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ON THE NUMBER OF MINIMAL PRIME IDEALS IN THE
COMPLETION OF A LOCAL DOMAIN

DANIEL KATZ

Let R be a local Noetherian domain. It is well-known that the number
of minimal prime ideals in the completion of R is greater than or equal to
the number of maximal ideals in the integral closure of R. An(unproved)
exercise in [2] states that the reverse inequality holds if R is one-dimen-
sional. The purpose of this note is to show how this latter fact can be
generalized to local domains of dimension greater than one. Specifically,

let x;, .. ., x; be a system of parameters for R and set
X X
T= R[_z, ,1]
X1 ’ X MR[ZL, ... 22

(M is the maximal ideal of R). We will show that if R is quasi-unmixed,
then the number of maximal ideals in the integral closure of T is greater
than or equal to the number of minimal prime ideals in the completion of
R. As a corollary we deduce a criterion for local domains to be analytically
irreducible and we close with a bound for the number of minimal prime
ideals in the completion of R in the non-quasi-unmixed case.

NotaTioN. Throughout, (R, M) will denote a local Noetherian ring
with maximal ideal M. We will use “—’ to denote integral closure—both
for rings and ideals. Recall that for an ideal / = R, I, the integral closure
of 1, is the set of elements x € R satisfying an equation of the form

xt+ iy xr 4 e 40, =0, el 1 k=< n

It is well-known that [ is an ideal of R contained in the radical of 1. We
will use “*” to denote the completion of a local ring. Recall that a local
ring R is quasi-unmixed in case dimR*/p* = dimR, for all minimal
primes p* = R*. Any other standard facts or terminology from local ring
theory appear here as they do in [2].

REMARK. Lemmas 1 and 2 below are more or less well-known, but we
have included their easy proofs for the sake of exposition.

LemMa 1. (c.f. [6, p. 354]): Let R be a Noetherian domain and I = R
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an ideal. Write I = (xy, ..., x;) and set S; = Rlxi/x;, ..., X4/x;]. Then
foralln 21 I"= (¢, [I"S; N Rl

PRrOOF. Let ¥ 2 R be a valuation domain. There exists an i such that
S; € V. Since I"V is principal and V is integrally closed, /*V = V.
Therefore 77S; = I"V. Since I" = (\[I"V () R], the intersection ranging
over all valuation domains ¥ 2 R [6], the result follows.

LEMMA 2. Let R be-a local ring and I = R an ideal. Then

() I* = nil rad (R).

nzl

ProoF. Clearly nil rad (R) € =, I". To show [ ,; I < nil rad (R),
observe that an element x € R belongs to /7 if and only if the image of x
in R/p belongs to (I” + p/p) for all minimal primes p = R. Consequently
we may assume that R is a domain and show 1, I” = 0. Since R is
Noetherian, a theorem of Chevally implies that there exists a DVR V
containing R with /V # V. Since Vis integrally closed and /#V is principal,
T"V = ["V. Therefore ), 1" S (o IV = 0.

PROPOSITION 3. Let (R, M) be a quasi-unmixed local domain. Let xy,

..., xg be a system of parameters, set I = (xy, ..., x;) and
X X
T=R[Z, ... ]
X1 xy MR[ZE, -, HE]
Suppose that My, ..., M, are the maximal ideals in T. Then, for all

nzl, In= Nk, (I* Ty N R).

PROOF. Let n = 1. Since I T is principal, I*T = I* T () T. Moreover,
since T is a Krull domain (in fact a Dedekind domain, since T is one-
dimensional) N, (I* Ty, N T) = I» T, as the M, are precisely the
prime divisors of /7 T. Therefore (%, (I* Ty, N T) = I* T. Thus, by Lemma
1, it suffices to show that 7" T N S; = IS, for all i = 1, ..., d, where
S, = Rlxy/x;, . .., x4/x;]. Since xy, ..., x, are analytically independent,
each x;/x; ¢ MS,. So S;ys, = T. As localization commutes with integral
closure, we will be done if we show that IS} is MS,-primary. Suppose Q
is a prime divisor of I7S;. Since R is quasi-unmixed, S is locally quasi-
unmixed (3, 2.5]. Therefore, by [4, Theorem 2.12], height Q = 1 (I*S;
is principal). Since MS; is the unique height one prime in S; containing
I"S; (this is well-known), we have Q = MS,. Thus IS, is MS;-primary
and the proposition is proved.

