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APPROXIMATION BY 
CHENEY-SHARMA-KANTOROVIC 

POLYNOMIALS IN THE LP-METRIC 

MANFRED W. MÜLLER 

1. Properties of CSB-polynomials. Based on the identity 
(1.1) 

n n 

$>„*(*; ß) := (l+nß)-n ]T (^X(x+kß)k-l[\-x+{n-k)ß\n-k = 1, 
k=0 k=0 

x e I := [0, l],/3 G R, n G N, a partition of unity originating from a 
more general identity of Jensen [6], Cheney and Sharma [1] associated 
with a bounded function / : / —• R the polynomial 

(1.2) (Pn,ßf)(x):=J2pnk(x; /?)/(-) 

k=0 

of degree n, depending on a parameter ß and reducing to the n-th 
Bernstein polynomial for ß — 0. We shall refer to it as the n-th 
Cheney-Sharma-Bernstein polynomial (briefly: CSB-polynomial). The 
CSB-operators Pnß defined by (1.2) are positive, linear, polynomial 
and preserve, due to (1.1), constant functions. In [1] it is proved 
that the sequence (Pn,/?)neN gives a positive polynomial approximation 
method on the space C(7), || • | U (i-e. limn^oo | | / - Pn,ßf \\oc = 0 for 
all / G C(I)) if the parameters ß are chosen to be nonnegative and are 
coupled with n (i.e. ß — ßn) in such a way that 

(1.3) nßn —• 0 for n —• oc. 

Using estimates in [1] it can easily be shown that 
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(1.5) (Pn,^2)(*) = *2 + ^ — ^ + o Q 

pointwise for x G / and n —• oo if (1.3) is satisfied. By an argument 
similar to that given in the proof of Theorem 5 it can be shown moreover 
that, pointwise for x G / , 

(1.6) n(Pn,ßn(t - x)4)(x) - • 0 for n -+ oo 

if (1.3) is replaced by the stronger coupling 

(1.7) n2ßn -+ c ( c > 0) for n —• oo. 

Utilizing (1.4), (1.5) and (1.6) we have, by Mamedov's theorem [9], the 
following Voronovskaja-theorem for CSB-polynomials: If / is bounded 
on / and possesses a second derivative at a point x and if (1.7) is 
satisfied, then 

(1.8) Pn,ßJ{x) - f(x) = *^Ù-f"(x) + oQ(n - (X)). 

This formula is the same as for Bernstein polynomials and corrects a 
result contained in [1], 

2. Lp-approximation by CSK-polynomials. CSB-polynomials 
are not suitable for the approximation of functions / G LP(I), 1 < p 
< oo, in the Lp-metric. According to an idea of Kantorovic the point 
evaluations of / in (1.2) are replaced by integral means over suitable 
small and disjoint intervals around the knots leading to the polynomial 
of degree n 

n -

(2.1) (i4n,/3/)(x):=(n + l ) 5 ^ ( / / W * W ( * ; 0 ) , 

where Ik := Mpy, n+î r Since this polynomial reduces to the n-
th Kantorovic polynomial for ß — 0 we shall refer to it as the ri­
tti Cheney-Sharma-Kantorovic polynomial (briefly: CSK-polynomial). 
These polynomials have been introduced by Habib and Umar as gener­
alized Bernstein polynomials and studied in two subsequent papers [2], 
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[3]. However their statements are mostly incorrect and fragmentary 
[13]. 

This motivates a new and systematic treatment. 

