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CONVERGENCE FOR ESSENTIALLY STRONGLY
INCREASING DISCRETE TIME SEMI-FLOWS

TAISHAN YI, BINGWEN LIU AND QINGGUO LI

ABSTRACT. This paper introduces a class of essentially
strongly increasing discrete time semi-flows, for which several
principles of convergence of every precompact orbit to cycles
or fixed points are established. Our results with weak mono-
tonicity improve the classical ones in the literature. In particu-
lar, we present two examples illustrating that our main results
overcome the drawbacks of the classical ones which require the
delicate choice of state space and the technical ignition as-
sumption in the applications to periodic quasi-monotone sys-
tems of delay differential equations.

1. Introduction. Hirsch [9] established that the generic precompact
orbit of a cooperative and irreducible system of ordinary differential
equations converges to the set of equilibria, and Manato [17] announced
similar results. The results of Hirsch and Matano have greatly attracted
the interest of many authors in the dynamics of strongly increasing
discrete and continuous time semi-flows. Hirsch [10] showed that most
orbits of a strongly increasing continuous time semi-flow on a strongly
ordered space converge to the set of equilibria, which was later improved
by many authors, see for example, [11, 15, 18, 24, 25, 29, 34]. The
results of Pold¢ik and Terescdk [19, 20] and later improvements by
Hess and Polacik [8] established that the generic orbit of a smooth
strongly increasing discrete time semi-flow converges to a cycle. The
above-mentioned generic properties imply that precompact orbits have
a strong tendency to converge to fixed points or cycles. In fact, if
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some additional conditions are imposed, then every precompact orbit
converges to fixed points or cycles. For example, under the condition of
orbital stability, Alikakos et al. [1] first established the convergence of
every precompact orbit to a fixed point for strongly increasing discrete
time semi-flows. Dancer and Hess [5] and Tak4¢ [28] later improved
the results of [1] by adding the condition of fixed point stability. Many
other hypotheses, such as the sublinearity and the first integral, etc.,
have also been utilized in [13, 14, 21, 27, 32, 35] to guarantee the
similar convergent properties. Other work related to this topic can also
be found in the monographs [4, 7, 12, 23, 36].

The main purpose of the present paper is to investigate the con-
vergence of essentially strongly increasing discrete time semi-flows.
Our goal is to show that every precompact orbit of a conditionally
a-condensing, essentially strongly increasing discrete time semi-flow
converges to fixed points or cycles if every fixed point is stable or
the existence of a totally ordered arc (contained in the set of peri-
odic points) holds. The stimulation of interest in our study is justified
by several facts. Firstly, since the conditions such as the sublinearity
and the first integral guarantee the fixed point stability or the exis-
tence of a totally ordered arc (contained in the set of fixed points),
we will devote our attention to establishing the convergence principle
provided that every fixed point is stable or the existence of a totally
ordered arc (contained in the set of fixed points or periodic points)
holds. Secondly, when applied to periodic quasi-monotone systems of
delay differential equations and reaction-diffusion equations with delay,
the classical convergence principles for strongly increasing discrete time
semi-flows suffer from some drawbacks such as: the requirements of the
delicate choice of state space and the technical ignition assumption, see
[16, 22] for more details about this assumption. Motivated by Yi and
Huang [34], we introduce the notion of an essentially strongly increas-
ing discrete time semi-flow (see Section 2 for definition), and this allows
us to overcome the above-mentioned drawbacks. Finally, the periodic
mappings of periodic systems of functional differential equations are
generally only conditionally a-condensing or conditionally completely
continuous, thereby impelling us to improve the compactness assump-
tions used in Dancer and Hess [5] and Takac [28, 30, 31].

The organization of the rest of this paper is as follows. In Section 2,
we give the definition of essentially strongly increasing discrete time
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semi-flows and establish several preliminary results which include one
on the existence of the third fixed point. In Section 3, we state and
prove our main results, which not only improve the classical ones by
weakening the compactness and monotonicity assumptions but also
correct some mistakes occurring in the proofs of Takac [28, 30, 31].
Additionally, unlike the results of [28, 30, 31|, our results do not
require the state space to be strongly ordered. In Section 4, we
provide examples to show that our results can successfully overcome
the drawbacks of the classical results of [5, 28, 30, 31] in applications
to periodic systems of delay differential equations.

2. Preliminary results. We start with some notations and
definitions.

The space X is called an ordered metric space if it is a metric space
with metric d and a closed partial order relation R C X x X. For
any z,y € X, we write ¢ < y if (z,y) € R, 2 < y if z < y and
z #y, and z < y if (z,y) € Int R. Given a,b € X, we denote a
closed order interval in X by the set [a,b] = {z € X : a < z < b},
(a,b) = [a,b]\ {a,b}, and an open order interval in X by [[a,b]] = {z €
X 1a <z < b}. We write [a,00]] = {& € X : © > a}, and similarly
for [[—o00,b], etc. A subset Y C X is said to be order-convex in X if
[a,b] C Y, whenever a,b € Yand a < b; lower closed if [[-0c0,b] C Y,
whenever b € Y; and upper closed if [a,00]] C Y, whenever a € Y.
A subset Y of X is called order-bounded if it is contained in a finite
union of order intervals in X, i.e., there exist a;,b; € X with a; < b;,
i=1,2,...,nsuch that Y C U ,]a;, b;].

