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OPTIMAL ALGORITHMS FOR LINEAR 
PROBLEMS WITH GAUSSIAN MEASURES 

G. W. WASILKOWSKI 

ABSTRACT. We study optimal algorithms for linear problems in 
two settings: the average case and the probabilistic case settings. 
We assume that the probability measure is Gaussian. This assump
tion enables us to consider a general class of error criteria. We 
prove that in both settings adaption does not help and that a trans
lated spline algorithm is optimal. We also derive optimal informa
tion under some additional assumptions concerning the error cri
terion. 

1. Introduction. In this paper we study the optimal reduction of uncer
tainty for linear problems in two settings: the average case setting and the 
probabilistic case setting. 

By a linear problem we mean the problem of approximating Sf, where 
S is a linear operator defined on a separable Hilbert space Fly when only 
partial information Nf on / is available. This partial information causes 
uncertainty. In the average case setting the intrinsic uncertainty is meas
ured by the average size of the error of the best possible algorithm that 
uses N. In the probabilistic case setting it is measured by the probabilty 
that the error of the best possible algorithm is small. In this paper we as
sume that the probability measure on the space F\ is Gaussian and the 
difference between Sfand x, the value given by an algorithm, is measured 
by E(Sf-x), where E is an arbitrary error functional. 

The average case setting has been studied in [5, 7, 8] for a rather general 
class of probability measures, assuming however that the error functional 
is of a special case. Typically it is assumed that E(Sf—x) = \\Sf— x\\2 and 
S(Fi) is a separable Hilbert space. Here, restricting the class of probability 
measures to Gaussian measures, we relax the assumption concerning the 
problem and the form of the error functional E. We are able also to study 
the probabilistic case setting. 

The following results are obtained for both the average case and the 
probabilistic case settings : 
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1° For every error functional and for every adaptive information 7Va, 
there exists nonadaptive information of the same structure as Na with 
uncertainty not greater than the uncertainty caused by Na. Thus adaption 
does not help. 

2° For every error functional and for every nonadaptive information 
N, a translated spline algorithm is optimal. A sufficient condition for the 
spline algorithm to be optimal is given. 

3° Optimal information TV* is exhibited under some additional as
sumptions concerning the error functional E. 

We now comment on the results mentioned above. The result 1° states 
that adaptive information is not more powerful than nonadaptive informa
tion in either setting. A similar result for the average case setting has been 
established in [5, 8]. This is not merely of theoretical interest since adaptive 
information has several undesirable properties, e.g.: 

1) It has more complicated structure than nonadaptive information; 
2) It is ill-suited for parallel computation, whereas nonadaptive infor

mation can be computed very efficiently in parallel. 
Since adaptive information does not decrease the uncertainty, it may 

be replaced in practice by nonadaptive information. We want to stress 
that many commonly used algorithms use adaptive information. 

We comment on the result 2° which states that in both settings a trans
lated spline algorithm (p* is optimal. (For a similar result for the average 
case setting, see [5, 7, 8].) Since the spline algorithm is linear, the optimal 
algorithm p* is affine. Hence the cost of evaluating cp* for given y = Nf 
is proportional to the cost of evaluating y = Nf This is a desirable prop
erty from the complexity point of view. 

The result 3° gives us the best information to be used, i.e., information 
which minimizes the uncertainty in two settings. 

We now summarize the contents of the paper. In §2 we formulate the 
problem. In §3 we derive some properties of Gaussian measures. These 
properties will play a key role in the rest of this paper. In §4 we study the 
average case setting, and we prove that 1°, 2° and 3° hold for that setting. 
In §5 we study the probabilistic case setting, and we prove that 1°, 2° and 
3° hold for that setting. In §6 we prove that the spline algorithm enjoys 
one more optimality property. Namely, assuming that the error functional 
E(Sf—x) = \\Sf— x\\2, the spline algorithm minimizes the variance. 

2. Basic concepts. Our aim is to approximate the solution operator S, 

S: Fl > F 2 . 

We assume that S is linear, F\ is a separable Hilbert space and F2 is a 
linear space, both Fx and F2 over the real field. Hence we want to construct 
an element x = x(f) e F2 which approximates Sf for all fe F\9 with a 
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small error. The error between Sf and ^ i s measured by E(Sf - x\ where 

E: F2 > R+, 

is called an error functional. For example, E might be of the form E(g) 
= ||g||*if F% is normed. Here we consider a general class of error func
tional. The only assumption concerning E is that, for every g eF2 , H{ • ) 
djE(S( . )-g) is measurable, i.e., H~l(B) e B(Fi) whenever B e B(R+), 
where B^ i ) stands for the a-field of Borei sets from F\. 

To construct x = x(f) we need to know something about / We assume 
that our knowledge of fis given by NA(J). Here Na is a linear adaptive in
formation operator (for brevity adaptive information), i.e., 

(2.1) N*(f) = ((/, gi), </, g2(yi)l . . . , ( / , g „ 0 > i , . . . , JK„-I))), 

where ( *, * ) is the innerproduct in Fi, 

^1 = J>i(/) = (/, gii 

y< = >v(/) = (/, gtiyu> • • • J V I ) , / = 2, 3 , . . . , «. 

