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SUMMING SUBSEQUENCES OF RANDOM VARIABLES 

MARK SCHWARTZ 

ABSTRACT. Given an increasing sequence N of positive integers 
and k ^ 1, call any one to one correspondence z : N -» N* an 
ordering (or numbering) of N onto N*. Let (X„) be a sequence of 
random variables satisfying sup„E \X„\ (log+ \Xn\)

k~x < oo. Then 
there exists a subsequence N0 = (/») such that, for any further sub­
sequence Nx — (iJn) and any ordering r satisfying | r(ijn) | ^ /„ for 
all « ^ 1, we have (Jr-i(s)) converges Cesàro a.s. for s e N*. 

1. Introduction and notation. The theorem of Komlós [2] is a generalized 
strong law of large numbers. If (Xn) is an Li-bounded sequence of random 
variables, then there exists a subsequence such that every further sub­
sequence converges Cesàro a.s., to the same limit. In this paper, the follow­
ing Komlós-type property is considered. Given a sequence (Xn) satisfying 
a certain moment condition, there exists a subsequence (X%) such that any 
ordering, to a degree, of any subsequence of (X%) into N* converges Cesàro 
a.s. The limit is independent of the particular subsequence of (X%), and 
of the ordering. As a corollary (taking k — 1), to a large degree, per­
mutations of the Komlós subsequences converge Cesàro a.s. 

This latter result cannot be obtained from Komlos's proof, which uses 
martingale difference sequences. The method used here is patterned after 
Etemadi's [1] proof of the strong law of large numbers for pairwise in­
dependent, identically distributed random variables. Despite the fact that 
we begin with a sequence (Xn) rather than an array, the moment condition 
must be stronger than Li-bounded to obtain the result; we suppose 
supflEIA^Klog+IZJ)*""1 < oo. This condition is not always necessary, but 
Smythe [4] has shown that if E|A"„|(log+|A"w|)Ä_1 = oo, then the strong law 
of large numbers fails to hold for a ^-dimensional array of i.i.d. random 
variables. Consequently, a multiparameter Komlós-type theorem cannot 
hold in general if (Xn) is only L rbounded. 

In the following, let (Xn) be a sequence of random variables on a prob­
ability space (Q,^,P). For k ^ 1, we consider Nk with the coordinate-
wise partial ordering ^ . For s = Oi, . . . , sk) e N*, denote |^| = sx • ... 
• sk. If j ^ 1, let dj = card{s e Nk: \s\ = y'}, the number of ways of writing 
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j as a product of k positive integers. Let N be an increasing sequence of 
positive integers ; any one to one correspondence z : N -> N* will be called 
an ordering (or numbering) of N onto N*. Given such an ordering z, 
denote Xs = Xt-i{s) for ^eN*. For a random variable X, let Fa(X) = 
X • I\x\^a De truncation at the value a ^ 0. Finally, constants appear 
in the arguments, e.g., c, AT,which are basically unimportant and may 
differ at each appearance. 

2. The Results. We begin with some preliminary results, similar to those 
in [2, 3]. 

LEMMA 1. Let (Xn) be a sequence of random variables. Then there exists a 
subsequence N0 = (in) and a sequence of nonnegative scalars {Mj) such 
that, for any further subsequence Ni = (z'y ) and ordering z: Ni -> N* 
satisfying \z{ijr)\ ^ j n , n ^ 1, we have 

(1) - ^ - = f |*Ä |<ö>£M y + -^, seN*,l£j£\s\2. 

PROOF. For each j ^ 1, there exists a subsequence Ij c /y_1 (taking 
70 = N) and a scalar Mj ^ 0 such that, for all n e /y, 

- ^ > - = f |XJ^^My+i. 
^ J y-i<iA:Mi^/ y 

Let /„ be the nth element of In2, and denote N0 = (/„). With this con­
struction it is easy to see that (1) holds. 

LEMMA 2. Let (Xn) be a sequence of random variables. Then there exists 
a subsequence N0 = (/"„) and a sequence of {bounded) random variables 
(j8y) such that, for any further subsequence N\ = (iJn) and ordering z : Ni -* 
N* satisfying \z(ijr)\ ^ j„9n ^ 1, we have 

(2) \E(Fj(Xs)ßj - ßj)\ £ 1, J 6 N * , U ^ k|, 

(3) |E(F,(*r) - ft) {Fq{Xs) - ßq)[£ 1/2", for 

\ UP è kl, 1 ^ tf ^ k|, 1 ^ k| g k|, r ^ seNK 

PROOF. For each ; ^ 1, {Fj{Xn)) is uniformly integrable. So there 
exists a subsequence {Xjn) of (Zy_1)W) and a random variable ßj, \ßj\ ^ j 
a.s., such that Fj{Xjn) ->"/3y weakly in Z4. By diagonalizing, we can sup­
pose that Fj(Xn) -* j3y weakly in Z^ for each y ^ 1. 

For y ' = l , there exists a subsequence Ix c= N such that, for all « e Il9 

lE^iC^rjjSi - j8?)| ^ 1. Let/! be the first element of Iv 

For 7 > 1, suppose /y a Ij_x is a subsequence from which an index /y 

has been chosen. We wish to determine iy+1. 
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Since Fj+i(Xn) - ßj+i -» 0 weakly in Lx, there exists a subsequence 
/y+1 c Ij such that, for all n e IJ+h 

\E(Fj+l(Xn)ßJ+1 - ßj+l)\ S 1, 

\E(Fp(Xim) - ßp) (Fg(Xn) - &)| g l/2^i, 

/or 1 ^ p ^ /w ^ /, 1 ^ <7 ^ / + 1. 

