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THE ORDER OF MAGNITUDE OF THE (C, a è 0, £ è 0)-
MEANS OF DOUBLE ORTHOGONAL SERIES 

FERENC MORICZ 

1. Introduction. Let (X, Ft fji) be an arbitrary positive measure space 
and {<ßik(x): U k = 1, 2, . . .} an orthonormal system on X. We consider 
the double orthogonal series 

oo oo 

where {aik: i, h = 0, 1, . . .} is a sequence of real numbers for which 

oo oo 

(1.2) L E «?*<<». 

We denote by smn(x) the rectangular partial sums of series (1.1): 

m n 
Smn(x) = S S aik</>ik(x) ( m , AÎ = 0 , 1, . . . ) . 

Let a and /3 be real numbers, a > — 1 and ß > — 1. We recall that the 
(C, a, /3)-means of series (1.1) are defined 

1 m n 
^mn\x) = Aa Aß 2 J J j ^m-i ^n-k sik\x) 

= A« Aß S 2 ^ï-« ^ê-* <*irfik(x)> (m, « = 0, 1, . . .), 

where 

MmrK -f-cA fa + 0(<* + 2) • • • (a + m)/m\, for m = 1, 2, . . ., 
for m = 0, 

(see, e.g., [9, p. 77]). 
The case a = ß = 0 gives back the rectangular partial sums $„„(#) = 

o*$n(x). The case a = ß = 1 gives the first arithmetic means with respect 
to m and «, 
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1 m n 

a™(x) = (n, + l) (n + l) MU'"™ 

= |ogo(i-^)(i-¥fr)^,w-
Furthermore, the case a = 1 and ß = 0 gives the first arithmetic means 
with respect to m, i.e., 

\ m m n / i \ 

"-(*) = ^ri S *.(*) = 2 2 ' - lAaMx), 

while the case a = 0 and /3 = 1 gives the first arithmetic means with 
respect to n. 

Before stating the preliminary results, we make the following conven
tion. Given a double sequence {fmn(x): m, n = 0, 1, . . .} of functions in 
L2 = L2(X, F, jj) and a double sequence {Àmn} of positive numbers, we 
write 

fmnW = ox{Xmn} a.e. 

if 

fmn(x)/Xmn -+ 0 a.e. as max (m, n) -> oo 

and, in addition, there exists a function F(x) e L2 such that 

sup \fmn(x)\/Xmn è F(x) a.e. 

2. Preliminary results. The following theorem is well-known (see, e.g., 
[3, Corollary 2]). 

THEOREM A. Under condition (1.2), 

(2.1) smn(x) = ox{\og(m + 2) log (/i + 2)} a.e. 

In this paper the logarithms are to the base 2. 
This theorem is exact in the sense that log(f 4- 2) cannot be replaced 

in it by any sequence p(t) tending to oo slower as t -• oo (cf. [6]). 
The order of magnitude improves when considering a^Jx) instead of 

smn(x). 

THEOREM B. Under condition (1.2), 

(2.2) a%n(x) = ox{\og log(m 4- 4) log log(« + 4)} a.e. 

This theorem was proved in [4]. It was also pointed [4] that Theorem 
B is the best possible in the same sense as Theorem A is. 
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The orders of magnitude of a^n(x) and o%n(x) lie between (2.1) and 
(2.2). (See, again, [4].) 

THEOREM C. Under condition (1.2), 

(2.3) alZ(x) = 0,{log log(m + 4) \og(n + 2)} a.e. 

and 

(2.4) a$H(x) = ox{\og(m + 2) log log(n + 4)} a.e. 

3. Main results. Our first goal is to prove that the (C, a, /3)-means of 
series (1.1) are of the same order of magnitude as the right side in (2.2) 
for all a > 0 and ß > 0. Besides, we show that relations (2.3) and (2.4) 
hold also when a^n(x) is substituted for a^n(x) and when a^n(x) is sub
stituted for Gmn(x) m them, respectively, where a > 0 is arbitrary. 

THEOREM 1. If a > 0 and condition (1.2) is satisfied, then 

(3.1) o$H(x) = ox{\og log(m + 4) log(« + 2)} a.e. 

and 

4 W = ox{\og(m + 2) log \og(n + 4)} a.e. 

THEOREM 2. If a > 0, ß > 0 and condition (1.2) w satisfied, then 

(3.2) <T«£(*) = ox{log log(m + 4) log \og(n + 4)} a.e. 