For brevity we shall write g^y) = g;(yi, . . . , JVi) e F b for every j> = 
(ji* . . •, J») e Rw. We assume that g{{ • ), as functions of y, are measur
able. Without loss of generality we assume that gi(y), . . . , gn(y) are line
arly independent for every y e Rn. By 

(2.3) card(7Va) = /i, 

we mean the cardinality of Na. Note that, in general, the /th evaluation 
(/> gi(yi> • • • > JVi)) depends on the previously computed information 
y\(f)> • • • > yt-i(f)' That's why Na is called adaptive. Ifg{ do not depend on 
J» gXjO = £*> f° r a ^ *» J7 6 Rw> trien Na is called nonadaptive. To stress 
the nonadaptive character of 7Va we often write Nnon instead of 7Va. For 
every adaptive information 7Va, by fixing yeRn and letting gt i

f g;(y)9 we 
obtain a nonadaptive information 

(2.4) Nr( •) = ( ( • , gii . . . , ( • , S*)) 

which uses the same evaluations as Na. 
Knowing Na(f) we construct an approximation x = x(f) by an algo

rithm <p, 

x = qtNV)), 
where, by an algorithm <p that uses 7Va, we mean any mapping 

(2.5) <p: N*(FX) = R» -+ F2. 

We are interested in optimal algorithms, that is algorithms with mini
mal errors. What we mean by the error of an algorithm depends on the 
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setting we are dealing with. In this paper we study two different settings : 
the average case setting and the probabilistic case setting. We begin with 
the average case setting. 

In the average case setting the error of cp is determined by the average 
behavior of the error E(Sf-<p(Naf)). More precisely, let ju be a Gaussian 
measure defined on B(Fi). Then the average error of <p is defined by 

(2.6) e-g ( m = f E(sf_ ^ a / ) ) (4n 
J Fi 

and an optimal algorithm p* that uses Na is defined by 

(2.7) ^ ( p * , Na) = r™s(N*) = inf e^(<p, N*). 
<p 

This means that in the average case setting we are interested in algorithms 
<p*, if they exist, whose average error are minimal. In §4 we find <p* for 
every nonadaptive information N, and for adaptive Na we prove that 
ravs(N*) ^ ravs(A^on) for some y*. 

We now turn to the probabilistic case setting. In this setting the good
ness of <p is measured by the probability of success, i.e., by the probability 
that the error E(Sf — <p(Naf)) of <p is small. More precisely, given e ^ 0, 
let 

(2.8) Prob(p, Na, a) = //({/e Ft: E(Sf-<p (N'f)) Û e})9 

where fi is a Gaussian measure defined on B ^ ) . Then, by an optimal 
algorithm that uses Na, we mean an algorithm p* so that 

(2.9) Prob(p *, Na, a) = prob(^a, a) = sup prob(p, Na, a). 

In §5 we find p* for every nonadaptive Nnon. For adaptive Na, we prove 
that Prob(Na, a) ^ prob(^y

n,on, a) for some y*. 
We comment on the definitions (2.6) and (2.8). In order for (2.6) and/ 

or (2.8) to be well defined, E(S( • )-<p(Na( • ))), as a function of/, should 
be measurable. It is shown in [6] that this assumption is not restrictive 
since it is possible to extend the definitions (2.6) and (2.8) for every al
gorithm and prove that, for optimal algorithms <p*, E(S( • ) - <p*(Na( • ))) 
is measurable. 

We now recall some basic properties of Gaussian measures. By a Gaus-
s an measure on B ^ ) we mean a measure JLL such that 

/^ i ^ 1 exP0'(/> *))M40 = exP0'(a> x) - \(Ax9 x)\ 
(2 .1U) J Fi ^ 

VxeFh (/= V^D, 

where A : Fi -» Fx is a self-adjoint nonnegative definite operator with finite 
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trace and a is an element of F\. (The left hand side of (2.10) is called the 
characteristic functional of ju and is denoted by <J>M(x).) Then the mean 
element m^ of ju is given by 

(2.11) mM = a 

and the correlation operator SM of ju, by 

(2.12) S ^ A 

(see [2, 3, 4]). Recall that, for an arbitrary measure ^ its mean element 
m^ is defined by 

(2.13) K , * ) = f (f,x)fi(df% VxeFl9 

and its correlation operator SM by 

(2.14) (SMg, h) = f ( / - mM, g) ( / - mM9 h)M(df\ Vg, A 6 F L 

Throughout the rest of this paper we shall assume without loss of gen
erality that the mean element m^ of /z is zero, m^ = 0, and that the cor
relation operator SM is positive definite. 

3. Conditional measure. In this section we exhibit an important property 
of the conditional measure for adaptive information. This property will 
be extensively used in the next sections. We begin with the definition of 
conditional measure (see [3]). 

For an adaptive information operator Na, let fx\( • , 7Va) be the prob
ability measure on B(RW) induced by Na, i.e., 

ßl(A, N*) = f4{N*)-HA)) = fL({fe Fx: N*(f) e A}), 

VAeB(R»). 

Let ß2( • \y> Na)> y e R», be a family of probability measures on B(F{) 
such that 

(3 2) ^ ^ N&) = ^ ^ " ^ W » ^ N&) = l> 
for almost every y e R», 

fj,2(B\ • , Na), as a function of y, is ^ ( • | JVa)-measurable, 
( 3 ' 3 ) V5 6B(F!), 

and 

(3.4) fi{B) = J R M M ^ b , tf')Mfc ^a)> v * 6 B^i)-

The family //2( • b', Na) is called the conditional measure with respect to 



732 G.W. WASILKOWSKI 

Na and y. The existence and uniqueness of ju2 follows from [3, Th. 8.1]. 
Now let G be a measurable function, G: Fx -> R+. 

Then 

(3.5) f G(/W)=f (f G(f)Mdf\y, N*))ßl(dy, N'), 
J Fi jR»\jV(Na,y) J 

where V(N\ y) = (N*)-1^}) = {fe Fx: Na(f) = y) is the set of elements 
/from Fi which share the same information, Nf = y. The essence of (3.5) 
is that we first integrate G over all /wi th fixed information value y, and 
then over all values y from Rn. 

Recall that 

NKf) = ((/, gi), </, g2(yi)l . . . , < / , gn(yi, - • •, J V L » , 
(3.6) 

tt = yAf) = (f, gi(yi, • • • > tt-i)). 
For brevity we write g{{y) = ^fOi> • • • > ^ - i ) - Without loss of generality 
we assume that 

(3.7) (SMgi(y), gj{y)) = <?,7, VjeR«. 

