ARITHMETIC PROGRESSIONS IN LACUNARY SETS

T.C. BROWN AND A.R. FREEDMAN

Abstract

We make some observations concerning the conjecture of Erdös that if the sum of the reciprocals of a set A of positive integers diverges, then A contains arbitrarily long arithmetic progressions. We show, for example, that one can assume without loss of generality that A is lacunary. We also show that several special cases of the conjecture are true.

1. Introduction. The now famous theorem of Szemerédi [7] is often stated:
(a) If the density of a set A of natural numbers is positive, then A contains arbitrarily long arithmetic progressions.

Let us call a set A of natural numbers k-good if A contains a k term arithmetic progression. Call A ω-good if A is k-good for all $k \geq 1$. We define four density functions as follows: For a set A and natural numbers m, n, let $A[m, n]$ be the cardinality of the set $A \bigcap\{m, m+1, m+2, \ldots, n\}$. Then define

$$
\begin{aligned}
& \underline{\delta}(A)=\lim _{n} \inf \frac{A[1, n]}{n} \\
& \bar{\delta}(A)=\lim _{n} \sup \frac{A[1, n]}{n} \\
& \underline{u}(A)=\lim _{n} \min _{m \geq 0} \frac{A[m+1, m+n]}{n} \text { and } \\
& \bar{u}(A)=\lim _{n} \max _{m \geq 0} \frac{A[m+1, m+n]}{n}
\end{aligned}
$$

It can be seen that the limits in the definitions of \underline{u} and \bar{u} always exist. These four "asymptotic" set functions are called the lower and upper "ordinary" and the lower and upper "uniform" density of the set A respectively. They are related by

$$
\underline{u}(A) \leq \underline{\delta}(A) \leq \bar{\delta}(A) \leq \bar{u}(A)
$$

[^0]for any set A.
Szemerédi actually proved:
(b) If $\bar{u}(A)>0$, then A is ω-good. Hence we also have
(c) If $\bar{\delta}(A)>0$, then A is ω-good.

In fact, Szemerédi proved the following "finite" result (which we state in a general form to be used later):
(d) Let $\varepsilon>0$ and $k \in N=\{1,2,3, \ldots\}$. Then there exists an $n_{0} \in N$ such that if P is any arithmetic progression of length $|P| \geq n_{0}$ and $A \subseteq P$ with $|A| \geq \varepsilon|P|$, then A is k-good.

It is not hard to prove (without assuming the truth of any of the statements) that (b), (c) and (d) are equivalent.
Erdös [1] has conjectured that the following stronger statement holds:
(e) If $A \subseteq N$ and $\sum_{A} \frac{1}{a}=\infty$, then A is ω-good.

By $\sum_{A}(1 / a)$ we mean of course $\sum_{a \in A}(1 / a)$. The proof (or disproof) of (e) is, at present, out of sight. In fact, it has not even been proved that $\sum_{A}(1 / a)=\infty$ implies that A is 3 -good (compare Roth $\left.[\mathbf{6}]\right)$. That (e) $\Rightarrow>$ (c) can be seen as follows: If $\bar{\delta}(A)=\varepsilon>0$, then there exists a sequence of natural numbers $0=n_{0}<n_{1}<n_{2}<\ldots$, such that, for each i,

$$
\frac{A\left[1, n_{i}\right]}{n_{i}}>\frac{\varepsilon}{2} \text { and } \frac{n_{i-1}}{n_{i}}<\frac{\varepsilon}{4} .
$$

Then

$$
\begin{aligned}
\sum_{A} \frac{1}{a} & \geq \sum_{\substack{a \in A \\
a \leq n_{k}}} \frac{1}{a} \geq \sum_{i=1}^{k} \frac{A\left[n_{i-1}+1, n_{i}\right]}{n_{i}} \geq \sum_{i=1}^{k} \frac{A\left[1, n_{i}\right]-n_{i-1}}{n_{i}} \\
& \geq k\left(\frac{\varepsilon}{2}-\frac{\varepsilon}{4}\right)=\frac{k \varepsilon}{4} \rightarrow \infty(k \rightarrow \infty)
\end{aligned}
$$

and so $\sum_{A}(1 / a)=\infty$. Assuming (e), it follows that A is ω-good.
Hence Erdös' conjecture is indeed stronger than Szemerédi's theorem. Note also that Erdös' conjecture, if true, would immediately answer in the affirmative the long-standing question of whether or not the primes are ω-good.