The CSK-operators An# defined by (2.1) for / G Lp(7), 1 < V < oo, 
are positive, linear, polynomial and preserve, due to (1.1), constant 
functions. We write Anßf as a singular integral of the type 

An,ßf(x)= f Hn,ß(x,t)f(t)dt 
Jo 

with the positive kernel 

71 

Hn,ß(x,t) = (n+l)Y^pnk{x;ß)lIk(t), 
k=0 

where lik(t) denotes the characteristic function of the interval Ik with 
respect to / . Utilizing the estimate 

J pnk(x;ß)dx<(l + nß)(n
k) J Jfc/1 ~ \ n - f c j _ _ 1 + * / ? zk(l-z)n-kdz 

n + 1 

we have, for all n and x or t respectively, 

/ Hn,ß(x,t)dt = y2pnk(x;ß) = li 
JQ k=o 

/ Hn,ß(x,t)dx<(n + l)Y,—^hk(l) = l + nß 
Jo u=(ì

 n + L 
k=0 

and thus by a theorem of Oriicz [10] the operator norm ||j4nW3||p is 
bounded by 1 -|- nß. If (>ln,0n)n€N *s a s e ( l u e n c e of CSK-operators 
with nonnegative parameters satisfying (1.3) then the corresponding 
sequence of operator norms is hence bounded by some constant C > 1. 
For / G C(I) and arbitrary x G / we easily obtain 

\An,ßnf(x) - Pn,ßJ(x)\ < Uì ( / ; - j - ) , 
\ n + 1/ oo 
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where u>\(f; -)oo denotes the ordinary modulus of continuity of / with 
respect to the sup-norm, and consequently 

\\An,ßJ - P„.ßJ\\P < \\An,ßnf - Pn,ßnf\\oo 

(2'2) ^ i ( / ; - r r ) = °M (n^<*>)-

Now 

11/ - An,0J\\p < \\An,ßJ - Pn,ßnf\\P + \\Pn,ßJ - f\\P 

< " i ( / ; —S-r) + \\Pn,ßJ - / I U = o(l) (n ^ oo) 

holds on account of (2.2) and the fact that (Pn,ßn)neN
 ls a l m e a r 

approximation method on the space (C( / ) , | | • ||oo)- Since this space 
is dense in LP(I) with respect to the Lp-norm and ||vln,/3n||p ^ C for 
n G N we have proved the following 

THEOREM 1. lfnßn —• 0 for n —• oc, then 

(2.3) lim | | / - i 4 n , / 3 n / | | p = 0 
n-+oc 

for all f e LP(I), 1 < p < oo. 

As an application of this theorem we obtain the following criterion of 
compactness for a bounded subset 

K := {/ G LP(I)\ | | / | |p < M, M a positive constant} 

of LP(I) : K is compact with respect to the Lp-norm if and only if (2.3) 
holds uniformly for all / G K. 

The proof of this criterion proceeds just along the lines of an argument 
given by G.G. Lorentz [5, p. 33] for Kantorovic polynomials. 

3. Degree of Lp-approximation by CSK-polynomials. Long 
and tedious calculations (see [13]) using estimates in [1] show that 

(3.1) (Anißnt)(x) = x+^£+o(±), 
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(3.2) (An,ßJ
2)(x) = z2 + X{2 3X) + „ ( ± ) 

pointwise for x G / and n —• oo if (1.3) is satisfied. 

We start with the approximation of functions belonging to the 
Sobolev spaces Lr

p(I) := {/(r"1} G AC{I)\f{r) G L p ( / )} , r = 1,2, 
1 < p < oo, which are smooth subspaces of LP(I). 

THEOREM 2. lfnßn - • 0 /or n -> oo, then 

l l / - ^ n , / 3 w / | | p < - 7 = | | / / | | p , " G N , n > r i 0 , 

for all f G Lp(I), 1 < p < oo, w/iere C is some positive constant. 

PROOF. We apply the following very remarkable quantitative result of 
V.A. Popov [12] on positive linear operators mapping the space M(I) 
of bounded and measurable functions on J into itself and preserving 
constant functions: If 

(Lt)(x) = x + a(x), (Lt2)(x) = x2 + ß(x) 

and 
M := sup \ß(x) - 2xa{x)\ < 1, 

then 

(3.3) Wg-LgWpKBnfay/M),, g G M( / ) , 1 < p < oc. 