Let, for a fixed y = (>>1? . . . , yn) e Rw, 

(3.8) m(N\ y) = ± yjS,gj{y) 

and 

(3.9) W ' ) = è(-,*yO'))S,tfyO'). 
y=i 

Then ö>a>:y: Fx -• Fx is linear and m(Na, y) = <TNa,y(g), for every g G 
V(Na, y), and every fixed j e R » . Of course, m(Na, y(f)) and aN^y{f), 
y(f), = Na(f), need not be linear in / 

THEOREM 3.1. Let Na be an arbitrary information operator of the form 
(3.7). 

(i) Then the induced probability measure 

(3.10) JKI( - , tf') = Ä ( - ), 

where JLLI is the Gaussian measure on B(Rn) with mean element zero and 
correlation operator identity, i.e., 

(3.11) ^ ) = 7=rJ/xp(-|(x,,))^. 

(ii) The conditional measure ju2( • \y, Na) is the Gaussian measure on 
B(Fx) with mean element m(Na, y), given by (3.6), and correlation operator 

(3.12) SN*,y = (/ - (TMay)SM(l - (rfr*,y). 
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PROOF. It is shown in [8, Th. 4.2] that there exists a probability measure 
m on B(R") such that ^ ( •, Na) = ju^ • ), for every Na of the form (3.7). 
It was shown in [6, Th. 4.2 (i)] that, for every nonadaptive 7Vnon of the 
form (3.7), /^( • , A^non) is the Gaussian measure on B(RM) with mean 
element zero and correlation operator identity. Since fii( • , Na) = 
fii( -, Nnon) = pi, the proof of Theorem 3.1 (i) is completed. 

To prove (ii), let A2(- \y9 N
a) be the Gaussian measure on B ^ ) with 

mean element m(Na, y) given by (3.8) and correlation operator SN*,y given 
by (3.12). We prove that A2( • \y, Na) = ju2( • \y, Na). The measure 
H ' I y, Na) satisfies (3.2). Indeed, for G(g) tf \Na(f- m(Na, j))|2, G (J) > 0 
if and only if / £ m(Na, y) + ker(A^) = (NaYl({y}). An easy calculation 
yields thatfo G(f) hW\y, Na) = EjU (SN*,ygj(y)9 gj(y)) = 0 which implies 
that /I2O \y, Na) is concentrated on (N^'^y}) as claimed. It is easy to 
check that A2( • \y9 N

a) also satisfies (3.3). We now prove that A2( • \y, Na) 
satisfies (3.4). Due to (2.10) and the definition of A2(- \y, Na), 

§F e«f.*> h(df\y, Na) = exp(i(m(N\ y), x) - ^-(SN.tyx, x)). 

Since a%s,y(x) = SJ= 1 (x, Sßgj(y))gj(y), one can check that 

(SN*,yx, x) = (Spix-afayipc)), x-a%*,y(x)) 

= (Sßx, x) - 2jf= 1(V> ^<^))2. 

Hence 

(3.13) J *'(/'x) A2W/I* Wa) = exp(—1(V, *))#(*, ^ 

where 

H(x, y) = exp(/(m(7Va, >>), *) + ^ M V * S/OO)2). 

Due to (3.8), 

//(x, >>) = exp(2?=1(^y(5 /,x, ^y(j)) + ^ - ( S ^ , g/(j>))2) 

= n?=iexp(/jy(S^, g/^)) + i - ( V ' S/W)2) 

Recall that gj(y) = gj{yh . . . , JV-i)» and that /^ is the Gaussian measure. 
Hence 

a=\ H(x, yfyxidy) 
JR« 

+ -j-(5^, ^y(j!,..., j /_i))jexp|- i - S?=i J ^ ( j i , . . . ,y„). 
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Observe that 

- = J R exp(iyj(SMx, gj(yl9. . . , >>y-i)) + y (S>> S/CJb • • • > )V-i))) 

e x p ( ~ T ^ ) ^ = e x p V T ^ * ' g y^ 1 ' * ' " ^ - 1 ^) 

v ^ J R
exp( />v(V' s.Oi' • • • > ^y-i)))exp(- \yf)dyj 

= exp^CS^X, gy(j>l, . . . , ^;_l))j 

e x p ( - y (S>, gy(ji, . . . ,j>y_i))j = 1. 

This yields that a = 1 and 

L»L/(f,x)Udfìy'm=exp(~ ~2(SfiX'x))=^ 
where cp^ is the characteristic functional of p. Since characteristic 
functional defines measure uniquely and since conditional measure is 
determined uniquely (up to a set of /^-measure zero), fi2{ • \y, N*) = 
fai ' \y, Na), f° r y e Ra> a-e- This proves the theorem. 

Theorem 3.1 states that the induced measure /^( • , iVa) does not depend 
on iVa, it only depends on n = card(Afa). From (ii) we can easily conclude 
that, for y e R", the conditional measure JLL2( • \y, Na) is the same as the 
conditional measure for the nonadaptive information operator N*on, 

(3.14) /,2(. \y, tfa) = /.2(- \y,Nf"). 

Furthermore, JLL2( • \y, Na) is a translated measure JLI2( • |0, A^on), i.e., 

(3.15) /i2(i?|>>, ^ a ) = / i2 (Ä- i» (^ ,^ ) | 0, tf™), V 5 G B ( F X ) . 

In particular, if 7Vnon is nonadaptive, then 

(3.16) ß2(B\y, Nm) = [x2(B-m(N™, y) | 0, N™»\ V£ G B(FI) . 

We end this section by two lemmas whose proofs, because of their length, 
are presented in the Appendix. 

