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BOUNDS ON CHARACTERISTIC NUMBERS
BY CURVATURE AND RADIUS

FERNANDO GALAZ-GARCIA

ABSTRACT. We obtain explicit bounds on the Euler char-
acteristic and Pontryagin numbers of closed, connected, ori-
ented Riemannian manifolds in terms of sectional curvature
and radius.

1. Introduction. Let M™ be a closed, connected and oriented
Riemannian manifold of dimension m with sectional curvature k <
sec < K. By definition, the radius of M™ is the number r =
min,c yym maxge mm d(p, q), where d( , ) denotes the distance function
on M™. The aim of this note is to give explicit bounds, in terms of k, K
and 7, on the Euler-Poincaré characteristic of M>™ and the Pontryagin
numbers of M*", when k < 0. The case k > 0 was first studied
by Berger, cf. [1], considering the diameter instead of the radius. He
proved that, if M is a complete Riemannian manifold of dimension 2n
and 0 < k < sec < K, then

n

M)| <
XOD| < 5o

where X(M) denotes the Euler-Poincaré characteristic of M. Tsagas
obtained explicit bounds for the Pontryagin numbers when k£ > 0, cf.
[12]. In these cases, since 0 < k < sec < K, it follows from Myers’
theorem that M has diameter d < m/vk (so M must be compact)
and the bound on the Euler-Poincaré characteristic will only depend
on the sectional curvature bounds. Bishop and Goldberg noted in [2]
that, using what is now known as Bishop’s theorem, it is possible
to bound the Euler-Poincaré characteristic of an even dimensional
compact Riemannian manifold with bounded sectional curvature and
diameter d, generalizing Berger’s result. However, they did not carry
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out any computations. Explicit bounds for the Pontryagin numbers in
the case k£ < 0 were also missing.

Our proofs are a straightforward application of the Chern-Weil the-
ory of characteristic classes and Bishop’s theorem. Since the radius is
bounded above by the diameter, we obtain better estimates by consider-
ing the first quantity instead of the second one. We will assume without
further comment that our Riemannian manifolds are connected. We
note that, by Gromov’s Betti number theorem, cf. [8], when k = 0, the
Euler-Poincaré characteristic of a closed connected Riemannian man-
ifold M™ is uniformly bounded by a large universal constant C(m)
depending only on the dimension m. Since the first Pontryagin num-
ber of a closed oriented 4-manifold is proportional to the signature of
the manifold, when sec > 0, the first Pontryagin number is also uni-
formly bounded. In contrast, in each dimension 4n, n > 2, there exists
an infinite sequence of simply connected manifolds with sec > 0 and
mutually distinct Pontryagin numbers, cf. [5]. In this case, our results
show that these numbers grow at most polynomially in terms of K
and r.

2. The Euler-Poincaré characteristic. Let M be a closed,
oriented Riemannian manifold of dimension 2n with sectional curvature
k < sec < K and radius r. In this section we will estimate the Euler-
Poincaré characteristic of M in terms of k, K and Vol (M), the volume
of M. We will denote the coefficients of the curvature tensor of M by
Rijim. The Euler-Poincaré characteristic X(M) of M is given by the
generalized Gauss-Bonnet theorem, cf. [9, 11]:

Vol (82"
(2.1 o = [ v,
2 M
where S2" is the unit 2n-sphere, dV is the volume element of M and
(2.2)
(_1)n i1-i2n oJ17 20
f(p) - 2”(2n)' ' Z Riyizjigs * Rign_viznjon—152n€ €
1,---,%2n
Jiseeesd2n

in terms of any orthonormal basis of 7,(M). The symbol gl izn
denotes the sign of permutation (l; - --l2,) of the indices {1,... ,2n}.
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Now we estimate function f in terms of £ and K. Since £ < sec < K,
then cf. [4]

(2.3) Rijim| < C = max(—k, K, (2/3)(K — k)).

In particular, for £ > 0, we have |R;ji,,,| < K. It follows from equation
(2.2) that, for any p € M,

(2.4) ) < Z2

Taking the absolute values in equation (2.1) and using estimate (2.4),
we obtain

Vol (S27)

&) e < B

(2.5) T

Vol (M).

3. The Pontryagin numbers. Let N be a closed, oriented
Riemannian manifold of dimension 4n with sectional curvature k£ <
sec < K and radius r. In this section we will estimate the Pontryagin
numbers of N in terms of k, K and Vol (NV).