Here B is some positive constant and Ti(g;6)p denotes the first order 
r-modulus of g with step size 6 in the Z/p-metric given by 

Ti{g;6)p:= \\u>i(g,-;6)\\p, 

where 

ui(g,x;6) := s\ip{\g(t + h) - g(t)\ :t,t + h€ [x-6/2, x + 6/2]nl}. 
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The following two properties of this modulus of smoothness will be 
needed ([12]): 

(3.4) T1(g;X6)p<(2]X[+2)2T1(g;6)p, A G R + , 

(3.5) nig-^^syWp, geLl(I). 

For L = Anrfn, we derive immediately from (3.1), (3.2) that 

M = — maxx(l - x) + o( — ) < —, n G N 
n xei \n/ n 

(A a suitable positive real constant) if (1.3) is satisfied. In view of (3.3) 
and (3.5) we have therefore, for all / G Lp(I) and almost all n G N 
(say n > n0) , 

\\f-An,ßJ\\p<Brl(f;]ß)p 

<(2]v/I[+2)2ßr1(/4) <-?TII/'IIP 
V V n / p y/n 

(C a positive real constant), which completes the proof. D 

A quite different measure for the smoothness of functions is the first 
order /^-functional of J. Peetre [11] which is, for g G LP{I), 1 < p < oo 
(with g G C(I) for p = oo), defined by 

(3.6) Khp(t;g):= M'(\\g-h\\p + t\\h'\\p) (t > 0) 

and which is equivalent to the usual first order u-modulus of g in the 
Lp-metric, i.e., there are constants c\ > 0 and c<i > 0 independent of g 
and p such that 

(3.7) ciLjl(g;t)p<Khp(t;g)<c2LJi(g;t)p (t > 0). 

Combining (3.6), (3.7) and Theorem 2 by a smoothing argument in 
a similar way to what we have done in [8, p. 246] for Kantorovic 
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polynomials we obtain the following upper bound for the degree of 
Lp-approximation of nonsmooth functions by our method. 

THEOREM 3. lfnßn - • 0 for n - • oo, then 

(3.8) l l / - i 4 n , / 9 n / l l p < A ' w i ( / ; ^ ) p . ^ N > 

for all f G LP(I), 1 < p < oo, where M is some positive constant. 
Especially if f G Lip(a,Lp), 0 < a < 1, then 

\\f-An,ßnf\\v = o{n-a'2) ( n - o o ) . 

REMARK. Since the second order u;-modulus has the property W2(g; 6)p 

< 82\\g"\\p for g G L2
p(I), 1 < p < oo (with g G C2(I) for p = oo) and 

since (An,ßnt)(x) ^ x for all n G N, x G / , an estimate of the type 
(3.8) with u;i(/; -)p replaced by u>2(/; *)P cannot exist. 

The following theorem shows that the degree of approximation can 
be o(n~l) for suitable subspaces of LP(I). 

THEOREM 4. lfnßn —• 0 for n-> oo, then 

(3.9) | | / - An,ßnf\\P < ^ [ | | / ' | | p + l i r i U , n G N, 

/or a// / G Lp(7), p > 1, w/iere Cp is a positive real constant depending 
only on p. 

PROOF. Fix x G / and n G N. Then 

£ ( x ) : = ^ n / ( x ) - / ( x ) = / ff»,/^(M)[/W-/(*)]*• 

From 

f(t) - f(x) = {t- x)f'{x) + {t-x) [ f"(u) du 
J x 
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for arbitrary t G / and £ = £(t) between x and t we obtain 

E(x):=f'(x)An43n(t-x)(x) + j Hn,ßn(x,t)(t-x){[ f"(u)du}dt. 