Let V be a strongly ordered Banach space, that is, V is a Banach
space and V; = {z € V : ¢ > 0} is an order cone with nonempty
interior Int (V). For any a,b € V., we writea < bifb—a eV ,a<b
ifa<band a#b,and a < bif b—a € Int V;. We denote closed order
intervals in V by [a,b]y = (a+ V)N (b—=Vy), (a,b)v = [a,b]v \ {a, b},
and open order intervals in V' by [[a,b]]ly = (a +Int V) N (b — Int V7).
We write

[a,oo]]v =a+ V+7 [[G,OO]]V =a + Int V+7

and similarly for [[—o0, b]y, [[—00, b]]y. Observe that an order-bounded
subset of V' is a bounded set.

Throughout this paper, we will always assume that X is an ordered
metric space, V is a strongly ordered Banach space and T : X — X is
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a continuous mapping. However, we do not assume that X is strongly
ordered in sense of Hirsch [10].

Definition 2.1. The mapping T is called increasing (strictly increas-
ing, strongly increasing, respectively) if z,y € X and z < y implies
Te < Ty (Tz < Ty, Tz < Ty, respectively). T is called essentially
strongly increasing if T is an increasing mapping which has the follow-
ing properties:

(i) For every z,y € X with z < y, we have Tx =Ty or Tz < T'y;
(ii) For every z,y € X with ¢ < y, we have Tax < Ty.

Two points z,y € X are called essentially ordered if z < y and
Tz < Ty. In particular, z is not essentially ordered with itself. A
subset Y of X is called essentially ordered if Y contains at least two
essentially ordered points. Otherwise, Y is called essentially unordered.

According to Definition 2.1, the essentially strongly increasing prop-
erty is weaker than the strongly increasing property. As stated in the
introduction, the theory of essentially strongly increasing mappings has
great advantage when applied to periodic quasi-monotone systems of
delay differential equations and reaction-diffusion equations with delay.
In the following, we shall investigate the asymptotic behavior of an
essentially strongly increasing mapping.

Let O(z,T) = {T™(x) : n > 0} be the positive semi-orbit through
the point z € X. If O(z,T) is precompact, we define the omega limit
set of = by

w(z,T)={ye X :T"z — y (k — oo) for some sequence ny — co}.

One can observe that w(z,T') is nonempty, compact and invariant. In
what follows, we will write O(z) and w(z) for O(z,T) and w(z,T),
respectively, so that no confusion might arise. A subset Y of X is
called invariant if T(Y) C Y, and totally invariant if 7(Y) =Y. We
denote by £(T) = {z € X : T(z) = z} the set of fixed points of T.
Given a positive integer k, the elements of £(T*)\ UF_!£(T?) are called
k-periodic points of T. We denote by P(T) = U ,E(T*) the set of all
periodic points of T. The orbit O(z) of a k-periodic point z is called
a k-cycle. We say that a subset K of X attracts another set Y C X
if O(x) is compact in X and w(z) C K for all z € Y. A continuous
mapping T : X — X is conditionally completely continuous if A C X is
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bounded, and T'A bounded implies T A is compact. The mapping T is
completely continuous if it is conditionally completely continuous and
also a bounded mapping. The Kuratowski measure of noncompactness,
a, is defined by

a(A) = inf{r : A has a finite cover of diameter less than r}.

A continuous mapping T : X — X is conditionally a-condensing if
a(TA) < a(A) for bounded sets A C X for which T'A is bounded and
a(A) > 0. The mapping T is a-condensing if it is a conditionally -
condensing mapping which is also a bounded mapping. We refer to
Hale [6] for a study of the dynamics of (conditionally) a-condensing
mappings.

The following convergence criterion comes from [12, 28, 30].

Proposition 2.1 (Monotone convergence criterion). Let T : X — X
be an increasing mapping. Assume that © € X, O(z) is compact, and
let © < Tkx (z > T*z) for some integer k > 0. Then T"**tlz — T'p

asn — 00,1 =0,1,... ,k—1, for somep € E(T*), andp > = (p < x).

The following nonordering principle has been proved by Takac [30]
under the assumption that 7" is a strongly increasing mapping.

Proposition 2.2 (Nonordering of limit sets). Let T : X — X be an

essentially strongly increasing mapping. Assume that x € X and O(z)
is compact. Then w(x) is essentially unordered.

Proof. Assume on the contrary, that w(z) is essentially ordered.
Then there exist p,q € w(z) such that p < ¢ and Tp < Tq. Since
T is essentially strongly increasing, it follows that Tp < Tq. The
invariance of w(z) implies that Tp,Tq € w(z). By definition of w(z),
there exist my,mo > 1 such that 7™z <« T™2z. Without loss of
generality, we may assume mo > my; then T < T™2- "1 (T™g),
and hence w(z) = w(T™'x) is a cycle by Proposition 2.1. Set w(z) by
k = (w(z))*!. Since w(z) is essentially ordered, it is easily seen from the
above discussion that there exist p € w(z) and 1 < i < k — 1 such that
p < T'p. Using Proposition 2.1 again, we obtain p € £(T"). Therefore,
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we have k = (w(z))? < i, which yields a contradiction. This completes
the proof.

The following result is the analogy to the continuous case in [23,
Corollary 1.2.4].

Proposition 2.3. Let T : X — X be an essentially strongly
increasing mapping. Assume that v € X and O(z) is compact. If
p € w(z) satisfying either p < w(x) or p > w(z), then w(z) = {p}.

Proof. Without loss of generality, we may assume p < w(z). If w(z) =
{p}, then the proof is complete. Otherwise, we have w(z)\{p} # @. By
invariance of w(z), we obtain Tw(z) = w(z) > T'p. Thus, there exists
a ¢ € w(z) such that ¢ > p and Tq > Tp. Therefore, p,q € w(z) are
essentially ordered, which contradicts Proposition 2.2. This completes
the proof. a

We will establish the following result by utilizing the theory of the
fixed-point index in Amann [2]. For more details on applications of the
theory of the fixed-point index to prove the existence of the third fixed
point, we refer to [5, 24].

