
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 18, Number 4, Summer 1988 

A NOTE ON THE APPLICATION OF TOPOLOGICAL 
TRANSVERSALITY TO NONLINEAR DIFFERENTIAL 

EQUATIONS IN HILBERT SPACES 

D. O'REGAN 

ABSTRACT. In this paper we suggest a new method, via 
Topological Transversality, for examining nonlinear differen­
tial equations in Hilbert Spaces. Furthermore, we show how 
this analysis can be used to obtain existence of solutions to 
certain integro-differential equations. 

1. Introduct ion. The theory of nonlinear differential equations in 
abstract spaces became popular in the 1970's and is still being studied 
in great depth. For a detailed account of the subject see Deimling [4], 
Lakshmikantham and Leela [12] and Martin [14]. In this paper we 
present a new approach via the Topological Transversality Theorem, 
to studying problems of the form 

[ } \y(0) = jfo. 

Here y takes values in a real Hilbert space (H, || • ||), yo e H and 
/ : [0, T] x H -> H is continuous. 

For notational purposes let C1([0, T],/f) denote the space of con­
tinuously differentiable functions g on [0,T]. Now C1([0,T],iif) with 
norm 

| | ( / | | i=max{ sup \\y(t)\l sup \\y'(t)\\\ 
Kte[0,T] t€[0,T] J 

= max {||y||o, Hî/llo} 

is a Banach space. Similarly we define C([0,T],H). Finally, by a 
solution to (1.1) we mean a function y G C1([0,T],,Hr) together with y 
satisfying y' = f(t,y),t € [0,T], and y(0) = y0. 

Unlike the finite dimensional case, continuity assumptions on / alone 
will not guarantee even local existence; see Banas and Geobel [2]. In 
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this paper, by placing compactness conditions on / , we obtain, with 
a restriction on T which depends on the nonlinearity of / , solutions 
to (1.1) in C1([0, T], H). Now the basic existence theorems available 
in the literature guarantee that a solution exists for t < e for some 
e > 0 suitably small; however, from these theorems it is extremely 
difficult, and many times impossible, to produce a specific interval of 
existence of a solution. The results of this paper enable us to read off 
immediately from the differential equation an interval of existence of 
a solution. Furthermore, we show that this interval is maximal for a 
certain class of problems. In particular, we examine the dependence of 
the interval of existence on / and JJQ. 

2. Preliminary results. We begin with some standard theorems 
on the calculus of functions from an interval into a real Hilbert space; 
see Martin [14], Barbu [3] and Shilov [16] for details. Suppose for the 
remainder of this section that if is a real Hilbert space (H, (•, • )) and 
J is a compact interval in R. 

THEOREM 2.1. Suppose f is a differentiable function from J into H 
and f'(t) = 0 for all t € J. Then f is constant on J 

THEOREM 2.2. Suppose f is a differentiable function from J into H. 
Then 

jt{f(t)J(t)) = 2(f'(t)J(t)). 

THEOREM 2.3. Suppose J = [a,b] and f(u) is a continuous function 
from J into H. Also let u = u(t) be a continuously differentiable 
function on a < t < ß, where u{a) — a and u(ß) = b. Then 

b fß 

f(u)du = / f(u(t))u'(t)dt 
Ja 

To obtain our existence theorems in the following section we need a 
more general version of the Arzela Ascoli Theorem. 

THEOREM 2.4. Suppose M is a_subset of C(J,H). Then M is 
relatively compact in C(J,H) (i.e., M is a compact subset ofC(J,H)) 

I 
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if arid only if M is bounded, equicontinuous and the set {f(t) : f £ M} 
is relatively compact for each t G J. 

Topological methods based on essential maps (see [5] and [6]) are 
used to establish the existence results of this paper. For convenience, 
we summarize here the topological results needed. Let X and Y be 
metric spaces. A map (continuous function) F : X —* Y is compact if 
F(X) is contained in a compact subset of Y. F is completely continuous 
if the image of each bounded set in X is contained in a compact subset 
of Y. Let U be an open subset of a convex set K in a normed linear 
space E. Let U and dU be the closure and boundary of U in K. A 
compact map F : U —» K which is fixed point free on dU is essential if 
every compact map G : U —> K which agrees with F on dU has a fixed 
point in U. (In particular, F has a fixed point in U'.) The Schauder 
fixed point theorem implies: Let UQ € U and define F : U —> K by 
F(u) = UQ. Then the constant map F is essential. 

