A LOCALIZATION OPERATOR FOR RATIONAL MODULES

JAMES LI-MING WANG

Let X be a compact subset of the complex plane C and let g be a continuous function on X. We denote by $\mathcal{R}(X,g)$ the rational module

$$\{r_0(z) + r_1(z)g(z)\},\$$

where each r_i denotes a rational function with poles off X.

In the case that $g(z) = \overline{z}$, the closure of $\mathcal{R}(X, \overline{z})$ in various topologies was first considered by O'Farrell [4] and was applied to rational approximation problems in Lipschitz norm. Later, several authors (e.g., Carmona, Trent, Verdera and Wang) have gone into the subject. A question which arose from these investigations concerned the characterization of R(X, g), the uniform closure of $\mathcal{R}(X, g)$ in C(X) when Xhas empty interior \dot{X} . This was settled in [5] (also see [1]) by showing that R(X,g) = C(X) if and only if R(Z) = C(Z) where Z is the subset of X on which $\overline{\partial}g$ vanishes. Here $\overline{\partial}$ is the usual Cauchy-Riemann operator in the complex plane.

The existence of interior points, however, makes the problem more difficult. It is natural to ask the following question: Is

$$R(X,g) = \{ f \in C(X) : \overline{\partial}(\overline{\partial}f/\overline{\partial}g) = 0 \text{ in } \dot{X} \}$$

whenever $\overline{\partial}g \neq 0$ on an arbitrary compact set X? In particular, when $g(z) = \overline{z}$, this should be viewed as the Mergelyan approximation problem for the operator $\overline{\partial}^2 = \overline{\partial} \circ \overline{\partial}$:

(*) Is
$$R(X,\overline{z}) = \{f \in C(X) : \overline{\partial}^2 f = 0 \text{ in } \dot{X}\}$$

for an arbitrary compact set X?

For the case when X is a compact set whose complement is connected, the approximation problem is not too difficult. In [1], a standard

Received by the editors on November 10, 1986 and in revised form on February 12, 1987.

argument by Mergelyan [3] is extended to obtain a positive result for question (*). Because the module $R(X, \overline{z})$ is local (see [4], also [5] for other local modules), (*) is also true for any compact set X whose complement has a finite number of components, or for those compact sets X such that the diameters of the components of the complement are bounded away from zero. However, the general case remains unknown.

In this note, we examine the localization operator for $\overline{\partial}^2$. We can improve the localization theorem to handle isolated bad points (cf. [2, p. 52]).

We denote by m the Lebesgue measure on the complex plane C. Let μ be a compactly supported Borel measure on C. We write $\hat{\mu}(z) = \int \frac{du(\xi)}{\xi-z}$ for the Cauchy transform and $\tilde{\mu}(z) = \int \frac{\overline{\xi}-\overline{z}}{\overline{\xi}-z} d\mu(\xi)$. If $\phi \in L^1_{loc}(m)$ has compact support, then we write $\hat{\phi} = \phi \hat{m}$ and $\tilde{\phi} = \phi \tilde{m}$.

Let f be a continuous function on S^2 , the Riemann sphere, and ϕ be a twice-continuously differentiable function on **C** with compact support. We define the localization operator V_{ϕ} by

$$V_{\phi}(f) = f \phi + rac{2}{\pi} (f \cdot \overline{\partial} \phi) + rac{1}{\pi} (f \cdot \overline{\partial}^2 \phi)^{\sim}.$$

We then have $\overline{\partial}^2 V_{\phi}(f) = \phi \cdot \overline{\partial}^2 f$ in the sense of distribution and $V_{\phi}(f)$ is again continuous on **C**.

LEMMA. Let $f \in C(S^2)$ and ϕ be a twice-continuously differentiable function supported on the disk $\Delta(z_0; \delta)$ with center z_0 and radius δ . Then

$$||V_{\phi}(f)||_{\infty} \leq Cw(f;\delta)(||\phi||_{\infty} + ||\overline{\partial}\phi||_{\infty} \cdot \delta + ||\overline{\partial}^{2}\phi||_{\infty} \cdot \delta^{2}),$$

where $w(f;\delta)$ is the modulus of continuity of f and $|| ||_{\infty}$ is the usual sup norm.