THEOREM 4. Let (R, M) be a quasi-unmixed local domain. Let x, . . ., x;
be a system of parameters and set
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X X
T=RI:_2,__.,_d . 41
X1 X1 R[,_lv"'aT

Let r and k respectively denote the number of maximal ideals in R and T.
Then r < number of minimal prime ideals in R* < k.

Proor. The first inequality follows from the proof of (33.10) in [2].

For the second inequality, let My, ..., M, be the maximal ideals in T
and set T; = TM‘.. Then for each i = 1, ..., k there is a natural map of
M-adic completions ¢;: R* — T¥. In fact, if we set/ = (xy, .. ., x,) then,

since [ is M-primary in R and M;T;-primary in each 7, we may view these
completions as being with respect to the J-adic topology. We will show

\%_, ker ¢; < nil rad (R*). The theorem will readily follow from this.
Indeed, it suffices to note that since each 7;* is a domain (in fact, a DVR)
each ker ¢, is prime. Of course any collection of primes whose intersection
is contained in nil rad (R*) must include the minimal primes of R*.

Now suppose x* € V£, ker p;. We may select a sequence of elements
{x,} in R such that x* — x, € /* R*. The choice of x* implies that for each
i=1,... k {x,} is a null sequence in 7, with respect to the /7;-adic
topology. Therefore, after suitably refining the sequence {x,} we may
further assume that x, € I*T; for all n and all i. By Proposition 3, x, € I*
for all n. Therefore x* = x, + x* — x,€ I"R* 4+ I"R* < I"R* for all
n. By Lemma 2, x* is nilpotent.

CoROLLARY 5. (cf. [2; Exercise 1, page 122]). Let R be a one-dimensional
local domain. Then the number of minimal prime ideals in R* is equal to the
number of maximal ideals in R.

PRrOOF. Since a one-dimensional local domain is quasi-unmixed, and
T in Theorem 4 is just R, the result follows.

The next corollary is a criterion for a local domain to be analytically
irreducible. It is an immediate consequence of Theorem 4 and the de-
finitions.

COROLLARY 6. Let R and T be as in Theorem 4. Assume further that R
is analytically unramified. If T is local, then R is analytically irreducible.

REMARK. If R is a localization of a finitely generated algebra over a
field or the integers, then R is quasi-unmixed and analytically unramified.
Hence Corollary 6 applies to most of the local rings from geometry.

Our final proposition uses Rees rings, rather than overrings to bound
the number of minimal prime ideals in R*.

PROPOSITION 7. Let (R, M) be a local domain and I = R an M-primary
ideal. Write # = R[It, t71), t an indeterminate, for the Rees ring of R
with respect to 1. Then the number of minimal prime ideals in R* is less than
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or equal to the number of prime divisors of t~1 Z. In particular, if R is an-
alytically unramified and t=1 @ is primary, then R is analytically irreducible.

PROOF. Let ;... , 2, be the prime divisors of -1 2 and set V; = &,
(since # is a Krull domain there are finitely many 2, and each V; is a
DVR). Since t-*Z ()} R = I" it follows that (%, -V, | R = I" for
all n. Let ¢;: R* —» V* be the natural map (where R* is viewed as the
I-adic completion of R and V¥ as the r~1-adic completion of ¥;). Then
just as in the proof of Theorem 4 one shows N, ker ¢; < nil rad(R¥)
and the proposition follows.

REMARK. In case R is quasi-unmixed and [ is generated by a system
of parameters, it can be shown that there is a one-to-one correspondence
between the prime divisors of +-1 % and the maximal ideals of T (for T
as in Theorem 4). Thus Theorem 4 can be recovered from Proposition 7.
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