These two theorems can be considered as the extension of a result of 
Tandori [7, Theorem 7, p. 101] from single orthogonal series to double 
ones. Unlike the original proof, we avoid the application of Abel's trans
formation. 

The following two theorems play a crucial role in the proofs of Theo
rems 1 and 2. 

THEOREM 3. If a > 1/2 and condition (1.2) is satisfied, then 

9li»(x) = { j ^ t o (*S51>0(*) - 'SAW)2}"2 = 0*{log(" + 2)} a.e. 

and 

( \ N \ 1/2 

XTTTT a,i<7™~1 {x) ~ * " ( x ) ) 7 = °&°&m + 2)> a-e-
THEOREM 4. //" a > 1/2, ß > 1/2 and condition (1.2) w satisfied, then 

**<*> = { p ^ T T ) W ö l o l o t e M " 1 ( x ) - ff-W)2}1/2 

= öx{log log(max(M, JV) + 4)} a.e. 
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On the other hand, taking Theorems 1, 2, 3 and 4 for granted, we can 
deduce two interesting theorems on the order of magnitude of quadratic 
averages of the (C, a, ß)-means of series (1.1) for a > — 1/2 and ß > 
-1 /2 . 

THEOREM 5. If a > 1/2 and condition (1.2) is satisfied, then 

(3-3) { ^ J ^ ^ ' V ) ) 2 } = ox{log log(M + 4)log(« + 2)} a.e. 

and 

(3.4) yL-{ S tór1«)2}172 = ^pog(m + 2)loglog(iV+4)} a .e. 

THEOREM 6. If a > 1/2, ß > 1/2 and condition (1.2) is satisfied, then 

f 1 M N \1/2 

(3.5) \(M+l)(N+l) So S ^ _1 W)2/ 
= ^{log log(M + 4) log log(N + 4)} a.e. 

For example, (3.3) is an immediate consequence of Theorems 1 and 3 
if we take into account 

(M )l/2 ( M n n U / 2 ( M U / 2 

We would like to emphasize that estimates (3.3)—(3.5) in the special 
cases a = 1 and ß = 1 (and even more for 1/2 < a < 1 and 1/2 < ß < 
1) are very unexpected in comparison with what would follow from (2.1). 

4. Auxiliary results. In this section we consider the numerical series 

oo oo 

(4.1) 2L«* 

where the uik are real numbers. The (C, a, j3)-means of series (4.1) are 
defined by 

<" = -jJ-JS-îlÈA^Ai-i>u» K « = 0, l,...;a> -l,ß> -1) . 
^m An i=0k=0 

We recall some identities and inequalities well-known in the literature. 
For all a and 7% 

m 

(4.2) A2T+1 = % Af Airi 

(see, e.g., [9, p. 77, formula (1.10)]). Hence the representations 

(4.3) *S£*° = -±=r £ Arm_\ A? afn 
Aa+r . 
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and 

I m n 
/ T a+r , / 3+5 — A Y 1 V» Ar-l Aö-l Ja Aß /Taß 

•rt-m ^n t^O k-0 

easily follow. 
We need the following estimate. There exist two positive constants Q 

and C2 such that 

(4.4) C l é ^ é C 2 (m = 1, 2, . . .; a > - 1 ) 

(see, e.g., [1, p. 69, formula (25)] or [9, p. 77, formula (1.18)]). 
In order to formulate the next two Tauberian type results, we consider 

a double sequence [Xmn: m, n = 0, 1, . . .} of positive numbers which is 
nondecreasing both in m and in n. 

LEMMA 1. If a > -1 /2 , e > 0 and 

1 ( 1 M U / 2 
(4-5) " i {win: ä(<")2} ~*° as max(M'n) "* °°' 
then 

(4.6) -J— <75Ö-w
1/2+e'° -+ 0 as max(M, w) -> oo. 

Furthermore, if 

] ( 1 M A U/2 

A { i r V r i ^ f 2 ^ w»-o,i,...) 
Mn W W -T l w = = o 

w/fA a positive number B, then there exists a constant C depending only on 
a and e such that 

1 k&1/2+£'°l S CB (M, n = 0, 1, . . .). 

LEMMA 2. If a > -1 /2 , /3 > -1 /2 , e > 0, 77 > 0 and 

then 

1 

Furthermore, if 

aff]H/2+e,fH-i/2+v _» o, ^ max(M, JV) -• 00. 