In the next section we make some observations regarding this conjecture, and we show that several special cases of the conjecture are true.
Other observations can be found in Gerver [3,4] and Wagstaff [8].

2. Main results.

(2.1). First we consider the "finite form" of Erdös' conjecture.

THEOREM 1. Fix k, and assume that for all sets $A \subseteq N$, if $\sum_{A}(1 / a)=\infty$ then A is k-good. Under this assumption, there exists T such that if $\sum_{A}(1 / a)>T$, then A is k-good.
(Gerver [3] has this result under the stronger hypothesis that if $\sum_{A}(1 / a)=\infty$ then A is $(k+1)$-good.)

Proof. We may assume $k \geq 3$. Suppose the theorem is false. We will construct a set A such that $\sum_{A}(1 / a)=\infty$ and A is not k-good. Choose a finite set A_{0} such that A_{0} is not k-good and $\sum_{A}(1 / a)>1$. Let p_{1} be prime, $p_{1}>2 \max A_{0}$, and choose a finite subset A_{1} of $\left\{t p_{1} \mid t \geq 1\right\}$ such that A_{1} is not k-good and $\sum_{A_{1}}(1 / a)>1$. Let p_{2} be prime, $p_{2}>2 \max A_{1}$, and choose a finite subset A_{2} of $\left\{t p_{2} \mid t \geq 1\right\}$ such that A_{2} is not k-good and $\sum_{A_{2}}(1 / a)>1$. Continuing in this way, we obtain finite sets A_{0}, A_{1}, \ldots such that for each $i \geq 0, A_{1}$ is not k-good, $\min A_{i+1} \geq p_{i+1}>2 \max A_{i}$, each element of A_{i+1} is a multiple of p_{i+1}, and $\sum_{A_{i}}(1 / a)>1$.

Let $A=\bigcup^{A_{i}} A_{i}$. It is clear that $\sum_{A}(1 / a)=\infty$. To show that A is not k-good, it suffices to show that every 3 -term arithmetic progression contained in A must be contained in a single set A_{i}.
To this end, suppose that $x<y<z$, with $x, y, z \in A$ and $z-y=y-x$. Let $y \in A_{i}$. Then $z \in A_{i}$ also, since otherwise $z-y \geq$ $\min A_{i+1}-\max A_{i}>\max A_{i}>y-x$. Thus $y, z \in A_{i} \subset\left\{t p_{i} \mid t \geq 1\right\}$. Hence x is divisible by p_{i}, so $x \geq p_{i}>\max A_{i-1}$, and $x \in A_{i}$. This finishes the proof of Theorem 1.

COROLLARY 1. The following statement is equivalent to statement (e):
(f) For each $k \in N$, there exists $T \in N$ such that if $\sum_{A}(1 / a)>T$, then A is k-good.

We state next a lemma which will be useful later.
LEMmA 1. Let F_{1}, F_{2}, \ldots be a sequence of finite subsets of N such that for each i, F_{i} is not k-good and $\min F_{i+1} \geq 2 \max F_{i}$. Then $F=\bigcup F_{i}$ is not $(k+1)$-good.
(The proof of Lemma 1 is contained in the proof of Theorem 1 above).
(2.2). Now we define an increasing sequence, $a_{1}<a_{2}<a_{3}<\ldots$, of natural numbers to be lacunary if $d_{n}=a_{n+1}-a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and to be M-lacunary if, furthermore, $d_{n} \leq d_{n+1}$ for all n. We shall think of such a sequence simultaneously as a sequence and as a subset of N. Any lacunary sequence A has $\bar{u}(A)=0$ (see [2]), so that Szemerédi's theorem does not apply.