LEMMA 3.1. For every Gaussian measure X with mean element zero and 
for every balanced and convex set B, 

(3.17) X(B)^X(B + h), VheFx. 

LEMMA 3.2. Let X\9 X2 be two Gaussian measures on a separable Hilbert 
space with mean elements zero and correlation operators SXi and SÀ2 re-
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spectively. Let ccitt-, a2ti,. . •, (ocjti, i£ ffy+i,,-) be the eigenvalues of operators 
Sx., i = 1,2. Ifajti é ocjt2, V/ = 1,2, . . . , 

then 

W(0, e)) ̂  W(0, e)), V e ^ O , 

where /(0, e) stands for the ball with center zero and radius e. 

4. Spline algorithm and adaptive information on the average. In this sec
tion we prove that, for every error functional E and for every nonadaptive 
information, a translated spline algorithm is optimal. We also prove that, 
for every adaptive information 7Va, there exists nonadaptive information 
of the same cardinality and whose radius is not greater than the radius 
of N\ 

Let JVa and <p be given. Recall that the (global) average error of <p is 
defined by 

(4.1) ^v g ( m = f E(sf_ ^N-f))/K4f) 
J F\ 

and the (global) average radius of 7Va, by 

(4.2) rav*(Na) = inf eavf% Na). 

Hence the global average radius of Na is the minimal global average error 
made by any algorithm <p that uses Na

9 and the optimal algorithm <p* that 
uses N* is defined so that its error is minimal, i.e., 

(4.3) eav*(<p*, Na) = ra^(Na). 

We now define the concept of the local average error as studied in [6]. 
Due to (3.5) and Theorem 3.1(i), 

(4.4) e™*(<p, Na) = JRW ea^(<p, N\ y)fn(dy), 

where the local average error eavg(<p, Na, y) is given by 

(4.5) ea**(<p, N\ y) = J E{Sf- <p{y))fx2{df\y, Na). 

THEOREM 4.1. For every nonadaptive information Nnon of the form (3.7) 
the average radius is given by 

(4.6) r***(Nm)=inf f E(Sf-g)/i2(df\0,N™n). 
g<=EF2 J Fi 

Let 

(4.7) P = {g* e F2: f E{Sf- g*)M4f\0, #non) = /**(#"«)}. 
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An algorithm <p* that uses Nn0Ti is optimal if and only if 

(4.8) g(y) = (p*(y) - Sm(Nnon, y) e P, for almost every y e R*. 

PROOF. Let cp be an algorithm that uses Nnon. Consider the local error 
^vg(p, Nnon

9 y). Due to (3.16) and linearity of S, 

*"*(p, N™, y) = f E(S(f+ m(N™9 y)) - <p(y))ß2(df\0, N™) 

= f E(Sf - (pOO - Sm(N«», y)))fridf\0, N™) 
J F] 

^ inf f E(Sf - g)jLL2(dm N™) = H. 
gŒF2 J Fi 

This proves that 

To prove that r
&v^{Nnon) = H we can assume that H is finite. Then, for 

every Ö > 0, there exists g„ e F2 such that JFl E(Sf-gff)ft2(df\09 Nnon) ^ 
/ / + 5. Define ^(y) = Sm(Nnon, y) + g,. Then 

eavg(^, A'110") = f ^ v g ( ^ JVnon, ^ / i i ( ^ ) ^ # + Ô. 

Since ö is arbitrary, r
a^(Nnon) <; / / and consequently rays(Nnon) = H. 

This proves (4.6). To complete the proof observe that if H = H- oo, then 
every algorithm is optimal and P = F2. Therefore we can assume that 
H < + oo. H>*O0 = Sm(Nmn, y) + g*(.y) with f ( j ) e ? for almost 
every y, then, obviously, <p* is optimal. On the other hand, take an arbi
trary algorithm (p. Define 

Y = {y G R»: g(>>) = P(JO - Sm(7Vnon, y) t P). 

If y has a positive /^i measure, then 

+ f f W-*W)^4f |0, N^fiiWy) 
j R » \ r J F i 

> /^i(j)A*avg(^non) + fti(Rn\Y)r^(Nnon) 
= ^ a vg(7ynon\ 

Hence ^ is not optimal. This completes the proof of Theorem 4.1. 

Theorem 4.1 states that there exists an optimal algorithm if and only 
if the infinum in (4.8) is attained by some element g*. Of course g* need 
not be unique, but taking any g* satisfying (4.8), the algorithm 
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<P*( • ) = <PS( ' ) + g* 

is optimal, where 

p(N"»f) = I]?=1(/, gi)SSMgi = Sm(N™, N™f). 

The algorithm #>s, called the spline algorithm, is linear. Hence <p* is an 
affine mapping, which is a desirable property from the complexity point 
of view. On the other hand, if the infinum in (4.8) is not attained, i.e., P = 
0 , then there is no optimal algorithm. In this case, taking g* so that 
JFl E(Sf-g*)fi2(df\0, Nnon) is sufficiently close to ra^(Nnon\ say, not 
greater than raye(Nnon) + <?, the affine algorithm 

<P*( • ) = <PS( • ) + £* 

is almost optimal, since eaye((p*, Nnon) S ra^(Nnon) + ö. 
We now prove that adaption does not help on the average. Let Na be 

adaptive information of the form (3.7), and let 

H(y)= inf f E(Sf-g)Mdf\0,N™). 

Then, due to (3.15) and (4.6), 

(4.9) ra^(Na) = JRW HW/nidy) = j ^ r^N^^dy). 

Let y*, j * e R", be such that 

(4.10) ra^(N^n) ^ ra^(Na). 

Observe that such y* exists. Indeed, ray&(N™n) > ray^(Na)9 for every y 
would contradict (4.9). Hence we have proven 

THEOREM 4.2. For every adaptive information Na, there exists y* e Rn 

such that 

,.avg(#non) ^ r*vg(Na), 

We now give a sufficient condition on the error functional E so that the 
spline algorithm <ps is optimal. Technically, this means that OeP. 