Two compact maps F,G : U —> K which are fixed point free on dU 
are called nomotopic if there is a compact homotopy H : U x [0,1] —> K 
such that H\(u) = H(u,\) is fixed point free on dU for each À 
in [0,1], i?o = F, and H\ = G. In this context, the Topological 
Transversality Theorem asserts: If F and G are homotopic, then F 
is essential if and only if G is essential. 

3. Initial value problems in Hilbert Spaces. We begin by 
examining the homogeneous first order initial value problem 

, , n (y' = f(t,y),t€[0,T} 
{ò-l) 12/(0) = 0, 

where y takes values in a real Hilbert space (H, (•, •)) and / : [0,T] x 
H —> H is continuous. Let || • ||2 = (•, •). 

Now the Topological Transversality Theorem and the Arzela Asocoli 
Theorem are used to extend Theorem 2.1 of [7] for initial value problems 
in Hilbert spaces. 

THEOREM 3.1. Let f : [0,T] x H -> H be continuous and 0 < À < 1. 
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Suppose, in addition, f satisfies the following: 

There is a continuous function ip : [0, oo) —• (0, oo) 
such that \\f(t,y)\\<1>(\\y\\). 

f is completely continuous on [0, T] x H. 

For t,s G [0, T] and fi a bounded subset 
o/C1([0,T],H), there exist constants a > 0, 
A > 0 (which can depend on Q.) such that 

\\f(tMt))-f(s,u(s))\\<A\t-s\<* 
for all u G l ] . 

Finally, suppose there is a constant K independent of À such that 
\\y\\\ < K for each solution y{i) to 

{S'l)x U(o) = o. 

Then the initial value problem (3.1) has at least one solution in 

C ^ T ] , JO-

PROOF. For notational purposes let C^([0,T],tf) = {u e ^ ( [ 0 , 7 ] , 

H) : u(0) = 0}. Also let V = {u e C^([0,T],tf) : Huld < 
K + 1} and define Fx : C^([0,r],iJ) -> C([0,T],#), 0 < A < l, 
by Fx[u](t) = \f(t,v(t)). Now, assumptions (3.2), (3.3) and (3.4) 
together with Theorem 2.4 imply that F\ is completely continuous. To 
see this let fi be a bounded subset of C1([0,T],H); then, for u G fi, 
\\Fxu\\ = \\Xf(t,u)\\ < ip(\\u\\) = M0, where M0 < oo is a constant. 
Clearly, from (3.4), Fx(fi) is equicontinuous and we have also, for each 
t e [0,T], F(ii(t)) = {f(t,u(t));u e fi} which is relatively compact in 
H since / is completely continuous. 

Finally we define L : C^([0,T],#) - • C([0,T],#) by Ly = y'. It fol­
lows from Theorem 5.10 of [15] that L _ 1 is a bounded linear operator. 
Thus Hx = L~lFx defines a homotopy Hx : V - • C^([0,T],#). It is 
clear that the fixed points of Hx are precisely the solutions to (3.1)A-

Moreover, the complete continuity of Fx together with the continuity 

(3.2) J 

(3.3) | 

(3.4) J 
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of L _ 1 imply that the homotopy H\ is compact. Now, Ho is essential, 
so Theorem 1.5 of [8] implies that Hi is essential. Thus (3.1) has a 
solution. G 

REMARK. If we replace the Hilbert space H with a Banach space £ , 
then again Theorem 3.1 holds with B replacing H. 

In view of Theorem 3.1 we immediately obtain 

THEOREM 3.2. Suppose f : [0, T] x if —• H is continuous and satisfies 
(3.2), (3.3) and (3.4). Then the initial value problem (3.1) has a solution 
in C\%T),H) for each T < /0°° ^ . 

PROOF. TO prove existence of a solution in C1([0,T\,H) we apply 
Theorem 3.1. To establish a priori bounds for (3.1)A, let y(t) be a 
solution to (3.1)A. Then 

lly'll = l|A/(i,y)||<iK||»||). 