Choose //+1 to be the / 4- 1st element of /y+1. The subsequence N0 = (in) 
is now completely determined and (2), (3) can be verified. 

Lemmas 1 and 2, which apply to any sequence (Xn) whatsoever, provide 
estimates used in establishing the following results. 

LEMMA 3. Suppose supwE|ArJ(log+|A'M|)*-1 < oo. Then there exists a 
subsequence NQ = (/„) such that for any further subsequence Ni = (iJn) 
and ordering z: Ni -> N* satisfying \z(ijn)\ ^ y'n, « ^ 1, we have 

(5) S P(\X,\ > \s\) < oo. 
SEN* 

PROOF. We take NQ to be the subsequence given by Lemma I. Let Ni 
be a further subsequence and z an ordering, \z{ijt)\ S jn> « ^ 1. From (1) 
and the hypothesis on (Xn), we get 2y^i(log j)k~l Mj < oo. Using this and 
the fact that £&=i dt- ^ eulogy*)*"1, we can obtain (4) and (5). 

LEMMA 4. Suppose supw EI^Klog+IXJ)*-1 < oo. Then there exists a 
subsequence NQ = (/„) and a sequence of (bounded) random variables 
(ßn) such that, for any further subsequence Ni = (iJn) and ordering z: 
Ni -» N*, \z(ijn)\ ^ jn,n ^ 1, we have 

(7) £ |E(Z,Z,)| < oo, 

(8) there exists X e Li such that ßn -* X a.s. (and in L{), 

where Zs = FÌSÌ(XS) - ßlsh s e N*. 

PROOF. Relations (6) and (7) may be readily shown using the previous 
estimates. For (8), we suppose, without loss of generality, that Fj(Xn) -» 
ßj weakly in Lx for each y ^ 1. From (1) 

2 E|/3y - jSy-J ^ g ^E\Fj(Xn) - Fy-xUJI 

^UMj + p) < 00. 



118 M. SCHWARTZ 

Thus, ßj -• A" a.s. (and in L{) for s o m e l e Lv 

The limit in (8) (= the Cesàro limit in Theorem 5, following) can be 
identified as follows. 

For k > 1, the hypothesis sup„E|X„|(log+|Z„|)Ä~1 < oo implies that 
(Xn) is uniformly integrable. So there exists a subsequence converging 
weakly in Lx to a random variable X. By starting with this subsequence, 
it is easy to show lim^co ßn = J a . s . (and in L{). In this case, X is the 
only possible limit in (8) and Theorem 5. Conversely, given the limit X 
in (8), there exists a subsequence (XJn) such that Xjn -> X weakly in Lx 

(assuming k > 1). 
If k = 1, a well-known "subsequence splitting" lemma asserts that there 

exists a subsequence (XJn) which is equivalent (in the sense of Khintchin) 
to a sequence (Yn) which converges weakly in Lx. By starting with (XJn), 
X may be identified as the weak limit of (Yn). Conversely, as above, if X 
is given in (8), then there exists a subsequence of (Xn) which is equivalent 
to a sequence covering weakly in Lx to X. 

THEOREM 5. 7/'supwE|A'J(log+|A'w|)*-1 < oo, then there exists a subse­
quence N0 = (in) and X e Lx such that for each further subsequence JVj = 
(ijn) and ordering z: Ni -* N* satisfying \T(ijn)\ è jn>

n = 1> we nave 

5 \s\ TEs 

PROOF. Without loss of generality, we can assume Xn ^ 0, n ^ 1. We 
take N0 and (ßj) to satisfy (5)-(8); let N1 be a subsequence and z an ap­
propriate ordering. Define Su = T,r^uXr9 S* = £r^« Fir\(Xr)

 a n d Tu = 
Hr^ußiri- For oc > 1 and s = (sh . . . , sk) e N*, denote m(s) = ([a31],. . . , 
[aSk]) e N* and let s > 0. Now, from (6) and (7), 

£/>(|s*u) - rm(5)| > M*)U) 

- CÇ K Ï ) F E ( S S ( 5 ) " Jm(5))2 

* * ? w «a E(Z?)+c ? lisfep s IE(ZÄ)I 

Hence, l/#n(5)(S*(5) - Tm(s)) -> 0 a.s. By (5) and (8), l/m(s)Sm(s) -
a.s., for some A" e Lx. By monotonicity of the partial sums, 

l x Jim_ S^ m S ^ a* JTa.s. 

Since this holds for all a > 1, we conclude 
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-£?--> A'a.s. 

REMARK. For k > 1, (Xn) is uniformly integrable; so we have Lx con­
vergence as well. 

By applying the theorem to the one-dimensional case, we get a corollary 
showing that the subsequences in the Komlós theorem can be permuted 
to a large degree. 

COROLLARY 6. Suppose sup„E|Xw| < oo. Then there exists a subse­
quence (Xt-n) and X e Li such that for any further subsequence (Xt-. ) and 
any permutation %\ N -> N satisfying %(n) ^ jn,n ^ 1, we have 

l i m i 2 ^ = A-a.s., 

n n
 m=i 

where 

^ = ^ , m § ; I. 

The degree of permutation is governed by the sparsity of the subse­
quence (X{. ) in (Xif) the thinner the subsequence, the more freedom to 
permute. This result does not follow from Komlós' proof in [2], nor from 
the maximal inequality in [3]. In these, (Xin) is constructed in a way so that 
Xin is nearly independent of the "past." Permutations cause the need to be 
independent of the "future" as well, and this is where the breakdown 
occurs. The success of the Etemadi-type approach appears to be in re­
placing "nearly independent" with "nearly pairwise uncorrected." 
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