A subsequence of a lacunary sequence is lacunary, but the corresponding statement, unfortunately, does not hold for M-lacunary sequences. It is known that if the real series $\sum t_{i}$ is not absolutely convergent, then there exists a lacunary sequence B such that $\sum_{i \in B} t_{i}$ diverges (see Freedman and Sember [2]). It follows that if $A \subseteq N$ and $\sum_{A}(1 / a)=\infty$, then there exists a lacunary sequence $B \subseteq A$ such that $\sum_{B}(1 / b)=\infty$. Thus we have the following

THEOREM 2. The following statement is equivalent to statement (e). (g) If A is a lacunary sequence and $\sum_{A}(1 / a)=\infty$, then A is ω-good.

Hence we need only investigate lacunary sequences when contemplating the Erdös conjecture.
It can also be shown that if $\sum t_{i}=\infty$ and $t_{i} \geq 0$ for all i, then there exists an M-lacunary sequence B such that $\sum_{i \in B} t_{i}=\infty$. (We omit the rather cumbersome proof of this statement.) But notice that this does not imply that statement (h) below is equivalent to statement (e)! This is too bad - because we now prove (h).

ThEOREM 3. The following statement is true.
(h) If A is M-lacunary and $\sum_{A}(1 / a)=\infty$, then A is ω-good.

Proof. Let $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ be an M-lacunary sequence with infinite reciprocal sum. Assume there is a k such that $d_{i}<d_{i+k}$ for each i, where $d_{n}=a_{n+1}-a_{n}, n \geq 1$. We show that $a_{i+j k} \geq j^{2} / 2$ for all $i \geq 1, j \geq 0$. Indeed,

$$
\begin{aligned}
a_{i+j k} & =a_{i}+d_{i}+d_{i+1}+\cdots+d_{i+j k-1} \\
& \geq d_{i}+d_{i+k}+d_{i+2 k}+\cdots+d_{i+(j-1) k} \\
& >1+2+3+\cdots+j>j^{2} / 2
\end{aligned}
$$

(Note that to obtain the first inequality we have merely omitted some terms from the sum).

But then

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{1}{a_{i}} & =\sum_{j=0}^{\infty} \frac{1}{a_{1+j k}}+\sum_{j=0}^{\infty} \frac{1}{a_{2+j k}}+\cdots+\sum_{j=0}^{\infty} \frac{1}{a_{k+j k}} \\
& \leq k\left(1+\sum_{j=1}^{\infty} \frac{2}{j^{2}}\right)<\infty, \text { a contradiction. }
\end{aligned}
$$

Hence, for each k, there is an i such that $d_{i}=d_{i+k}$, whence $a_{i}, a_{i+1}, \ldots, a_{i+k+1}$ are in arithmetic progression and A is ω-good.

The following is an immediate corollary.
COROLLARY 2. If A is a finite union of M-lacunary sets and $\sum_{A}(1 / a)=\infty$, then A is ω-good.
(2.3). We now use some slightly expanded arguments to show that statement (g) holds for some special sequences which are not M lacunary (but are nearly so).

THEOREM 4. Let $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ be any set. Suppose there are intervals $I_{n}=\left[s_{n}, t_{n}\right]$ with $t_{n}<s_{n+1}$ such that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{a_{s_{n}}}}<\infty, \sum_{k \in \bigcup I_{n}} \frac{1}{a_{k}}=\infty
$$

Suppose further that for each $n, d_{k} \leq d_{k+1}$ if $s_{n} \leq k<t_{n}$. Then A is ω-good.

Proof. We will arrive at a contradiction if we assume that there is a $K \in N$, such that $d_{i}<d_{i+K}$ whenever $i, i+K$ belong to the same interval I_{j}. Then, for any K, we have that there exists an i such that $d_{i}=d_{i+1}=\cdots=d_{i+K}$ so that $a_{i}, a_{i+1}, \ldots, a_{i+K+1}$ are in arithmetic progression.