Now if ||2/(t)|| -=r 0, we have from Theorem 2.2 and the Cauchy Schwartz 
inequality that 

•'-<'•»>< I M I , 
IMI 

and the inequality above yields 

lividi«) 
at any point t where ||2/(£)ll r1 0- Suppose ||?/(£)|| ^ 0 for some point 
t e [0,T]. Then, since y(0) = 0, there is an interval [a,t] in [0,T] such 
that ||2/(5)|| > 0 on o < s < t and ||2/(a)|| = 0. Then the previous 
inequality implies 

' iw>ir-*s,-.. / 
Ja 

so 
rllvWII ju_ ^ T roo j ^ 

Jo *l>(u) " io *l>(v) 
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This inequality implies there is a constant Mi such that \\y\\o < M\. 
Also, (3.1)A and (3.2) imply \\y'(t)\\ < max0<u<Mi il>(u) = M2 for 
some constant M2- So \\y\\i < K — max{Mi,M2} and the existence of 
a solution is established. D 

Theorem 3.1 also holds for the inhomogeneous initial condition y(0) — 
i/o G H. In fact Theorem 5.1 of [9] and trivial adjustments in the above 
proof yield 

THEOREM 3.3. Suppose f : [0, T] x # —> H is continuous and satisfies 
(3.2), (3.3) and (3.4). Then the initial value problem 

fy' = f(t,y), te [0,7] 
\ y(0) = y0eH 

has a solution in C1([0,T],if) for each 

du T< f 
J\\v 

EXAMPLE 1. Consider the evolution equation 

u) !%+A(t)y = g(t), t€ [0,1] 
U U(0)=0, 

where A(t) G L(H) (the space of bounded linear operators from H into 
H) for each t € [0, T] and the map (t, y) —• A(t)y is continuous from 
[0, T) x H into H. Also assume g : [0, T] —• H is continuous. 

It follows from the Banach-Steinhaus Theorem that A(t) is uniformly 
bounded (see [11, p. 10]), i.e., there exists a constant | |J4|| > 0 
independent of t such that \\A(t)\\ < \\A\\ for each t G [0,T]. Here 
| |J4(£)|| = supu^i^j ||.4(t)a;||. Suppose in addition that A and g satisfy 
the following: 

(i) /(£, u) = g(t) — A(t)u is completely continuous on [0, T] x H. 

(ii) A and g are Lipschitz continuous on [0, T], i.e., there exists 
constants M, N < oo such that, for t, s G [0,T], ||i4(t)-j4(s)|| < M\t-s\ 
and \\g(t)-g(8)\\<N\t-s\. 
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To apply Theorem 3.2 we need only show (3.4) is satisfied; to see this 
let lì be a bounded subset of C1([0, T], H), i.e., there exists a constant 
K > 0 such that \\u\\i < K for all ueQ. Now, for t, s, e [0, T], 

| | / ( t ,u(t)) - /(a,u(s))\\ = \\g(t) - g(s) + A(s)u(s) - A(t)u(t)\\ 

< \\A(t)u(t) - A(t)u(s)\\ + \\A(t)u(s) - A(s)u(s)\\ + \\g(t) - g(s) 

< p | | | | / u'(z)dz\\+ KM\t - s\ + N\t - s\ 

< \\A\\K\t - s\ + KM\t - s\ 4- iV|* - «I-

Now since 
dx 

-hoo / 
f
0 A0x + JB0 

for all constants Ao^Bo > 0, then (*) has a solution in [0, T] for all 
T > 0 . 

REMARK. It is possible to replace (ii) with A and g being uniformly 
Holder continuous on [0, T]. 

EXAMPLE 2. The techniques above may be applied to integro-
differential equations of the form 

f mVfa s) = So 9(t, s, r, y(t, r))dr, t, s e [0, T] 
(3.5) I 

K 2/(0, s) = v(s), 

where // : [0, T] —» R is continuous. Equations of this type arise quite 
naturally in transport and transfer models; see Anselone [1, p. 51] for 
details. 

Let H = L2([0,T],Ä), with the usual inner product and define the 
mapping B from [0, T] x H into H by 

[B(t,u))(s)= [ g{t,s,r,u(r))dr 
Jo 

for all (t, s, u) e [0, T] x [0, T] x E where E C # . 
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We begin by examining the initial value problem 

(*)),* E [0,T] 
(3.6) 

(u' = B(t,u( 
I u(0) = ß 

where B: [0,T] x H -+ H. 