THEOREM 4.3. If E is convex and symmetric (with respect to zero), then 
for every nonadaptive information Nnon the spline algorithm <p5 is optimal. 

PROOF. Although Theorem 4.3 follows immediately from [6], we present 
its proof for completeness. Take g e F2. Then, due to the symmetricity of 
M • ) = M • 10, #non) (i.e., tx2(B) = ß2(- B), V2?eB(Fi)), 

$FE(Sf-g)M2(df) - y JF ( W - * ) + E(-Sf-g))MdfX 
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Since E is symmetric and convex, 

y (E(Sf- g) + E(Sf- g)) = \ (E(Sf- g) + E(Sf + g)) à ^ (S / ) . 

Hence 

J £ ( 5 / - g)/i2(df/) ^ J E(Sf)Mdfl Vg e F2. 

This proves thatg* = 0 e P and completes the proof of Theorem 4.2. 

REMARK 4.1. Optimality of the spline algorithm on the average has been 
established in [7, 8] for orthogonally invariant measures, assuming that 
F2 is a separable Hilbert space and E(g) = \\g\\2. The same result was 
obtained in [5] assuming that Fi is a finite dimensional space and E(Sf— 
<p(Naf)) = | | 5 / - (piN'fWpdS^f)), for some function p. 

In this paper, restricting the class of probability measures to Gaussian 
measures we relax the assumptions concerning E and the spaces Fi and F2. 

We now exhibit an «-th optimal information operator N* of card (TV*) 
= A2, i.e., N*, satisfying 

r™s(N*) ̂  rav«(A^a), V#a , card(Na) = n. 

We find N* under some additional assumptions on F2, S and E. Namely, 
we assume that F2 is a separable Hilbert space, S is continuous, and 

(4.11) E(g) = H(\\g\\)9 

for some function H: R+ -• R+ which is convex and nondecreasing. Ob
serve that then E is convex and symmetric and, therefore, the spline al
gorithm is optimal for every nonadaptive information. 

To find N* we proceed as follows. Let 

(4.12) R = SS^:F2^F2. 

Since S is continuous, R is a nonnegative definite operator with finite trace. 
Let £f, Q,. . . be eigenelements of R corresponding to the eigenvalues 
Ai è h ^ • • • è 0, i.e., RQ = Iff, (C?, C7) = *,f/. Take 

(4.13) g ? = _ ^ s * C | * 9 / = i , 2 , . . . . 

REMARK 4.2. The optimal information for the average case setting 
studied in [7] is derived from the operator K defined by 

K= S]i
/2S*SS1/2:F1-> Fi. 

Observe that if TJ is an eigenvector of K corresponding to an eigenvalue 
j8, Kr) = ßq9 then, letting £ = SSjf% we get 



OPTIMAL ALGORITHMS 739 

K = SS^SSfrj = SSfKV = ßSS}PV = /3Ç. 

Hence the operators K and R have the same eigenvalues. Furthermore 
7] is an eigenvector of K if and only if SSj/2 TJ is an eigenvector of R. 

Define the nonadaptive information operator 

(4.14) N*(f) = ((/, tf),...,(/, g*)). 

Note that N* satisfies (3.7). 

THEOREM 4.4. 77*e information operator N* defined by (4.14) w nth opti
mal. 

PROOF. Due to Theorem 4.2, we need only to prove that 

for every Nmn of the form (3.7). Due to Theorems 4.1 and 4.3, 

A-avg^non) = j ^ H(\\Sf\\)^df\09 N™). 

If H is constant, and H{x) = c, then r
aw&(Nmn) = rave(JV*) = c, for every 

jynon Hence, without loss of generality, we can assume that H is not 
constant. Then H(R+) = [H(0), +oo). Indeed, convexity of / / yields 
2#(.x) S H(P) + #(*), Vx e R+. Since 7/ is nondecreasing, sup{H(x): 
x e R+} = lim^^oo H(2x) = c. Note that H(0) < c. If c < + oo, then 
2c <: 7/(0) + c < 2c which is a contradiction. Hence H(R+) = [7/(0), 
4- oo) as claimed. Define 

(4.15) r(B>N^) = M{feFi-mSf\\)eS}\Q>Xm)> Vi? e B(7/(R+)). 

Then ?( •, ÌVnon) is a probability measure on B(i/(R+)) and 

f+oo 
( 4 . 1 6 ) ravg(Arnon) = 1 , ( ^ ^ynon) 

J/f(0) 

Let £>(• , Nnon) be the distribution function for ?{-, Nnon), i.e., 

(4.17) £>(*, iVnon) = V r(dt9 #non), Vxe H(R+). 

We shall prove that 

(4.18) £>(*, #non) g D(x, N*), VJC 6 #(R+), V7Vnon. 

Before presenting the proof of (4.18), we show that (4.18) will complete 
the proof of Theorem 4.4. For this end, observe that 

t = lim ZLi titk X(aifk>ai+hM
 v> > H(0), 

k 
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for some numbers H(0) = aìk < a2ìk < • • • < aktk < ÖÄ+I,* = + °° 
and ti e (aitk, ai+lk\. Hence, for every Nnon, 

^vg^non) = l i m 2*=1 tik r((aïfk, ai+lfk], iV1™) 
k 

= lim £*=1 *,-,*(ü(aI+M, #"<>•>) - D(aiik, N™)) 
k 

= Hm(HOC*.* - */+i.*)J>(a,+M, #*") + tKk), 
k 

since Z>(ai>Ä, Nnon) = 0 and D(ak+hki Nnon) = £>(+ oo, Nnon) = 1. Hence, 

r a v g ( ^ n o n ) _ ^ a v g ^ * ) = H m ^ ( f - f , + M ) ( Z ) ( < I , + l . » ^ n o n ) - Z ) ( f l , + U , # * ) ) 

and *,- - r,-+i < 0 imply that 

ravg(^ynon) _ ravg(^y*) ^ Q 

Hence to complete the proof of Theorem 4.4 it is enough to show that 
(4.18) holds. Observe that 

D(x, N«") = Mif- mSfW) ^ x) 10, N"») 
(4.19) 

= Mif-WSfW £H-i(x)}\0,N«»). 