To we get the required contradiction we proceed as follows: If n,
$n+K, n+2 K, \ldots, n+c K \in I_{i}$, then

$$
\begin{aligned}
\frac{1}{a_{n}} & +\frac{1}{a_{n+K}}+\frac{1}{a_{n+2 K}} \cdots \frac{1}{a_{n+c K}} \\
& \leq \frac{1}{a_{n}}+\frac{1}{a_{n}+d_{n}}+\frac{1}{a_{n}+d_{n}+d_{n+K}}+\cdots \\
& +\frac{1}{a_{n}+d_{n}+d_{n+K}+\cdots+d_{n+(c-1) K}} \\
& <\sum_{j=0}^{\infty} \frac{1}{a_{n}+\left(j^{2} / 2\right)}<\frac{b}{\sqrt{a_{n}}} \leq \frac{b}{\sqrt{a_{s_{i}}}}(b \text { constant }) .
\end{aligned}
$$

Hence,

$$
\sum_{K \in I_{i}} \frac{1}{a_{k}}<\frac{K b}{\sqrt{a_{s_{i}}}} \text { and } \sum_{k \in \bigcup I_{i}} \frac{1}{a_{k}}<K b \sum_{i=1}^{\infty} \frac{1}{\sqrt{a_{s_{i}}}}<\infty,
$$

contrary to assumption.
Using a similar technique we can prove the following theorem.
Theorem 5. Let $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ be a set. Suppose $I_{n}=\left[s_{n}, t_{n}\right]$ are intervals with $t_{n}<s_{n+1}$ such that $d_{i} \leq d_{i+1}$ if $s_{n} \leq i<t_{n}$ and $d_{t_{n}-1}<d_{s_{n+1}}$. Then, if $\sum_{k \in \bigcup I_{n}}\left(1 / a_{k}\right)=\infty, A$ is ω-good.
(2.4). We now define new density functions λ and $\bar{\lambda}$ in terms of lacunary sequences: For all sets A, let $\bar{\lambda}(A)=0$ if A is finite or a finite union of lacunary sequences and otherwise let $\bar{\lambda}(A)=1$. Define $\lambda(A)=1-\bar{\lambda}(N-A)$. These densities, taking only 0,1 values, may seem a little odd. The definition could be improved so that λ becomes "continuous" and has the correct value on an (infinite) arithmetic progression etc. However, this would not suit our purposes any better. One can prove that for any $A \subseteq N$

$$
\underline{\lambda}(A) \leq \underline{u}(A) \leq \underline{\delta}(A) \leq \bar{\delta}(A) \leq \bar{u}(A) \leq \bar{\lambda}(A)
$$

and so, in analogy to Szemerédi's Theorem, it is natural to ask about the arithmetic progressions in A if $\bar{\lambda}(A)>0$.

THEOREM 6. There exists a set A such that $\bar{\lambda}(A)>0$ and A is not ω-good.

Proof. Let $B_{i}=\{1!, 2!, \ldots, i!\}$. B_{i} is not 3 -good. Let $\left(H_{i}\right)$ be the sequence of sets

$$
\left(B_{1}, B_{1}, B_{2}, B_{1}, B_{2}, B_{3}, B_{1}, B_{2}, B_{3}, B_{4}, B_{1}, \ldots\right)
$$

Let f_{i} be an increasing sequence of integers such that $f_{1}=0$ and

$$
\min \left(f_{i+1}+H_{i+1}\right) \geq 2 \max \left(f_{i}+H_{i}\right)
$$

and define $A=\bigcup_{i}\left(f_{i}+H_{i}\right)$. By Lemma $1, A$ is not 4 -good. (By choosing f_{i} sufficiently quickly increasing one can even make A not 3-good.) Finally, $\bar{\lambda}(A)=1$ since otherwise $A=L_{1} \bigcup L_{2} \bigcup \cdots \bigcup L_{k}$ where each L_{j} is a lacunary sequence. Whenever $H_{i}=B_{k+1}$ we have $\left|f_{i}+H_{i}\right|>k$ and so some L_{j} has at least two members in $f_{i}+H_{i}$. Hence we may find a fixed j such that

