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A LOCALIZATION OPERATOR FOR RATIONAL MODULES 

JAMES LI-MING WANG 

Let X be a compact subset of the complex plane C and let g be a 
continuous function on X. We denote by 1l{X,g) the rational module 

{r0(z)^rl(z)g(z)}, 

where each Ti denotes a rational function with poles off X. 

In the case that g(z) = ~z, the closure of 7£(X, ~z) in various topologies 
was first considered by O'Farrell [4] and was applied to rational ap
proximation problems in Lipschitz norm. Later, several authors (e.g., 
Cannona, Trent, Verdera and Wang) have gone into the subject. A 
question which arose from these investigations concerned the charac
terization of R{X,g): the uniform closure of K(X,g) in C{X) when X 
has empty interior X. This was settled in [5] (also see [1]) by showing 
that R(X,g) = C(X) if and only if R(Z) = C(Z) where Z is the sub
set of X on which dg vanishes. Here d is the usual Cauchy-Riemann 
operator in the complex plane. 

The existence of interior points, however, makes the problem more 
difficult. It is natural to ask the following question: Is 

R(X,g) = {/ € C(X) : d(8f/dg) = 0 in X} 

whenever dg ^ 0 on an arbitrary compact set XI In particular, 
when g(z) = z, this should be viewed as the Mergelyan approximation 
problem for the operator d = d o d: 

(*) Is R{X,z) = {/ G C{X) : d2f = 0 in X} 

for an arbitrary compact set X? 

For the case when X is a compact set whose complement is connected, 
the approximation problem is not too difficult. In [1], a standard 
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argument by Mergelyan [3] is extended to obtain a positive result 
for question (*). Because the module R(X,1) is local (see [4], also 
[5] for other local modules), (*) is also true for any compact set X 
whose complement has a finite number of components, or for those 
compact sets X such that the diameters of the components of the 
complement are bounded away from zero. However, the general case 
remains unknown. 

—2 

In this note, we examine the localization operator for d . We can 
improve the localization theorem to handle isolated bad points (cf. [2, 
p. 52]). 

We denote by m the Lebesgue measure on the complex plane C. Let ji 
be a compactly supported Borei measure on C. We write fi(z) = J -jrrjr 

for the Cauchy transform and fi(z) = f |5§d/i(£). If 4> G L\oc(m) has 

compact support, then we write <j> = (j>m and <j) = (j)m. 

Let / be a continuous function on S2 , the Riemann sphere, and 0 be a 
twice-continuously differentiable function on C with compact support. 
We define the localization operator V^ by 

W ) = /<£+-(/• 00)+ - ( / - ä V -
7T 7T 

We then have d V^f ) = </>-d f in the sense of distribution and V^(/) 
is again continuous on C. 

LEMMA. Let f G C(S2) and <t> be a twice-continuously differentiate 
function supported on the disk A(ZQ;6) with center zo and radius 6. 
Then 

II W ) H o o < Cw(f;S)(M\oo + | |5*IU ' 6 + HöVlU . <52), 

where w(f;6) is the modulus of continuity of f and \\ ||oo is the usual 
sup norm. 
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PROOF. Note that 

and 

\{f-4>){z)\< SUP 1/(01 -IHIoc, 
l«-*o|<* 

\(f-W(*)\ = I (/•a*)(0 dm{i) 

<C sup |/(0I-II^IU« 
l«-20|<« 

l(/-a*)~ (*)l 
/ & " • 

ö20)(Odm(O 

< C sup | / ( 0 | - I I ^ I U - « 2 . 
K-*o|<« 

The lemma follows because V^(/ - a) — V^(/) for any constant a. D 

-^2 
THEOREM. Let f e C{S2) such that d*f = 0 on tfie open suòse£ 

U of C Let ZQ € C. Tnen f/iere zs a sequence {fn} of continuous 
—2 

functions such that d fn = 0 on U and a neighborhood of ZQ, and 
fn —» / uniformly on C. 

PROOF. We can assume that zo = 0. Let {(t>n} be a sequence of 
twice-continuously differentiate functions such that gn(z) = 0 when 

\z\ > 2/n, gn{z) = 1 when \z\ < l/n,\dgn\ < 2n and \d2gn\ < 4n2. 
Then the lemma implies V<f,n(f) tends uniformly to zero on C and the 
functions fn = f- V<f,n(f) do the trick. D 

COROLLARY. Let X be a compact set obtained from the closed unit 
disk by deleting a sequence of open disks where radii tend to zero, and 
whose centers accumulate on a set E which is at most countable. Then 

-R2 
R{X,z) = {/ G C{X) : d f = 0 in X}. 

PROOF. Let F be the set of points in X which have no neighborhood 

U satisfying R(X H U,z) = {/ G C(X n U) : d* f = 0 in X 0 U}. 
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Evidently F is closed, and F Ç E. In view of the Theorem and the 
fact that R{X,~z) is local, F has no isolated points. By the Baire 
category theorem, F must be empty and hence 

R{X,z) = {f e C{X) :d2f = 0 in X}. 

REMARK. 1) The main lemma used by Mergelyan [3] can be extended 
so that (*) is also true for any compact set satisfying the following 
capacity condition (see [1]): 

7 ( A ( z , r ) - X ) >Cr 

for some positive constant C, for every point z on the boundary of X, 
and for all sufficiently small r, where 7 is the analytic capacity [2, 6]. 
Following a similar scheme for approximation used by Vitushkin [6] one 
can prove that (*) is true if the inner boundary of X is empty, where the 
inner boundary of X is the set of boundary points of X not belonging 
to the boundary of a component of the complement of X. Thus the 
localization argument shows that (*) is true if the inner boundary of 
X is at most countable. 

2) The argument used in this note can be generalized to other rational 
modules R(X, g) whenever R(X, g) is local. 
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