Define 

X(B, N™) = M2({fe Fx : Sfe B} | 0, N™\ VB e B(F2). 

Then X( •, Nnon) is a probability measure on B(F2) and, due to (4.19), 

(4.20) D(x, Nnon) = A(/(0, z), JV~non), 

where now z = H~l(x) and /(0, z) is the ball in F2 with center zero and 
radius z. We need the following two lemmas. 

LEMMA 4.1. For every Nnon, A(-, 7Vnon) is the Gaussian measure with mean 
element zero and correlation operator 

Rtfucm = S (J — (Tenori) Sp(I — (T* //non) ( S * . 

PROOF: Observe that, for the characteristic functional 0#non of /l(-, 
7Vnon), we have 

fa~(h) = f exrfifc, h))X(dg, N™). 

Change variables by setting/ = Sg. Then 



OPTIMAL ALGORITHMS 741 

<h-Ay) = f expOl/; s * h))Mdf\ o, N«») 

= exp( - •]-((/ - ^„o„)^(/ - CT;U)S*A, S*A)) 

= expf - y (RNn0nh, h)\ Vh e F2-

This completes the proof of Lemma 4.1. 

Let fi, 72,. . . (7-,- ^ ^,+1 è 0) be the eigenvalues of RNnoa. It is easy 
to check that, for N*, Xn+i, A„+2,. . . are the dominating eigenavlues of 
RN*. 

LEMMA 4.2. 

(4.21) Xn+k èn, V* = 1, 2, . . . . 

PROOF (see also [9]). For k = 1, (4.21) holds trivially. Suppose therefore 
that (4.21) holds for every k S k0. We prove that (4.21) also holds for 
k = k0 + 1. 

For this end, let 9 ,̂ 7]2, . . . , 7jk be eigenelements of KNn0n corresponding 
to ri, r*..., Tk- Take g = 2»+* x£f € F2 such that 

(4.22) | |gp = £?i i**?= 1, 

(4.23) *&™(S*g) = 0, 

and 

(4.24) (g, 77,) = 0 , / = 1,2, ...,*<> = * - 1. 

Since (4.23) and (4.24) are equivalent to a homogeneous system of n 4-
A: — 1 linear equations with n + /c unknowns, such g exists. Furthermore, 
(4.22) and (4.24) yield that fk ^ (/fono» g, g). Hence, due to (4.23), we get 

Tk è (^nong, g) = (*g, g) = S O ? A;X? è Aw+, Lî^X? 

which completes the proof of Lemma 4.2. 

We are ready to complete the proof of Theorem 4.4. Due to Lemmas 
4.1, 4.2 and 3.2, 

A(/(0, z), N*) ^ A(/(0, z), iVnon), VWnon, Vz e R+. 

Hence (4.20) yields that 

D(x, N*) ^ D(x, Nnon), VNm, V* e R+. 

This completes the proof of (4.18) as well as the proof of Theorem 4.4. 
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5. Spline algorithm and adaptive information in the probabilistic setting. 
In this section we prove that, for every error functional E and for every 
nonadaptive information N, the probability of the fact that the error does 
not exceed a, is maximized by a translated spline algorithm. We also prove 
that adaption does not help in this setting. 

Recall that, for given a ^ 0, Na and <p, 

(5.1) Prob(p, N\ a) = ^ ({ /e Fx: E(Sf - <p(N*f)) ^ a}) 

is the probability of the fact that the error E(Sf— <p(Naf)) made by <p is 
not greater than a and 

(5.2) Prob(Na, a) = sup Prob(^, A'a, a). 

Then Prob (Na, a) is the maximal probability among all algorithms that 
use Na, and the optimal algorithm cp* that uses Na is defined so that 

(53) Prob(p*, Na, a) = Prob(JVa, a). 

THEOREM 5.1. For every nonadaptive information Nnon of the form (3.7). 

(5.4) Prob(A^<\ a) = sup ^ ( { / e Fx: E(Sf-g) ^ a} |0, N™). 

Let 

P= {g* e F2 : /i2({/6 Fx : E(Sf - g*) S s} |0, N™) 

= Prob(7Vnon, a)}. 

An algorithm <p* that uses Nnon is optimal if and only if 

(5.6) g(y) = <p*(y) - Sm(N™, y) e P, 

for almost every y e Rn. 

PROOF. The proof of this theorem differs from the proof of Theorem 4.1 
only at the beginning. Observe that for every algorithm <p that uses A"11011 

we have, due to (3.16) and linearity of 5, 

Prob(p, N™, a) = f fj^ife Fx: E(Sf- <p(y)) ^ a}\y, N™) fx^dy) 

= f Mife Fi • E(Sf - (<P(y) - Sm(N™, y))) 

J R" 

S e}\09N
m)/n(dy) 

^ sup ß2({fe Fx: E(Sf - g) ^ a} |0, N™). 
g^F2 

Hence, using the same reasoning as in the proof of Theorem 4.1, one can 
easily complete the proof of Theorem 5.1. Therefore we skip this part. 

Let Na be adaptive. Similar to (4.10), let y*, y* e Rw, be such that 
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(5.7) Prob(JVa, e) = f Prob(A^;on, e^dy) S Prob(A^n, e). 

Of course, such y* exists. 