^ {(MToW j * J ^ ' F * * <* ̂  - °. ». • • •) 
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with a positive number B, then there exists a constant C depending only 
on a, ß, e and 77 such that 

1 \a&y2+e'f*1/2-h>\ ^ CB ( M , JV = 0, 1, . . . ) . 
*>MN 

The corresponding result for single series was established by Tandori 
[7, p. 103]. The basic idea goes back to Zygmund [8, p. 360-361]. For the 
sake of completeness, we show how condition (4.5) implies statement 
(4.6). By (4.3), 

1 M 
~a+l/2+e,0 _ l V J-l/2+e Ja ^aO 
uMN -j^fï/2+T Li ^M-m ^m °mn-

A M m=0 

Hence, using the Cauchy inequality, 

1 ( M )l/2 ( M \\/2 

Taking into account (4.2), (4.4) and (4.5), it is not hard to check that 

Wl^\ = o{(M+l)a+1/2+s}o{(M + \)vnMn}0{{M + 1)«+.} 

= o{XMn} as max(A/, n) -> 00, 

which is (4.6) to be proved. 
In the sequel, we often make use of the representation 

1 m n 

(4-7) K~nh ß~ctä = —l-a L E *SA *Lk ««» (a > 0, /3 > - 1 ) , 

which can be deduced from the identities 

^™ = a + m ^™ a ^™~* = cc ^ » - « -

Finally, the inequality 

(4-8) E . ( ^ f J = 4 9 ( / - l , 2 , . . . ; «> l / 2 ) 

will be useful in the proofs (see, e.g., [1, p. 110]). 

5. Proof of Theorem 1. We will prove the first statement, i.e., relation 
(3.1). The companion statement can be derived in a similar way. Now, the 
proof of (3.1) is done on the basis of Theorem 3, which will be proved in 
§7, and of the following consequence of Lemma 1. 

COROLLARY 1. If a > -1/2, e > 0 and 
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(5.1) { ^ V T 2 t ó W ) 2 } 1 / 2 = ox{\og log(M + 4)log(* + 2)} a.e., 

then 

(5.2) <75&1/2+£'°(x) = ox{\og log(M 4- 4) log(rc 4- 2)} a.e. 

PROOF OF (3.1). By Theorem C, (3.1) holds for a = 1. Hence, by 
Theorem 3, we obtain (5.1) for a = 0. Thus, by Corollary 1, we get (5.2) 
for a — 0. Applying again Theorem 3, we find (5.1) for a = —1/2 + e. 
Hence, again by Corollary 1, we obtain (5.2) for a = -1 /2 4- e. Since 
e > 0 is arbitrary, this is equivalent to (3.1). 

6. Proof of Theorem 2. It relies on Theorem 4, which will be proved in 
§8, and on the following consequence of Lemma 2. 

COROLLARY 2. If a > -1 /2 , ß > -1 /2 , e > 0, y > 0 and 

( [ M N U/2 

(6J) l(M + i)(7v+i)mC0ä(^(x))7 
= ox{\og log(M 4- 4) log log(7V 4- 4)} a.e., 

then 

(6.2) (7^y2+£^+1/2^ (x) = ox{log log(M + 4) log log(JV 4- 4)} a.e. 

PROOF OF (3.2). By Theorem B, (3.2) holds for a = ß = 1. Hence, 
by Theorem 4, we get (6.1) for a = ß = 0. Thus, by Corollary 2, we ob
tain (6.2) for a = ß = 0. Using again Theorem 4, we find (6.1) for a = 
-1 /2 4- e and /3 = -1 /2 4- rj. Hence, by Corollary 2, we get (3.2) for 
a = 2e and ß — Irj. Taking into account that e and rj are arbitrary posi
tive numbers, the proof of (3.2) is complete. 

7. Proof of Theorem 3. It is enough to prove the first statement, since 
the second one can be proved in a similar way. 

For simplicity in notation we suppose M ^ 1, i.e., neglect the case 
M = 0. Then there exists an integer p ^ 0 such that IP'1 < M <; IP. 
Clearly, 

ôa
Mn(x) S A / T öh,n(x). 

Thus, it suffices to derive 

(7.1) 9k,n(x) = ox{\og{n 4- 2)} a.e. 