Because of 

\E(* 

\An.ßn(t-xY(x)\<-^, xel, neN, i € {1,2} 

(Ai positive real constants independent of n and x) being an immediate 
consequence of (3.1) and (3.2), there follows 

' ( * ) l < — l / ' (*) l+ / Hn,ßn(x,t)(t-x)2 s u p - ^ - / \f"(u)\du 
n J0 \ tei t-X Jx 

I t^x 

= £ | / ' ( : r ) | + ^ » ( x ) ^ . ^ ^ - xf(x) < £ ( | / ' ( s ) | + er(x)), 

where C := max(j4i, A2) and 

1 / ' 
ö/ / / (x):=sup / \f"(u)\du, xel, 

tei t — X Jx 
t^x 

is the Hardy-Littlewood majorant of / " on / . For p > 1 it is known 
that / " G LP(I) implies Of» G LP(I) and 

(3.10) / ep
r(x)dx < 2(-zj)P f \f"(x)\pdx 

(cf. [14, Theorem 13.15]). Applying Minkowski's inequality to the last 
inequality for \E(x)\ and taking into account (3.10), we obtain 

ll/-^n,/3n/||P<^[||/'||P+^||/"||p] 

< cV2^-j i[ii/'n„+ling =: ^[ii/'nP+iiriw, 

which completes the proof. D 
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REMARK. For p — l the above proof breaks down. This case is left 
as an open problem. 

4. The Voronovskaja theorem for CSK-polynomials. When 
determining the asymptotic form of CSB-approximation Cheney and 
Sharma [1] had to replace the coupling (1.3) by the stronger condition 
(1.7). As the proof of the following theorem shows (1.7) is indispensable 
in the case of CSK-approximation, too, a fact which has not been taken 
into account by Habib and Umar [3, Theorem 1.2]. 

THEOREM 5. If n2ßn -> c(c > 0) for n —• oo and if f e Li(I) 
possesses a second derivative at a point x, then 

A rt \ ft \ ( l - 2 * ) / ' ( * ) + g ( l - * ) / " , fl\ , , 
An.ßnf(x) - f(x) = ^ + o(-) (n -» oo). 

REMARK. This formula is the same as for Kantorovic polynomials 
(cf. [7]). 

PROOF. In order to be able to apply Mamedov's theorem we show 
that / := n(An%ßn(t - x)4)(x) —» o(n —• oo). Now 

/ = n ( n + l ) 5 3 ( / (t-x)4di}pnk(x;ßn) 
fc=o •'Ik 

= n(n + l)[ Y, + E }-h+h, 
| ^ - x | < n - a | ^ - x | > n - " 

where \ < a < \. 

For k e N with I — — ari < n~a there holds | -x r - x\ < 2n~a and 
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from this we easily deduce 

n 

\h\ = ofa1"4") £>„*(* ; Ä.) = o(nl-4a), 
k=0 

\h\<n ^2 Pnk(x;ßn) 

<n(l + nßn)-
n Y, (n

k)(x + nßn)
k[l-x + nßn]

n-k 

\$-x\>n-<* 

_ /l + 2nßn\
n y^ /n\ / x + nßn \k/ x + nßn y~k 

~ \ l + nßn) ^ \k)\l + 2nßn) \ l + 2nßn) 
\±-x\>n-« 

Substituting yn := i+£nß we observe that 0 < yn < 1 and yn = 
x + 0(n - 1 ) since n2ßn —• c. Thus |£ — yn\ > ^n~a f° r sufficiently large 
n, say for n > no- (1.7) implies further on that ( Vĵ nfl ) n ls bounded 
by ec. Then, for n > no, 

N < e c E (fc)^(i-y»)n-fc 

l^ -yn |>Jn-« 

which is of order o(n _ s ) for each s > 0, by inequality 1.5 (8) in [5]. 
Mamedov's theorem together with (3.1), (3.2) completes the proof. D 

REMARK. The estimate of I2 in the above proof uses certain ideas 
from [4]. 
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