$$
\left|L_{j} \bigcap\left(f_{i}+B_{k+1}\right)\right| \geq 2
$$

for infinitely many i. Then L_{j} has infinitely many differences $d_{t}<$ $(k+1)$!, and so L_{j} is not lacunary.
(2.5). Let us consider "relative density", that is, "the density of A relative to B " where $A \subseteq B$. The definitions are:

$$
\begin{aligned}
& \underline{\delta}(A \mid B)=\liminf _{i \rightarrow \infty} \frac{A\left[1, b_{i}\right]}{i} \text { and } \\
& \underline{u}(A \mid B)=\lim _{n \rightarrow \infty} \min _{m \geq 0} \frac{A\left[b_{m+1}, b_{m+n}\right]}{n}
\end{aligned}
$$

$\bar{\delta}(A \mid B)$ and $\bar{u}(A \mid B)$ are obtained by replacing "inf" with "sup" and "min" with "max" respectively. One can show, as before, for any $A, B, A \subseteq B$, that

$$
\underline{u}(A \mid B) \leq \underline{\delta}(A \mid B) \leq \bar{\delta}(A \mid B) \leq \bar{u}(A \mid B) .
$$

Let B be M-lacunary and $\sum_{B} 1 / b=\infty$. Then, by Theorem $3, B$ is ω-good. We ask whether $A \subseteq B$ and the relative density of A
positive imply that A is also ω-good. The answer is "yes" if $\underline{u}(A \mid B)>0$ (Theorem 7), "no" if $\bar{\delta}(A \mid B)>0$ (Theorem 8) and the question is open for $\underline{\delta}(A \mid B)>0$.

THEOREM 7. If B is M-lacunary, $\sum_{B} 1 / b=\infty, A \subseteq B$ and $\underline{u}(A \mid B)>0$ then A is ω-good.

Proof. By (the proof of) Theorem 3 there are arbitrarily large n, m such that

$$
P=\left\{b_{m+1}, b_{m+2}, \ldots, b_{m+n}\right\}
$$

is an arithmetic progression. By the definition of $\underline{u}(A \mid B)$ we have $|A \bigcap P| \geq \varepsilon|P|$ where $\varepsilon=(1 / 2) \underline{u}(A \mid B)$ and $|P|$ is arbitrarily large. Thus, by Szemerédi's Theorem (d) we have, for any k, that $|A \bigcap P|$ is k-good if $|P|$ is sufficiently large. Hence A is ω-good.

THEOREM 8. There exists an M-lacunary sequence B with $\sum_{B} 1 / b=$ ∞ and an $A \subseteq B$ with $\bar{\delta}(A \mid B)>0$ (=1 in fact) such that A is not 3 -good.

PROOF. (leaving most of the details to the reader). Let $F=$ $\{1!, 2!, 3!, \ldots\}, b_{1}=1$ and define $b_{n+1}=b_{n}+d_{n}$ where the d_{n} 's have the following properties: For all $i, d_{i} \in F$ and $d_{i} \leq d_{i+1}$. Furthermore, the set of natural numbers N can be partitioned into consecutive pairwise disjoint intervals $J_{1}, J_{2}, J_{3}, \ldots$ such that if r is odd, then, for $i \in J_{r}, d_{i}=d_{i+1}$ and $\sum_{i \in J_{r}} 1 / b_{i} \geq 1$, and, if r is even, then, for $i \in J_{r}, d_{i}<d_{i+1}, b_{i}>2 b_{i-1}$ and $\left|J_{r}\right|>\left(\max J_{r-1}\right)^{2}$. Clearly $B=\left\{b_{1}, b_{2}, \ldots\right\}$ is M-lacunary and $\sum_{B} 1 / b=\infty$. Let $A=\left\{b_{k} \mid k \in \bigcup_{r} J_{2 r}\right\}$. Then

$$
\bar{\delta}(A \mid B) \geq \lim _{r} \frac{\left|J_{2 r}\right|}{\mid J_{2 r \mid+\max J_{2 r-1}}}=1
$$

