watson had evaluated (3.6) 
it had to be possible to evaluate (3.4). Once this was known, it was easy 
to find the argument above. A similar extension of (2.5) can be attempted, 
but it only leads to (2.6) again. 
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