Lemma 2.1. Let K C [p,q]v be a compact conver subset where
p<KLqandp,qg€ K. Let S: K — K be a continuous and increasing
mapping where p,q € £(S). Assume that A C K N [[p,q]]v is a totally
invariant, compact subset of S. Then £(S)\ {p, ¢} # 9.

Proof. Set K = K N |[[p,q]]v. Since A is compact, there exists a
0 > 0 such that

Vip) =(KNO(p,d)) <A, V(g =(KNO(g,0)) > A

Define F : [0,1] x V(p) — K and H : [0,1] x V(¢) — X by
F(\z) =Ap+(1-X)S(z) and H(A\, z) = Ag+(1—A)S(x), respectively.
We next distinguish several cases to finish the proof.

Case 1. F(\, z) = z for some (\,z) €
we have ¢ Zp and ¢ — S(z) = A(p— S
there exists r € £(S) such that lim,_,

[0,1] x OV (p)| k- In this case,
(z )) < 0. By Proposition 2.1,
S™(z)=r and r >z > p, and
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hence r > p. Again ,since < A and A is totally invariant, we have
r < A < ¢, completing the proof in this case.

Case 2. H(\,z) = z for some (\,z) € [0,1] x OV (q)|k. Using a
similar argument to that in the proof of Case 1, we can show this is
also true.

Case 3. F and H are compact homeomorphisms. For this case, we
have Z(Sa V(p)a K) - Z(H(Oa ')7 V(p)a K) = Z(H(]-a ')a V(p)7 K) =1by
invariance of the homotopy property of the fixed-point index in Amann
[2]. Similarly, we have i(S,V(q), K) = 1. The additivity property of
the fixed-point index implies that

’L(S,K \ V(p) U V(q)aK) = Z(Sa Ka K) o Z(SaV(Q)aK) o Z(S’,V(q),K)
=1-1-1
=-1.

Hence, it follows from the solution property of the fixed-point index
that there exists an r € K \ V(p) UV (q) such that Sr = r. This
completes the proof. O

Proposition 2.4. Let the mapping T : [p,qlv — [p,qlv be a-
condensing and increasing where p < q and p,q € E(T). Assume
that A C [[p,q]]v is a totally invariant, compact subset. Then E(T) N

(Ip,qlv \ {p,q}) # 2.

Proof. Let A ={K C [p,qlv : p,q € K, A C K, K closed convex,
TK C K}, K* =NgeaK and K** = co (T(K*)). It is easily seen that
K* = K** € A. As T is a-condensing, the measure of noncompactness
of K* is zero. Hence, K* is a compact convex subset. Applying
Lemma 2.1 to T'|g~, we obtain (K*\ {p,q}) N E(T) # @. Therefore,
we have E(T) N ([p,q]v \ {p,q}) # @. This completes the proof. u]

Remark 2.1. It has been pointed out in Takac [28, 30, 31] that if
T is a strongly increasing mapping and H is a d-hypersurface for some
invariant order decomposition of 7', see [28, 30], then the conclusion
of the above proposition can be replaced by £(T) N H # &. But
unfortunately, Tak4¢’s proof seems to be incorrect, since Takac [28, 30|
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incorrectly asserts that the star-shaped set P(H), see [30, Proposition
1.2] for a definition, is convex. In fact, Example 1.3 of Takac [31]
shows that P(H) is not necessarily convex. Also, Takac [31] incorrectly
asserts that the star-shaped set P(H) is homeomorphic to convex sets.
Moreover, we should point out that the conclusion £(T) N H # @ is an
important tool in the proof of the main results of Takac [28, 30, 31].
It is therefore necessary to make corrections to Takdac¢’s results.

3. Main results. The main goal of this section is to investigate the
asymptotic behavior of an essentially strongly increasing mapping.

As an application of Proposition 2.4, we obtain the following result,
which corrects and improves Theorem 1.4 of Taka¢ [28] and Theo-
rem 2.4 of Takac [30].

Theorem 3.1. Let the mapping T : [p,qly — [p, q]v be a-condensing
and essentially strongly increasing where p < q and [p,qly N E(T) =
{p,q}. Then [[p,q]]v is attracted by either p or q.

Proof. As T is a-condensing, every orbit is precompact. By way
of contradiction, suppose that neither p nor ¢ attracts [[p,¢]]yv. Let
LY ={z € [p,qlv : ¢ = tp + (1 — t)q for some t € (0,1)}. We claim
that there exists a point ¢ € L% such that p,q ¢ w(c). Otherwise,
we have either p € w(z) or ¢ € w(z), for every z € L°. It follows
from Proposition 2.3 that either p = w(z) or ¢ = w(z), for every
z € LY. Consequently, by hypotheses and the fact that T is an
increasing mapping, there exists ¢ € LY such that, for each = € L°,

w(z)=p fz<c, andw(z)=q ifz>c

Without loss of generality, we may assume w(c) = p, then w(c) < c.
Hence, there exists a positive integer k such that T%c < ¢. Continuity
of T implies that there exist ¢ < ¢/ € L° such that T%¢’ < ¢ < ¢’. Since
T is increasing, it follows from w(c) = p that w(c') = w(T*c') < p,
which contradicts the choice of ¢ and establishes the above claim.
Since w(c) is compact and invariant, p, g ¢ w(c) and T is an essentially
strongly increasing mapping, we have w(c) C [[p,q]]lv. Therefore, by

Proposition 2.4, we obtain ([p,q]v N E(T)) \ {p,q} # <, which is a
contradiction. This completes the proof. ]
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We now define the following ordering “<r.” If A,B C X and the
mapping T : X — X is increasing, we denote AT = U;>¢, aca[T"a, 0]
and AT = U;>0, aea[[—00,T"%a]. Similarly, the notations BY and B”
can be defined. We write A <¢ Bif AC B and B C AT, If T = idx,
then the ordering “=<;4,” has been introduced by Takac [30], where
tdx : X — X is an identity mapping.