PROOF. Note that

$$egin{aligned} &|(f\cdot\phi)(z)|\leq \sup_{|\xi-z_0|\leq\delta}|f(\xi)|\cdot||\phi||_{\infty},\ &|(f\cdot\overline{\partial}\phi)(z)|=\left|\intrac{(f\cdot\overline{\partial}\phi)(\xi)}{\xi-z}dm(\xi)
ight|\ &\leq C\sup_{|\xi-z_0|\leq\delta}|f(\xi)|\cdot||\overline{\partial}\phi||_{\infty}\delta \end{aligned}$$

and

$$egin{aligned} |(f\cdot\overline\partial^2\phi)^\sim \ (z)| &= \left|\int rac{\overline\xi-\overline z}{\xi-z}(f\cdot\overline\partial^2\phi)(\xi)dm(\xi)
ight|\ &\leq C\sup_{|\xi-z_0|\leq \delta}|f(\xi)|\cdot||\partial^2\phi||_\infty\cdot\delta^2. \end{aligned}$$

The lemma follows because $V_{\phi}(f - \alpha) = V_{\phi}(f)$ for any constant α .

THEOREM. Let $f \in C(S^2)$ such that $\overline{\partial}^2 f = 0$ on the open subset U of \mathbf{C} . Let $z_0 \in \mathbf{C}$. Then there is a sequence $\{f_n\}$ of continuous functions such that $\overline{\partial}^2 f_n = 0$ on U and a neighborhood of z_0 , and $f_n \to f$ uniformly on \mathbf{C} .

PROOF. We can assume that $z_0 = 0$. Let $\{\phi_n\}$ be a sequence of twice-continuously differentiable functions such that $g_n(z) = 0$ when $|z| \geq 2/n$, $g_n(z) = 1$ when $|z| \leq 1/n$, $|\overline{\partial}g_n| \leq 2n$ and $|\overline{\partial}^2g_n| \leq 4n^2$. Then the lemma implies $V_{\phi_n}(f)$ tends uniformly to zero on **C** and the functions $f_n = f - V_{\phi_n}(f)$ do the trick. \Box

COROLLARY. Let X be a compact set obtained from the closed unit disk by deleting a sequence of open disks where radii tend to zero, and whose centers accumulate on a set E which is at most countable. Then

$$R(X,\overline{z}) = \{f \in C(X) : \overline{\partial}^2 f = 0 \text{ in } \dot{X}\}.$$

PROOF. Let F be the set of points in X which have no neighborhood U satisfying $R(X \cap \overline{U}, \overline{z}) = \{f \in C(X \cap \overline{U}) : \overline{\partial}^2 f = 0 \text{ in } \dot{X} \cap U\}.$

Evidently F is closed, and $F \subseteq E$. In view of the Theorem and the fact that $R(X,\overline{z})$ is local, F has no isolated points. By the Baire category theorem, F must be empty and hence

$$R(X,\overline{z}) = \{f \in C(X) : \overline{\partial}^2 f = 0 \text{ in } \dot{X}\}.$$

REMARK. 1) The main lemma used by Mergelyan [3] can be extended so that (*) is also true for any compact set satisfying the following capacity condition (see [1]):

$$\gamma(\Delta(z,r)-X) \ge Cr$$

for some positive constant C, for every point z on the boundary of X, and for all sufficiently small r, where γ is the analytic capacity [2, 6]. Following a similar scheme for approximation used by Vitushkin [6] one can prove that (*) is true if the inner boundary of X is empty, where the inner boundary of X is the set of boundary points of X not belonging to the boundary of a component of the complement of X. Thus the localization argument shows that (*) is true if the inner boundary of X is at most countable.

2) The argument used in this note can be generalized to other rational modules R(X,g) whenever R(X,g) is local.

REFERENCES

1. J.J. Carmona, Mergelyan's approximation theorem for rational modules, J. Approx. Theory 44 (1985), 113-126.

2. T.W. Gamelin, Uniform Algebra, Prentice-Hall, Englewood Cliffs, N.J., 1969.

3. S.N. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Transl. 101 (1954), 294-391.

4. A.G. O'Farrell, Annihilators of rational modules, J. Functional Analysis, 19 (1975), 373-389.

5. T.T. Trent and J. Wang, The uniform closure of rational modules, Bull. London Math. Soc. 13 (1981), 415-420.

6. A.G. Vitushkin, Analytic capacity of sets and problems in approximation theory, Russian Math. Surveys 22 (1967), 139-200.

MATHEMATICS DEPARTMENT, UNIVERSITY OF ALABAMA, TUSCALOOSA, AL 35487