THEOREM 5.2. For every adaptive information Na there exists y* e Rn 

such that 

Prob(A^n, e) è Prob(JVa, è). 

As in §4 we give a sufficient condition on E for the spline algorithm to be 
optimal, i.e., g* = 0 e P. 

THEOREM 5.3. If E is convex and symmetric (with respect to zero) and 
if F2 = S(Fi), then, for every nonadaptive information Nmn, the spline 
algorithm <ps is optimal. 

PROOF. TO prove this theorem it is enough to show that 

(5.8) ^2({/6 Fx:E(Sf) è e}) ^ fi2{{fe Fx: E(Sf- g) ^ e}), Vg e F2, 

where ju2( • ) = /u2( • 10, Nnon). Let 

B(g) = {feF1:E(Sf-g)Se} 

and 

5 = 5(0) = { / e F i : ^ / ) è e}. 

Since F2 = S(F{), there exists an element he Fi such that Sh = g. Observe 
that 

B(g) <=£ + /*. 

Indeed, fo r /e£(g) , l e t / = / - h. Since E(Sf) = E(S(f - h)) = E(Sf-
g) ^ e. Thus fe B a n d / = /-{-/*e2? + Aas claimed. This means that 

fx2({feFx: E(Sf-g) ^ e}) = fi2{B(g)) ^ ju2(B + h). 

Hence, to prove (5.8), we need only to show that 

(5.9) fi2(B) ^ ju2(B + h), VheFx. 

Observe that B is convex and balanced. Indeed, if fl9 f2 e B, then 
Wi + (1 - O/2) è tE(f) + (1 - t)E(f2) H e, i.e., tf + (1 - r ) / 2 e^ , 
and if fe B, then E{ — f) = E(f) <; s, i.e., —/e Ä Since JLL2 is a Gaussian 
measure with mean element zero, Lemma 3.1 completes the proof of 
Theorem 5.3. 

The next theorem is about n-th optimal information TV*. The informa
tion N* of cardinality n is optimal if and only if 

Prob(iV*, e) ^ Prob(jVa, e), VWa, card(JVa) = n. 



744 G.W. WASILKOWSKI 

THEOREM 5.4. Let E be of the form (4.11) and let S be continuous. Then 
the information N* defined by (4.14) is n-th optimal for every e è 0. 

PROOF. This theorem follows immediately from (4.18). Indeed, due to 
Theorem 5.2, we need only to consider nonadaptive information 7Vnon. 
But then, for every TVnon and every e ^ 0, 

Prob(AT™\ e) = MifeFi' H(\\Sf\\) è s}) = D(H^{e\ N™). 

Hence, (4.18) implies that 

Prob(iV*, e) ^ Prob(7Vnon, e\ VjVnon, Ve ^ 0, 

which completes the proof. 

We end this section with the following problem. For a given set A e 
B(R») let 

Prob(^, N\ e, A) = ^({/e Fx: E(Sf- <p(N*f)) 

^ e A NafeA}). 

W e wan t t o find <p* such t h a t 

Prob(iVa , e, A) = sup Prob(^), N\ e, A) 
(5.11) <p 

= Prob(^)*, N\ e, A). 

Observe that Prob(#>, N\ e, A) is the probability that E(Sf - <p(Naf)) ^ 
e under the condition that Na(f) e A. Of course, for A = Rn, Prob(^>, Na, 
e, A) = Prob(p, JVa, e). 

For every adaptive information 7Va, 

Prob(^), 7Va, e, /f) = J ^ 2 ( { / e i v £ ( 5 / - ^ ) ) ^ e} \y, N-f)^(dy) 

è f sup M2({fe F± : £ (S / - g) è e} 10, Nf-)Ul(dy) 
J A g<=F2 

= f Prob(A^ o n , e)fti(dy). 
J A 

From this we can conclude 

THEOREM 5.5. 

(i) For every adaptive information Na there exists y* e Rn such that 

Prob(7Va, e, A) ^ Prob(A^n, e, A\ V£, V e ^ 0, V/l G B(R"). 

(ii) /br ^very nonadaptive information Nnon 

Prob(7Vnon, e, A) = Prob(7Vnon, é)fXi{À\ V £ , Ve ^ 0 V.4 e B(R") . 

In particular, <p* is optimal independently of A. 
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(iii) If F2 = S(Fi) and E is convex and symmetric (with respect to zero), 
then the spline algorithm <ps is optimal, for every Nnon, every e è 0 and 
every A e B(R"). 

(iv) If F2 is a separable Hilbert space, S is continuous and E is of the 
form (4.11), then N* defined by (4.14) is optimal for every e ̂  0 and every 
A e B(R"). 

Theorem 5.5 states that the probability of a small error does not de
pend on the value Nnonf of information. This result will be used in a future 
paper for studying optimal stopping criteria. 

5. Variance of spline algorithm. In previous sections we showed when 
the spline algorithm <ps is optimal. Here we exhibit another optimality 
property of <ps showing that it minimizes the variance whenever F2 is a 
Hilbert space and E(g) — ||g||2. 

Let 7Vnon be a nonadaptive information and let ç> be an algorithm that 
uses Nnon. By the variance of <p we mean 

(6.1) var(p) = f (\\Sf-<p(N™f)\\2 - *"*(p, N™))*[i(df), 
J Fi 

where 

^ , ^ ) = [ \\Sf-<p(N™fWju(df). 

THEOREM 6.1. 