A partition of n is an unordered sequence of positive integers
I = ky,...,ks with sum n. The Ith Pontryagin number p;(N) =
Dk, * - P, (V) is defined to be the integer

pr(NV) :/ Dy N+ A D
N

where py is an exterior 2k-form representing the kth Pontryagin class
of N, cf. [10]. Let Q) be curvature 2-forms of N. By the Weil theorem,
we can take

Ph = e OO A A Qi
(27)2k(2k)!

where the summation runs over all ordered subsets (i1, ... ,i2) of 2k el-
ements of (1,...,4n) and all permutations (ji, ... ,j2x) of (i1,... ,42k).
The symbol (5{112]22: denotes the sign of the permutation (j1,... ,j2k)

of (il, ce ,igk), cf. [9]
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Given a partition I = kq,... ,ks of n and using the definition of the
wedge product, we can write

(3.1) pz(N)Z/ Phy A A Dk, =/ g-dv,
N N

where dV is the volume element of N. The function g can be written
as

1
(3.2) g(p) = 1 Z ghlanpy
!

1. 5lan

where
S

A =247 ] (2k:)! (k)
i=1

and Fj, ..., is the product of the s functions

n

J1eJ2ky o o
E :6i1...i2k1 E :sgn (U)Rlau)la(z)ll]l T Rlv(élkl—1)l0(4k1)12k1]2k1’
(e

J1---J2kg
E :61'1...1'2]95 E : sgn (U)ng(4n—ks+1)lg(4n—ks+2)iljl T Rl0(4n—1)lo'(4n)i2k:sj2ks )
o

in terms of any orthonormal basis of 7,(IN). Here o denotes a permuta-
tion of elements in the sets of indices {1,... ,4k1}, {4k1 +1,... ,4(k1 +
k2)}, ..., {4n— ks +1,... ,4n} determined by the partition of n.

Using (3.2) and estimate (2.3), it follows that, for any p € N,

(3.3) lg(p)| < BC*",
where
(3.4) B (4t

T 2dna2n 2 (4n — 2k;)!
Taking the absolute values in equation (3.1) and using (3.3), we obtain
(3.5) ipr(N)| < BC?" Vol (N),

where B is the constant in (3.4).
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4. Main results.

Theorem 4.1. Let M be a closed, oriented Riemannian manifold of
dimension 2n with sectional curvature k < sec < K and radius r. If
k =0, then
(2n)1?  (KrH)m

‘X(M” < nl2 : 23n

If £ <0, then

x(M)]
n)12Cn(-1)"1! iy n— cosh®™ T (r/=k) —
(2n)12C"(-1) Z < 1>( h (rv/—k) 1>’

= 28n=lpl(n — DI(—k)" 2m+1

=0

where C' is given by (2.3).

Proof. Since sec > k, it follows from Bishop’s theorem that
(4.1) Vol (M) < vi™(r),

where v2"(r) is the volume of the ball of radius 7 in the model space
of constant sectional curvature k£ in dimension 2n. It follows from
inequalities (2.5) and (4.1) that

Vol (S27)
2

(4.2) |X(M)| < Tvk (r).

For k = 0, we have C' = K, cf. equation (2.3). The desired estimate
follows from (4.2) by using the well-known facts

n22n+1n!
(s =
Vol (8) = —a
and )
B ="

Suppose now that k < 0. It is well known that

=k
(4.3) v2"(r) = (—k)~" Vol (52”71)/0 sinh®" ™! (z) dz.
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The integral above has the explicit expression, cf. [7],

rv—k
/ sinh®" () dz
0

— (—p nf(—l)m(” - 1) (""SW“W‘_’“) - 1).

m 2m+1

m=0
(A formula for this integral also appears in [6], although with a typo:

the first exponent in the last part of the formula in [6] should be m
instead of n.)

Since o n
Vol (87" 1) =
ol ( ) (n—1)V
straightforward computations using (4.2) and (4.3) yield the inequality
in the statement of the theorem. O

The same argument used to prove Theorem 4.1, now using equation
(3.5), yields bounds on the Pontryagin numbers.

Theorem 4.2. Let N be a closed, oriented Riemannian manifold of
dimension 4n with sectional curvature k < sec < K and radius r, and
let I =kq,...,ks be a partition of n. If k =0, then

(4n)!s+1 (KT.Z)Zn

PN < Gy, n — 2y 2%

If k <0, then

()] < A0 S -2n:<—1>m () (e ),

m=

where
(4n)!s+1(_1)2n71

(2n — 1)124n 1 [[2_, (4n — 2k;)!"

A(n) =

Corollary 4.3. Let N be a compact Riemannian manifold of dimen-
sion 4 with sectional curvature 0 < sec < K, radius v and let o be its
signature. Then

lo| < 3(Kr?)2.
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Proof. By the signature theorem ¢ = (1/3)p;. Combining this with
Theorem 4.2, we obtain the desired estimate. ]

Remark. By Theorem 4.1, a 4-manifold M with 0 < sec < 1 and
radius 7 must have [x(M)| < 9/4 - 7% In dimension 4, a manifold
with nonnegative sectional curvature must have nonnegative Euler
characteristic, cf. [3]. Hence, 0 < x(M) < 9/4-rt.
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