Next we take into consideration the decomposition 

(7.2) (öhnix))2 = "t 2'->+2 x ^ r 2 S tó'V) - oJUx))*, 
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where we make the convention that for r — — 2 and — 1, by 2r we mean 
— 1 and 0, respectively. So, by proving 

(7.3) i0«,(x) = { * 2 te1'0«-^«)2 -0«{log(n + 2)} a.e. 

we also prove (7.1). For convenience, we assume p ^ 0 from now on. 

PROOF OF (7.3). Step 1. First we prove (7.3) for the special case n = 
2? (q ^ - 1 ; in the case q = - 1 we take 2? to equal 0) : 

(7.4) lô%2q(x) = 0,{? + 2} a.e. 

Actually we prove (7.4) with (q + 2)1/2+v on the right side instead of 
q + 2, where 7] > 0. 

To this effect, by (4.7) and the Cauchy inequality, 

i 2P+l / m 29 Aa-1 \ 2 

^ m=2A+l V = l *=0 " ^ m / 

£* m=2P+l t=-2 V = l k=2t+l "Sim / 

with the agreement concerning 2', for / = — 2 and — 1, that we made 
after (7.2). Setting 

oc oo i 2P+1 / m 2t+1 Aa-1 \ 2 

W = E LJP E (S £ j^-i^dx)), 
p=0t=-2^ m=2Af 1 V = l *=2H-1 CC/im / 

2P±} / _m_ 2Ü 1 ^ a - 1 

. .J. S ?7 

we have, among other things, 

(7.6) I ^ ^ J C ) Û F(x) (q + 2)i^. 

Also, if we prove F(x) e L2, then B. Levi's theorem and (7.5) imply (7.4), 
in the case when p -• oo. But this is the case, as term-wise integration 
shows : 

2/>+l m 2<+l / Aa-1 \ 2 /• oo oo -, 2/»+l m 2<+l 

«* f WM*) = E S i 2 S E 
J / i = 0 1 = - 2 *" m-2t+l (=1 *=2 ' -

=2<+l \ Si*n 

m-i \ /2„2. 

oo oo i 2/>+1 m / Aa-1 \ 2 

= E E i E Ef-^M2«2* 
^ = 0 £=0 ^ w=2/»+l *=1 \ Am ' 

i% 

oo oo w / J a - 1 \ 2 

m = 2 £ = 0 * = l \ ^ m / 

oo oo oo / Aa—l \2 

^ 2 S 2 ' ^ E ( ^ L ) <°°, 
1=1 £=0 m=i \ ^ m / 
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the last series being finite due to (4.8) and (1.2). 
In the case when q -• oo, (7.4) is an immediate consequence of (7.6). 
Step 2. Given n ^ 3, there exists an integer q ^ 1 such that 2? < n 

< 2«+l. Since 

( i 2^+1 / m n Aa-l \ 2 U 

l ^ m =2/»+l V = l *=2*+l a y l m / J 

(cf. the first equality in (7.5)), we can estimate 

(7.7) max i ^ ( x ) <, i ^ x ) + Mfcx), 
29<»^2<7+l 

where 

i 2/»+1 / m n Aa-l 

Applying the Rademacher-Mensov inequality (see [1, p. 79] or [2, Theorem 
3]) separately for each fixed m, we get 

C 1 2/>+l m 29+1 / ja-i \ 2 

o * ( ^ x ) N M * ) ^ S (log 2^i)2 2 S (%*-) i2«?,. 

Consequently, again by (4.8) and (1.2), 

oo oo -I 2/>+1 w 29+1 / j a - l \ 2 

/ ,=0 o = l ^ m = 2 / 4 1 *=1 £=2<?+l \ Am ' éLLiï 2 2 2 (^)<2<& 
/ ,=0 ç = l ^ m = 2 / 4 1 *=1 £=2<?+l 

oo oo i 2/»+l m / J a - 1 \ 2 
/ ,=0 £=3 ^ w=2M-l i = l \ Am / 

oo oo m / J a — 1 \ 2 

w = 2 £ = 3 * = l \ ^ w / 

a - 1 \ 2 
< OO. 

oo oo oo / J a - 1 \ 2 

,•=1 k=3 m-i \ Am I 

Hence B. Levi's theorem implies that 

(7.8) M«pq{x) = ox{q + 1} a.e. 

Combining (7.4), (7.7) and (7.8) we find (7.3) to be proved. 