Lemma 3.1. Let T be an increasing mapping. Assume that x €
P(T), y € X and O(y) is compact. If the integer k > 1, then
O(z) =1 w(y) if and only if O(z, T*) <7 w(y, T*).

Proof. If k = 1, then the conclusion is obvious. It remains to prove
the case k > 2. Clearly, (O(z))] = U;>0[T"z,00]] and (O(z, T*))T =
Uiso[T w, o0]], that is, (O(z))% = (O(z,T*))%. Also, w(y, T*) C w(y)
implies that (w(y,T*))L C (w(y))L. We show next that (w(y))L C
(w(y,T*))L. Assume that p € (w(y))T. Then there exist i > 0 and
n; — oo such that lim,, . 7™y € w(y) and p < T%(limy,, 00 T™Y).
Since n; = myk + § and 0 < §; < k — 1, we may assume, without
loss of generality, that §; = 6 and 0 < § < k — 1. Then p <
T (lim,,, oo T™*y) and hence p € (w(y, T*))~. Therefore, we have
(w(y)T = (w(y,T*))T. We prove only the sufficiency, the proof of
the necessity following easily from the above discussion. Assume that
p € O(z); then there exists i > 0 such that p = T%z. It follows from
r € O(x,TF) C (w(y,T*))T that there exist ¢ € w(y,T*) C w(y)
and [ > 0 such that x < T'q. Since T is strictly increasing, we
have p = Tiz < Titlg, that is, O(z) C (w(y))T. Assume that
g € w(y); then there exists n; = myk + § with 0 < § < k — 1
such that ¢ = lim,, 5 Tmuk+oiy - Without loss of generality, we may
assume that §; =6, 0 < J < k — 1, and lim,,, T™ky exists. The
compactness of O(y) implies ¢ = T°(lim, 00 7™ *y). It follows that
lim, 00 7™y € w(y, T*) C (O(z, T*))?, and hence g € (O(z))% and
w(y) € (O(z))%. Therefore, we have O(z) <7 w(y). This completes
the proof. a

It should be emphasized that if “<7” in Lemma 3.1 is replaced
by “=<iq,” then the result of Lemma 3.1 does not necessarily remain
valid. For example, suppose that X = R% X, = Rﬁ_ and define
T : R* - R? by T(z,y) = (y,x). Let £ = (1,3) and n = (4,2).
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Then 0(€) = {(1,3), (3, D}, w(n) = {(4,2), (2,4)}, O(&, T%) = {(1,3)},
w(n,T?) = {(4,2)}. It follows that O(£) =Xiq w(n). But O(£,7?) <ia
w(n,T?) does not hold. In the proof of Theorem 2.5 of Taka¢ [30], it
was wrongly thought that Lemma 3.1 still holds if “<¢” is replaced
by “=<;q4.” Observe that the proofs in Theorem 2.5 of [30] are heavily
dependent on this incorrect proposition.

As an improvement of Theorem 2.5 in Takic [30], the following
theorem is more effective than the previous one in applications to
periodic delay differential equations. Our proof presented below, whose
idea essentially originates from Tak4¢ [30], also provides a correction
of Také¢ [30].

Theorem 3.2. Let T : X — X be an essentially strongly increasing
mapping. Suppose that J : [0,1] — X is a strictly increasing continuous
path (with its image) contained in P(T), i.e., 71 < T2 tmplies J(11) <
J(12), with endpoints a = J(0) and b = J(1). Then we have the
following statements:

(i)jt O(J([0,1])) = Uaepo,110(J () be compact in X. If x € [a, b]

and O(z) is compact in X, then w(z) = O (J(7)), where T = 7(x) :
[a,b] = [0,1] is an increasing mapping.

(ii) Let X C V be open and order-convez. Denote Y = U2 [T a, T'b]
is an invariant, order-bounded set. Assume also that Ty : Y —
Y is a-condensing. Then there exists an integer k > 1 such that
O(J()) is a k—cycle for every o € [0,1] and the order intervals
[T'a,T'b], | = 0,1,... ,k — 1, are pairwise disjoint. In particular,
O(J([0,1])) is the union of pairwise disjoint, simply ordered, closed
arcs TH(J([0,1])) C E(T*) \ UFZE(T), 0 <1 <k —1.