Various conditions on g insuring the continuity and complete conti­
nuity of B from [0, T] x H into H may be found in Krasnoselskii [10]. 
We also assume g satisfies certain growth conditions so that 

\\B(t,u)\\L2<^\\u\\L2), 

where ip : [0, oo) —> (0, oo) is continuous. Now assume 

du 
T< I IMUa 4(u) 

Finally suppose conditions are put on g so that, for t, t' G [0, T] and ft 
a bounded subset of C1([0,T],i/), there exists a constant A > 0 such 
that 

\\B(tMt))-B(t',u(t'))\\L2<A\t-t'\ 

for all u e ft. (For a discussion on how to put conditions of this form on 
g see Martin [14; v. 4, p. 172]. It should be remarked that the operator 
B occurs widely in the theory of nonlinear integral equations; special 
cases include the Uryson, Hammerstein and Volterà integral operators. 
For a detailed discussion on the subject see [14; Chapter V] and [10].) 

Then Theorem 3.3 implies that (3.6) has a solution on [0, T], Suppose 
u(t) is a solution to (3.6) on [0, T], then one sees that if y(t, s) = [u(t)](s) 
for all t e [0,T] and s G (0,T], then y(0,a) = ß(a) and y is a solution 
to (3.5). To see this let [n(£)](s) = v(s), so 

d r 
—y(t, s) = B(t, v)(s) = / g(t, 5, r, v(r))dr 

= / 0(M,r,2/(t,r))dr 
Jo 

Now Theorem 3.3 yields the best possible result (maximal interval of 
existence) in the sense of the following theorem. 



TOPOLOGICAL TRANSVERSALITY 809 

h' = f(t,y), te M 
U(0) = o 

Suppose, in addition, any solution, y, to 

(3.7) 

satisfies 

(3.8) \\fy\z)dz\\ = f\\y'(z)\\dz. 
11 Jo " J o 

Then the result in Theorem 3.2 is the best possible in the sense that the 
initial value problem (3.7) can have a solution only if 

T < 
f°° du 

Jo ^(u) ' 

PROOF. The existence of a solution to (3.7) is guaranteed by Theorem 
3.2. Now, the differential equation and (3.2)* yields 

Hifll = ll/(*,v)ll = iKll!/ll). 

On the other hand, (3.8) yields 

llw(t)ll = ||/V(*)<fc||= f\\y'(z)\\dz 
"Jo " Jo 

and this together with the above equality implies 

\\y'{t)\\ ! 

^{f0\\y'{z)\\dz) 

Thus 

\wm dt /•/«>'<*>"* du 
/o V-(/ollî/'(*) 
r\\v(T)\\ du f°° du 

-s 
Jo 

f 
Jo 

Jo ^(u) Jo ^ W 

*l>(v) 
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REMARK. A similar result can be obtained for the inhomogeneous 
initial value problem. 

EXAMPLE 3. Suppose H = R n with the usual norm, 

( o q ) /î/; = Wlî/l),o,...,o) = 7(*,y) 
(3-9) U(o) = o, 

where if) : [0, oo) —> (0, oo) is continuous. In addition, suppose / 
satisfies (3.3) and (3.4). Thus y'2 = • • • = y'n = 0, y[ = *l>(\yi\) > 0, 
yields 

\\J y'(z)dz\\ = \\(J î/i(2)dz,0,...,0)|| 

= fty[(z)dz= fw^ldz^ f\\y\z)\\dz, 
Jo Jo Jo 

so (3.8) is satisfied. Hence, conditions of Theorem 3.4 are satisfied, 
which guarantees that (3.9) has a solution for 

7* f°° du 
Jo Hu) 

and this result is the best possible. In fact the above is also true if 
we remove assumptions (3.3) and (3.4); see Lee and O'Regan [13] for 
details. 

REMARK. Condition (3.8) in Theorem 3.4 could have been stated as 
follows: Suppose, in addition, / satisfies 

(3.8)* II / f(s,y(s))ds\\ = f \\f(a,y(s))\\ds 
11 Jo " J o 

for all t e [0,T] and y G C ^ ^ T ] , ^ ) . 
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