One can also see that A is not 3 -good since $a_{i}>2 a_{i-1}$ holds.
(2.6). Theorems 4,5, and 7 notwithstanding, it seems to be difficult to generalize the notion of M-lacunary even slightly and still prove the corresponding case of the Erdös conjecture. In this connection let us define a lacunary sequence A to be M_{k}-lacunary (where $k \geq 0$) if, for all $i, j, i \leq j$, we have $d_{i} \leq d_{j}+k$. Clearly the M_{0}-lacunary sequences are just the M-lacunary sequences. For no $k \neq 0$ are we able to prove
that M_{k}-lacunary and $\sum_{A}(1 / a)=\infty$ imply ω-good. We can show if A is M_{1}-or M_{2}-lacunary with $\sum_{A}(1 / a)=\infty$ then A is 3 -good. We prove first a lemma which may have independent interest:

Lemma 2. If $A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ is any subset of N and $\sum_{A} 1 / a=\infty$, then, for any $t>0$, there exists an i such that $d_{i+j} \leq d_{i}$ for $j=0,1, \ldots, t$. (Of course, $d_{n}=a_{n+1}-a_{n}$.)

Proof. The method is familiar by now: Suppose there is a t such that, for each i, there exists $j \in[1, t]$ with $d_{i}<d_{i+j}$. Then we can find a sequence $\left(j_{n}\right)$ such that

$$
d_{1}<d_{1+j_{1}}<d_{1+j_{1}+j_{2}}<\ldots\left(j_{n} \in[1, t]\right) .
$$

It follows that

Theorem 9. Let A be M_{1}-or M_{2}-lacunary and $\sum_{A}(1 / a)=\infty$. Then A is 3-good.

Proof. By the definition of M_{k}-lacunary and Lemma 2 we have: for any $t>0$ there is an i such that

$$
d_{i}-e \leq d_{i+j} \leq d_{i} \quad j=0,1, \ldots, t
$$

where $e=1$ or 2 . Hence, in the sequence $\left(d_{i}\right)$, we have arbitrarily long blocks where the d_{i} take on only two (in case $e=1$) or three (in case $e=2$) values. Such long blocks must contain two consecutive subblocks with identical composition (see Pleasants [5]). These two subblocks will determine three terms of the sequence A in arithmetic progression.
This last result suggests a conjecture which is related to van der Waerden's theorem on arithmetic progressions and which would immediately imply that M_{k}-lacunary with $\sum_{A}(1 / a)=\infty$ implies that A is 3-good.

Conjecture. Let x_{i} be a sequence of positive integers with $1 \leq$ $x_{i} \leq K$. Then there are two consecutive intervals I, J, of the same length, with $\sum_{i \in I} x_{i}=\sum_{j \in J} x_{j}$. Equivalently, if $a_{1}<a_{2}<\ldots$ satisfy
$a_{n+1}-a_{n} \leq K$, all n, then there exist $x<y<z$ such that $x+z=2 y$ and $a_{x}+a_{z}=2 a_{y}$.

References

1. Erdös, P., Problems and results in combinatorial number theory, Asterisque 24-25 (1975), 295-310.
2. Freedman, A.R. and Sember, J.J., On summing sequences of 0's and 1's, Rocky Mountain J. Math. 11 (1981), 419-425.
3. Gerver, J., The sum of the reciprocals of a set of integers with no arithmetic progression of k terms. Proc. Amer. Math. Soc. 62 (1977), 211-214.
4. - and Ramsey, L.T., Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp. 33 (1979), 1353-1360.
5. Pleasants, P.A.B., Non-repetitive sequences, Proc. Cambridge Philos. Soc. 68 (1970), 267-274.
6. Roth, F.K., On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
7. Szemerédi, E., On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
8. Wagstaff Jr., S.S., Some questions about arithmetic progressions, Amer. Math. Monthly, 86 (1979), 579-582.
9. Wroblewski, J., A non-averaging set of integers with a large sum of reciprocals, Math. Comp. 43 (1984), 261-262.

Simon Fraser University, Burnaby, B.C. Canada V5A 1 S6.

[^0]: Research supported by NSERC Grants A-3982 and A-5360
 Received by the editors on January 10, 1985.