Proof of (i). Assume that z € [a,b]. Let A = {a € [0,1] :
Ot (J(a)) 27 w(z)}. From O (a) =1 w(zx), it follows that A # @.
Let ap = sup.A. We first show that oy € A. Set ag = J(ap). By
J(ap) € P(T), there exists an integer k' > 1 such that J(ag) € E(T*).
If g = 0, then ag € A since A # &. If ag > 0, then the definition
of ap implies that there exists a,, € A such that a,, < a,t1 < ag and
ap — ag as n — 00. Set a, = J(ay,) for n > 1. Then a, < ant1 < ap
and a, — ap as n — oo. Fix any y € w(z). From «, € A, we have
T*ra, <y for some sequence k, > 0. Since O(J[0, 1]) is compact, we
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may assume, without loss of generality, that T%"a, — z € X, then
z < y. As T is increasing and a, < ag, it follows that there exists
k' > r > 0 such that z < T"ay. Thus, we have either Tz = T"'ag or
Tz < T"tlag, since T is an essentially strongly increasing mapping.
If the former one holds, then 77 t'aq < Ty. If the latter one holds,
then we can take a large n > 0 so that TTk»a, <« T"t'a,, which
contradicts that w(a,) = O(ay) is essentially unordered. Thus, for any
y € w(zx), there exists 0 < r < k' such that T"*lay < Ty. Again
since w(z) is totally invariant, it follows that, for every y € w(x), there
exists 0 < r < k' such that 7'%"ag < y. Hence, w(z) C (O(ao))i.
Choose an integer [ > 1 such that k'l > 1+ k’. Then for any y € w(z),
there exists 0 < r < &' such that T*1-(+n)(T14rgy) < TFI-(1+r)y
since 7" is increasing. Thus, we have ag < T*!~ 047y ¢ y(z). This
implies that O(ag) C (w(z))”, and hence ag € A. Since ag € A and
T is an essentially strongly increasing mapping, it follows that for any
y € w(z), there exists k' > r = r, > 0 such that either 77! (ag) = Ty
or T (ag) < Ty.

If ap € w(z), since w(z) is essentially unordered, it follows that for any
y € w(z), there exists r > 0 such that Ty = T" ! (ag) € O(ao). Hence,
we obtain w(z) = Tw(z) C O(ag). Therefore, we have w(z) = O(ao)
and the proof is complete.

If ap ¢ w(z), then ap € P(T') implies that, for any y € w(z), there
exists k' > r > 0 such that 7"*1(ag) < T'y. Thus, for any y € w(z),
there exist £’ > r = r, > 0 and an open neighborhood O, of y such that
T (ap) < T(O,). By the compactness of w(z), we obtain that there
exist y; € w(z), 0 < r; < k', 1 < i < ng, such that U°,0,, O w(zx)
and T"*(ay) < T(Oy, Nw(z)). As O,, Nw(z) is compact, there
exists a) > ag such that 7"+ lay < T+ J(a}) < T(Oy, Nw(z)). Set
o' = minj<i<n, @; > . Then, fori =1,2,...,ng, we have T"T1qy <
Tt J (o) < T(O,, Nw(x)). Again, since (U,0,,) Nw(z) = w(z)
and w(z) is totally invariant, we get w(z) C (O(J(/)))%. It follows
from T 71 J (o) < T(y1) and J(') € P(T) that O(J(a)) C (w(z))T.
This means that o’ € A, a contradiction to the choice of aqg.

To sum up, we have w(z) = O*(J(r)), where T = 7(-) € [0, 1] depends
on .

Next we show that 7(-) is increasing. If this is not the case, then
there exist z,y € [a,b] with < y such that 7(z) > 7(y). From the
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above discussion, we see that there exist two sequences ny and my such
that Tz — J(r(x)) as ng, — oo and T™y — J(7(y)) as my — oo.
Without loss of generality, we may assume that p = lim,,, oo T2 €
O(J(7(z))). Since T is increasing, we get p < J(7(y)). Hence, we have
p < J(7(z)), which contradicts Proposition 2.2.

Proof of (ii). Let k' be the smallest positive integer satisfying
a,b € E(T*). Denote

Y, = [T'a,T'], J,=T'J([0,1])), 0<I<k —1.

ThenY = U;iBlYl is an invariant, order-bounded set. AsT|y : Y — Y
is a-condensing and U;iglJl C Y is a totally invariant and bounded

set, it follows that the set U;iBlJl is precompact. Similarly, every orbit
has compact closure. Hence, the hypotheses of Part (i) are all satisfied.

Set I = {a € [0,1]: J(a) € E&(T*)}. Then 0,1 € I. We claim that if
a, € I with a < 3, then there exists v € (a,8) N I. Denote p = J(a),
q=J(B) € E(T*). Choose § € (a, B). Then J(§) € P(T*). Tt follows
from p < J(8) < ¢ and Proposition 2.3 that p < w(J(8),T*) < q.
By Proposition 2.4, there exists r € 5(Tk') N (p,q). Applying Theorem
3.2 (i), we obtain that there exists v € [0,1] such that w(r,T*) =
{r} = 0(J(v),T*¥) = {J(v)}. Hence, v € (o, 8) N I. From the above
claim and 0,1 € I, it follows that I = [0,1]. Again, since I is a
closed set, we obtain I = I = [0,1], from which we can conclude that
J([0,1]) € E(TF).

Hence J; C E(T*), and J; is a simply ordered, closed arc. By
Theorem 3.2 (i), the arc J; attracts the set Y; under the mapping
T%. Now suppose that the set Y;, 0 < | < k — 1, are not pairwise
disjoint. Otherwise, we may assume, without loss of generality, that
YoNY, # @ for some m € {1,2,...,k — 1}. Choose y € Yy NY,,.
Then T”k'y — p as n — oo for some p € Jy N J,. Next we prove
that JO N JY, # @, where J? = J; \ {T%a, 7'} for 0 < | < k' — 1.
If p e JQNJY # @, then J§ N JY # @. Otherwise, we have
p € {a,b,T™a,T™b}. Without loss of generality, we may assume
that p = a € JyN J,,,. Since X is open in V and J,, C E(Tk’) is
a totally ordered arc, we obtain J,, N [[a,b]] # &, that is, there exists
a* € (0,1) such that J,,(a*) € [[a,b]]. By Theorem 3.2 (i), we have
W(Jm(a*), TF) = Jpm(a*) = Jo(a**) for some a** € [0,1]. It is easily
seen that o** € (0, 1), and thus L = J{NJY, # @. Clearly, L C Int (Yp)
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and J, \ L C X\ Yy which shows that L = J2, because J?, is connected.
Again, since w(J()) is essentially unordered for a € [0, 1], it follows
that J2, C &£(T™), and hence a,b € E(T™), which contradicts the
definition of k’. Therefore, Y;, 0 < | < k — 1, are pairwise disjoint sets
and we have proved (ii). O

The following result improves Theorem 2 of Dancer and Hess [5].