(6.2) var(<p5) = inf var(p). 
9 

PROOF. Let <p be an algorithm. Define h = <p - cps, i.e., <p(Nnonf) = 
<ps(Nno»f) * h(Nnonf). Then, due to (3.18), 

var(0 = J^J (IIV-p'W - h(yW 

- e^((p, Nnon))2 fx2(df\y, N^^dy) 

JRnJ Fi 

where [i2( • ) = fi2( • |0, AT«»). Observe that \\Sf - h(y)\\2 = \\Sf\\2 - 2(f, 
S*h(y)) + ||AO)||2. Since mean element of fi2

 ls zero, $Fi(f, S*h{y)) p.z(df) = 
0, and 

eavg ( ^„on) = f f (||S/||2 - 2(f, S*h(y)) 

+ \\Ky)\\2)M<tf)Mdy) 
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= f f (»s/n* + WymM4f)Mi(dy) 
J R» J Fi 

Hence 

var(p) = j R j ^ (\\Sf\\* - *"»(?», JV"°n) - 2(/, S**O0) + ||/*0>)||2 

J R» 

Change the variables by letting/ = —f. Then 

var(p) = y JRn j F ((P/H2 - «"H^, Nm) - 2(/, S*A(j)) + \\h(yW 

- f IIMz)!!2//! (rfz))2 + (HS/U2 - e»*(qf, N™) 
J R» 

+ 2(f, s*h(y)) + \\h(yW - jlKzWMdz^^MäDMdy) 

à f f (IIS/U2 - e"s{<p\ N™) + \\h(yW 
J R« J Fi 

- f \\KzWtnmy*M<if)Mi<A>), 
J Rn 

since 1/2((Û + b)2 + (a - b)2) è a2. Hence 

(6.3) var(p) ^ var(^) + 2Hl + i/2, 

where 
Hl = JRX/11 W " ̂ ^ ̂ n0n)) myW 

- f P(Z)||2^(^))2^2(^)^(^) 
J R" 

and 

# 2 = f f (l|AO0ll2-f \\Kz)\\2Mdz))2M4f)Mäyy 
jRnJ Fi J R» 'Fi 

Of course, H2 ^ 0 and therefore 

(6.4) var(p) ^ var(^) + 2HX. 

We now prove that //x = 0. Indeed, 

#1 = f ((ll̂ (>')ll2 - f l|AW||2^(£fe))2 . 
JR« JR» 

f (WSfP - e^(p, N^))ft2(df))ßl(dy)9 
J F\ 
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and since ea^(<ps, Nnon) = JFl || Sf\\2 ju2(df) (see Theorem 4.3 and (4.8)), 
Hi = 0 as claimed. Hence 

var(p) ^ var(p5), V >̂, 

which completes the proof. 

We want to stress that the minimal variance of the spline algorithm 
strongly depends on the form of E, i.e., E(g) = ||g||2. For arbitrary E 
(even convex and symmetric) the spline alogirthm need not minimize 
the variance. 

7. Appendix. We prove Lemmas 3.1 and 3.2. Since these lemmas are 
well known for finite dimensional spaces, the proofs are mainly to show 
that the infinite dimensional case can be reduced to a finite dimensional 
one. 

PROOF OF LEMMA 3.1. We prove that (3.17) can be reduced to a problem 
with a finite dimensional Gaussian measure. Then Anderson's inequality 
will complete the proof. 

Let £1? £2» • • • be eigenvalues of the covariance operator S^ Sx C = 
a& and (£,, £y) = 3,-y. Let X = ker Sx and let X1- be the orthogonal 
complement of X, F\ = X1- © X. Then, for every/e F\,f = fx + f2, where 
fxe X and f2 e Ar±, and, for every C e B(Fi), 

(A.1) X(C) = A^(C fi X±), 

where Ax is the Gaussian measure on B(Ar±) with mean element zero and 
covariance operator SÀ± = Sxlx1 ( see [4]). Observe that 2? H ^ is convex 
and balanced and that (B + A) f] XL a (B Ç] X1^) + h2(h = hx + h2, 
hxeX and h2eXL). Hence, due to (A.l), 

À(B) = ÀHB fi XL) and X{B + A) = *-»•((£ + A) fi ^ ^ Ax(0B fl ^ x ) + A2). 

This means that to prove (3.17) we can assume without loss of generality 
that X1- = Fi and Sx = Sx±9 i.e., that all eigenvalues of Sx are positive 

For k = 1, 2, . . ., define Pk: Fx -> R \ 

< A - 2 ) w-((^^r>-^^)} 
Observe that, for every set C e B(Fi), P^\Pk(C)) => ̂ ( / W C ) ) and 
n?=ii>r1(i'*(C)) = C. Hence 

(A.3) MC) = lim KPïKPtC))), VC6B(Fj). 

Let A* be the probability measure on B(BÄ) induced by Fk, i.e., 

Xk(A) = X(Pj\A)\ V^6B(R*). 
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Then (A. 3) can be rewritten as 

(A.4) A(C) = lim UPkiQ). 
k 

Since, for every k = 1 ,2 , . . . , the operator Pk is of the form (3.7) then, 
due to (3.10), Xk is the Gaussian measure on B(R*) with mean element 
zero and correlation operator identity. Observe also, that Pk(B) is convex 
and balanced and that Pk(B + h) = Pk{B) + Pk(h). Hence Anderson's 
inequality [1] yields that 

(A.5) UPk(B)) ^ UPk(B + h)\ Vk = 1, 2, . . . . 

This and (A.4) imply that 

1{B) g; l(B + h) 

which completes the proof of Lemma 3.1. 

PROOF OF LEMMA 3.2. Let ajti be the eigenvalues of SXi (i = 1, 2), and 

(A.6) aJtl ^ a/,2, V/ = 1, 2, 

As in the proof of Lemma 3.1, we can assume that o/fl- > 0. Then 

(A.7) a,(/(0, e)) = lim Aitk9 i = 1, 2, 
k 

where 

and 

Since ayfi ^ a/,2, Vy = 1, 2, . . ., theni^,* cz 2?1>Ä which implies that Aljk 

^ /42,Ä, k — 1, 2, . . . . This and (A.7) complete the proof of Lemma 3.2. 
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