8. Proof of Theorem 4. By the triangle inequality, 
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* W i)W l)|)5(^^)-g£'•^)-<c^Kx)^•ga(»))»}1/, 

(^+i)U+i)M[gari(jf) - ^ r 
= ^ „ ( * ) + h$N{x) + 3 £ ^(x) . 

Thus, Theorem 4 will be proved through the following Propositions 
1-3. 

PROPOSITION 1. If a > 1/2, ß > 1/2 and condition (1.2) w satisfied, then 

This proposition was proved in [5]. 

PROPOSITION 2. If a > 1/2, /} > 0 awrf condition (1.2) w satisfied, then 

(8.1) 2 e ^ W = 0,{log log(TV + 4)} a.e. 

The next symmetric counterpart of Proposition 2 can be derived in a 
similar way. 

PROPOSITION 3. If a > 0, ß > 1/2 ö«d conditon (1.2) /J satisfied, then 

h«3N(x) = ox{\og log(M + 4)} a.e. 

PROOF OF PROPOSITION 2. Since, again, 

2^y*) ^ 2 hfPy2q(x), 

for 2*-1 < M <Ì 2P and 2?-1 < TV ^ 2« with p, g ^ 0 (excluding the cases 
M = 0 or TV = 0 for the sake of simplicity in notation), instead of (8.1) 
it is sufficient to prove 

(8.2) hf^ix) = ox{\og(q + 2)} a.e. 

We can insert one more simplifying step. Clearly, 

(2«fg*(*))2 

= 2 2 2'+<-*-«+* x ' 2 S WEM*) - <») 2 > 

with the same convention concerning 2r and 2' for r, t = - 2 and — 1 
as we made after (7.2). Thus, in order to prove (8.2) we have to prove 
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v$*) = { "L g1 2g' te^(x)-^„w)41/2 

(8.3) m \lViq m=2P+l n=2Q+l > 

= ö*{log(<? + 2)} a.e. 

Using representation (4.7), we can split HPq(x) into three parts as follows 

( 1 2P+l / m 2q Aa~l \A 1/2 

**)£{i S E£^'a*W 
** K*- m=2P+l V=l £=0 ^ ^ m / J 

/ i 2^+1 29+1 / w „ > a _ ! \ 2 U / 2 
^ z z w=2J»+l «=29+1 V = l £=29+1 " ^ m / > i 2/»+i 29+1 / w M ^ a _ i / J/3 \ \2V 

z * m=2P+l «=2«+l V=l fc=l a ^ w \ ^ « / / ^ 

= ^ , 2 9 « + *0%(X) + hfq(x\ 

where lòa
pn{x) was already defined in (7.3) (as to the representation of 

ld%2i(x), s e e t n e first equality in (7.5)), while 2da
Pg(x) and ha/q(x) are just 

now defined. On the basis of this decomposition, the next three lemmas 
will complete the proof of (8.3) and that of Proposition 2. 

LEMMA 3. If a > 1/2 and condition (1.2) is satisfied, then 

(8.4) ld%2q(x) = ox{\og{q + 2)} a.e. 

PROOF. The statement of Lemma 3 is an easy consequence of (7.3). 
To this effect, we set 

( 2'+i n \\/2 

a?t = S * (i = 0, 1, . . . ; / = - 2 , - 1 , 0, . . .) 
U=2'+l ' 

and 

i i 2'+l 

^* 2 aik<f)ik(x) if flg # 0, 
ait *=2<+l 

^f,2«+iW if 055 = 0 
(keeping in mind the convention made after (7.2)). Obviously, {<f>*(x): 
i = 0, 1, . . . ; t = — 2, — 1, 0, . . .} is an orthonormal system and, by (1.2), 

oo oo 

So we can apply Theorem 3 and obtain (7.3), which in this case says 

(8.5) i j ^ x ) = ox{log(^ + 2)} a.e., 

where 
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M 2P+l /m a Aa-l \ 2 U / 2 

V- m=2P+\ \ i = l t=-2 Où 'A m / ) 

By this, (8.5) is equivalent to (8.4) to be proved. 

LEMMA A. If a > 1/2 and condition (1.2) w satisfied, then 

2ô%(x) = ox{\} a.e. 

LEMMA 5. If a > 1/2, /3 > 0 and condition (1.2) is satisfied, then 

hfq{x) = ox{\} a.e. 

Both Lemma 4 and Lemma 5 were proved in [5]. 
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