Theorem 3.3. Assume that a*,b* € V satisfy a* < b*, and let the
mapping T : [a*,b*]y — [a*,b*]y be essentially strongly increasing and
a-condensing. Then we have the following statements:

(i) If £(T) is a singleton, then w(x) = E(T) for all x € [a*,b*]y.

(i) If E(T) is not a singleton and every equilibrium of T is Liapunov
stable, then there exists a strictly increasing continuous mapping J :
[0,1] — [a*,b*]y such that E(T) = J([0,1]) and, for any = € [a*,b*]y,
there exists T € [0,1] such that w(z) = {J(7)}.

Proof. Since T is a-condensing, O(z) is compact for all z € [a*, b*]y.
By a* < Ta*, Tb* < b* and Proposition 2.1, there exist a,b € (T
such that T"a* — a and T™b* — b as n — oo. Hence, a < b.
If £(T) is a singleton, then a = b. Conclusion (i) follows from the
fact that T is increasing. If £(T) is not a singleton, then a < b
since T is essentially strongly increasing. Set X = [a,b]y. Then
T : X — X is essentially strongly increasing and a-condensing. Next,
we prove that £(T) is order-connected. Set A = {A C E(T) N [a,b] :
A is a simply ordered subset}. Now consider the partially ordered set
(A, Q). By Zorn’s lemma, A has a maximal element A*. We claim that
A* has the following properties:

(i) a,b € A*.
(ii) p,q € A* with p < ¢ implies that p < ¢ < ¢ for some c € A*.
(iii) A* is compact.
)

(iv) A* is connected.

Property (i) is obvious. If property (ii) is not true, then p < ¢
since T is essentially strongly increasing. By Theorem 3.1, [[p,q]] is
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attracted by either p or g, which contradicts that p and ¢ are Liapunov
stable. Therefore, property (ii) is true. Since T is a-condensing and
A* C[a,b|NE(T), it follows that A* is precompact. Next we show that
A* is closed. Otherwise, there exist = € [a,b] \ A* and z, € A* such
that lim,,_, o, x, = . Without loss of generality, we may assume that
Ty < Tpyy1 < x for n > 1, since A* is totally ordered. By =z, € £(T),
we have z € £(T). For any y € A*, we have either y > x,, for alln > 1
or y < z,, for some nyg > 1. If the former one holds, then y > z. If
the latter one holds, then x > y. Therefore, A* U {y} C £(T) N ]a,b] is
totally ordered, which contradicts the choice of A*.

Now we are ready to prove property | (iv). If A* is not connected, then
there exist nonempty closed subsets A and B such that AN B = @ and
AUB = A*. Choose pE A and q € B Without loss of generality,
we may assume that p < q. Set A = AN [p,q] and B = BN [p,q].
Since B is compact and totally ordered, there exists ¢* € B such that
¢* = inf B > p. Again, since A is compact and totally ordered, there
exists p* € A such that ¢* > p* = sup(4 N [p,q*]). By property (ii),
there exists ¢ € A* such that p* < ¢ < ¢*. But AUB = A* N [p,q]
implies that ¢ € A U B, a contradiction to the choices of p* and g¢*.
Hence, we have proved (iv).

Combining the properties (i), (iii) and (iv) with Theorem 11.12 in
Chapter I of Wilder [35], we see that Y* is the image of the strictly
increasing continuous path J : [0,1] — [a*,b*]y, where J(0) = a and
J(1) = b. Assume that z € [a*,b*]y. Then the choices of a and b imply
that a < w(z) <b. If a € w(x) or b € w(z), then either w(z) = {a} or
w(z) = {b}. If a,b ¢ w(x), then ¢ € w(xz) <K b since T is essentially
strongly increasing. By the definition of w(z), there exists n’ > 1
such that a < T™ (x) < b. Therefore, by Theorem 3.2 (i), for every
z € [a*,b*]y there exists 7, € (0,1) such that w(z) = {J(7,)}. This
completes the proof. |

The following lemma is an improvement of a result of Dancer [3].

Lemma 3.2. Let X C V be closed, order-convex, and let the mapping
S : X — X be continuous, increasing and conditionally a-condensing.
Assume also that every orbit is bounded in X. If every compact and
totally invariant subset of X has upper bound and lower bound in
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X, then for any compact and totally invariant subset K, there exist
p,q € E(T) such that p < K < q.

Proof. Let K be a compact and totally invariant subset of X. Since
K has upper bound in X, there exists an a € X such that K < a.
By the invariance of K, we have K < w(a,S). Similarly, there exists
a b € X such that w(a,S) < w(b,S). Set A ={4AC X :w(a0S) C
A, K < A < w(b,S), Ais closed convex, SA C A}, A* = Ngecqd
and A** = co(S(A*)). By the choices of a and b, we obtain A # .
It follows from the definitions of A* and A** that A* = A** € A are
closed convex. As S is a-condensing, we obtain that A* is a compact,
totally invariant and convex subset. By Brouwer’s fixed-point theorem,
there exists a ¢ € A* N E(S), and hence K < ¢. Similarly, there exists
a p € £(S) such that p < K. This completes the proof. O

Our final theorem improves a result of Tak4¢ [28] and also needs the
following hypotheses:

(A) X is a closed order-convex subset of V' and its every compact
subset has upper and lower bound in X.

(B) T : X — X is conditionally a-condensing and is an essentially
strongly increasing mapping, and every equilibrium of T' is Liapunov
stable.

(C) For any z € X, O(z) is a bounded set.

The following result improves Theorem 1.5 of Tak4¢ [28] in several
aspects. First, we weaken the monotonicity and compactness assump-
tions on the mappings. Second, we do not require the ordered space
“X” to be strongly ordered. Finally, unlike in Theorem 1.5 of [28], we
do not need any lattice structure and solely need that every compact
subset of the ordered space X has upper and lower bound. It should be
noted that if X is an order interval such as [a,b]y and [a, ]|y, then
assumption (A) follows naturally, but such an X does not necessarily
satisfy the lattice conditions as required in Theorem 1.5 of [28].

Theorem 3.4. Let (A), (B) and (C) hold. Then E(T) is either a
singleton or the image of a strictly increasing continuous path J : Iy —
X, I; C[0,1]. Iy is a closed interval whenever £(T) C X is compact.
Furthermore, if x € X, then w(x) = p for some p € E(T).
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Proof. Suppose that £(T) is a singleton. Then Lemma 3.2 implies
E(T) < w(x) < &(T) for any # € X and hence w(z) = £(T'). The
proof is complete. Suppose that £(T') is not a singleton. Then, by
Theorem 3.3, £(T) is order-connected. Denote by  the set of all
maximal totally ordered subsets of £(T). By Zorn’s lemma, we have
Q # @. Choose B € . It is easily seen that B is either order-
unbounded or compact. Next we show that B = £(T'). Otherwise,
there exists an a € £(T") \ B. Fix any b € B. Set K = {a,b}. Then K
is compact and totally invariant. It follows from Lemma 3.2 that there
exist p,q € E(T) such that p < K < ¢. By Theorem 3.3, [p,q] N E(T)
is a totally ordered arc. Hence, a,b € [p,q] N E(T) implies that either
a < bor a>b. Since b is arbitrary, we see that B’ = B U {a} is still
a totally ordered subsets of £(T'), which contradicts B € Q. Therefore,
we obtain B = £(T). Using a similar argument as that in Theorem
3.3 (ii), we can show that B is the image of the strictly increasing
continuous mapping J : I, (e.g., [0,1],(0,1),[0,1),(0,1]) — X and if
E(T) is compact then Iy is a closed interval.

Fix any z € X. Since w(z) is compact and totally invariant, it follows
from Lemma 3.2 that there exist p,q € £(T) such that p < w(z) < ¢. If
p = q, then w(z) = {p} = {¢} and the proof is complete. If p < ¢, then
p < g since T is essentially strongly increasing. In this case, if p € w(x)
or g € w(z), then Proposition 2.3 implies that w(z) = p or w(z) = ¢;
if p,q ¢ w(z), then p < w(z) < ¢q. By the definition of w(z), there
exists an ng > 1 such that p < T™z <K q. It follows from Theorem 3.3
that there exists an r € £(T) such that w(z) = w(T™x) = {r}. This
completes the proof. O

As an immediate consequence to Theorem 3.4, we obtain the following
result, which improves Theorem 2 of [5] in many respects.

Corollary 3.1. Let T : X — X be a continuous, essentially strongly
order-preserving and conditionally a-condensing mapping, where X s
V or V. Assume further that every orbit is bounded and all fized points
are stable. Then w(z) = {q} C E(T), for any x € X.

4. Examples. Let n be a given positive integer. Let r > 0 be a
given real number, and let C' = C([—r, 0], R™) be the Banach space of
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continuous mappings from [—r, 0] into R™, equipped with the supremum
norm. Define C = C([—r,0], R}). It follows that (C, C.) is a strongly
ordered Banach space. For any ¢, 9 € C, we write ¢ < ¢ if p—p € C,,
p<vifop<yYvand p# Y, p LY if iy —p €IntC,. For any A C C,
we write p < Aif p <ty forallp € A, p < Aif o <9 forall ¢ € A,
p K Aif p < for all Y € A. Similarly, we can define “>,” “>” and
“>.” For instance, ¢ > ¢ if ¢ — ¢ € Cy. For any x € R", we define
zeCbyz) == 06¢€[-r0]

Now, we consider applications of our main results to periodic systems
of delay differential equations, which illustrate that our main results do
not require the delicate choice of state space and the technical ignition
assumption required by the classical results.

Example 4.1. Consider the following generalized gonorrhea model,
see [27]:
(41) dxc{t(t) = Ri(t,mt) — Ci(t, CEt) = Fi(t, CEt), =12,...,n.
Here F; : Ri_ x Oy — R! is continuously differentiable and 7—periodic
in time ¢ € RY. Assume that {o € RY and ¢ € Cy, and use z(to, ¢)
to denote the solution of (4.1) with the initial data x:,(to, ) = .
Set F = (F1,Fy,...,F,)T. It is also assumed that F is completely
continuous. In order to apply the main results developed above to
system (4.1), we need the following several important hypotheses.
Choose P = (P, Ps,... ,P,)T € Int R}

(A1) F(t,0) > 0 and F(t, P) <0 for all t € RL.
(A2) Assume that ¢t € R} and ¢,¢ € C4 with ¢ < 9. If ¢;(0) =
¥i(0), then Fi(t, ) < Fi(t,¢).

(A3) For any ¢ € [0, P] and t > 0, the n x n matrix D,F(t,¢)(é1, €2,
.., €y,) Is irreducible.

~

(A4) Whenever ¢ € [0,P], t € RY and o € [0,1], it follows that
aF(t,p) < F(t, ap).

By the hypotheses (A1) and (A2), we conclude that for any ¢ € [0, ﬁ],
x¢(to, p) is well defined for all ¢ > ¢.

The following results can be proved similarly as [22, Theorem 2.5]
and [34, Theorem 2.1].
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A~ A~

Proposition 4.1. Let (A1), (A2) and (A3) hold. If ¢,v € [0, P]
satisfy ¢ < 1, then either

zi(to, ) = z¢(to, ) fort > (n+2)r+ty, or
z(to, ) K x4(to, ) fort > (n+2)r +to.

Theorem 4.1. Let (Al), (A2), (A3) and (A4) hold. Denote
P ={y €[0,P]: 2(0,%) is T-periodic in time t € RL}. If p € [0, P],
then there exists 1 € P such that lim;_,o |2:(0, ¢) — 2:(0,9)| = 0.

Proof. Define T : [0, P] — [0, P] by Ty = zn.(0,9), where N7 >
(n+2)r. Then T is a compact, essentially strongly increasing mapping.
By (A4), we have aTp < T(asp) for all a € [0,1] and ¢ € [0, P]. This
means that T is sublinear. Arguing as in the proof of Lemma 2.3 in
[32], we can show that every z € £(T") N [[0, P] is Liapounov stable.
Since T is essentially strongly increasing and T'([0, ﬁ]) c [0, ﬁ], it
follows that E(T) C (£(T) N [[0,P]) U {0}. If {0} ¢ &(T) or 0 is
Liapounov stable, then Theorem 4.1 follows by applying Theorem 3.3.
If {0} € £(T) is Liapounov unstable, then TP < P implies that there
exists p € £(T) N [0,P]. Choose X. = [¢p, P]. Then TX. C X..
As T is essentially strongly increasing, for any ¢ € [ﬁ, ﬁ] we have
either w(p) = {0} or there exist &g € (0,1) such that T > eop.
Applying Theorem 3.3 to T'|x,_ , we obtain w(p) = w(T'p) = {q} for
some g € £(T). This completes the proof. O

Example 4.2. Consider the following cyclic feedback system

de'/dt = f(t,2]) — o (t)x(t),
(42) { dz’/dt = 27t — ri1) — i(t)a*(t), 2<i<n,

where r; > 0,1 <i <n, o;(-) and f(-,¢") (9" € C([~ry,0],RL)) are
continuous and 7-periodic in time t € R}H a; = ming<i<, a;(t) > 0
for 1 <i<n-—1, f(t-) is a continuously differentiable and sublinear
mapping on C([—r,,0], RL). System (4.2) has been used to model the
control of protein systems in the cell, see e.g., [22, 23, 26] and the
references therein.
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To obtain boundedness of solution of system (4.2), Smith and Thieme
[26] introduced the following assumption:

(B) There exist a,b > 0 such that b < ajas---a, and f(t,¢) <
a+blle]| for all (t,¢) € RL x C4.

To establish the monotonicity properties of system (4.2), we also need
the following assumptions:

(B1) Assume that ¢ € RL and ¢, 9,9 — ¢ € C([-r,,0],RY). If
90(0) = ’(/}(0)7 then f(ta(p) < f(ta'(/})
(B2) If p € C([~71,0],RY) and ¢ € R}, then D, f(t, )1 > 0.

Set r = max;<j<n 7i. Let

F(t,0) = (f(t, ") — a1(t)p'(0), o' (—=r1) — az(t)9*(0),. .,
‘Pn_l(rnfl) - ozn(t)go"(O)),

where (t,) € RL x C;. Consider the following system of delay
differential equations

(4.3) Z'(t) = F(t, xy).

To study the asymptotic behavior of solutions of (4.2), we observe that
it suffices to investigate the asymptotic behavior of solutions of (4.3).
For ¢ € C, we denote by z(to, ¢) the solution of (4.3) with the initial
data @, (to, ) = ¢ € Cy. Define T(—¢p) = (0, ¢) for all ¢ € Cy.
Then we have the following result.

Lemma 4.1. Let (B1) and (B2) hold. Then F satisfies assumptions
(A2) and (A4) in Ezample 4.1 with [0, P] replaced by Cy .

Let M, =1 and M;_1 = oy M;, 2 <i<n. Set
B, ={peCi:0<¢ <rM;, 1<i<n}.

We can obtain the following lemma by arguing as in the proof of [26,
Theorem 5.2].

Lemma 4.2. Let (B) hold. Then, for sufficiently large positive
integer r, (0, ¢) € B, for allt >0 and ¢ € B,.
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Proposition 4.2. Let (Bl), (B2) and (B) hold. Then T is an
essentially strongly positive sublinear operator.

Proof. Proposition 4.2 follows easily from Lemma 4.1 and the fact
that f is sublinear.

Applying Corollary 3.1, we can prove the following result by arguing
as in the proof of Theorem 4.1.

Theorem 4.2. Let the hypotheses of Proposition 4.2 hold. Let
P ={y € Cy : 24(0,9) is T-periodic in time t € RL}. If p € C4,
then there exists a ¢ € P such that lim;_,o |2:(0, ¢) — 2:(0,9¢)| = 0.
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