MULTIPLICITY RESULTS FOR A SEMI-LINEAR ELLIPTIC EQUATION INVOLVING SIGN-CHANGING WEIGHT FUNCTION

TSUNG-FANG WU

ABSTRACT. In this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for a semi-linear elliptic equation with sign-changing weight functions. With the help of the Nehari manifold, we prove that there are at least two solutions for the equation $(E_{a,b})$.

1. Introduction. In this paper, we consider the multiplicity results of solutions of the following semi-linear elliptic equation:

$$(E_{a,b}) \qquad \begin{cases} -\Delta u = \lambda a(x)u^q + b(x)u^p & \text{in } \Omega, \\ u \ge 0, \quad u \not\equiv 0 & \text{in } \Omega, \\ u = 0 & \text{in } \partial\Omega, \end{cases}$$

where Ω is a bounded domain in ${f R}^N, \ 0 \le q < 1 < p < 2^* - 1$ $(2^* = (2N/N - 2) \text{ if } N \ge 3, \ 2^* = \infty \text{ if } N = 2), \ \lambda > 0, \text{ and the}$ weight functions a, b satisfy the following conditions:

- (A) $a^+=\max\{a,0\}\not\equiv 0$ and $a\in L^{r_q}(\Omega)$ where $r_q=r/r-(q+1)$ for some $r\in (q+1,2^*)$, with in addition $a(x)\geq 0$ almost everywhere in Ω in case q=0;
- (B) $b^+ = \max\{b,0\} \not\equiv 0$ and $b \in L^{s_p}(\Omega)$ where $s_p = (s/s (p+1))$ for some $s \in (p + 1, 2^*)$.

The fact that the number of positive solutions of equation $(E_{a,b})$ is affected by the concave and convex nonlinearities has been the focus of a great deal of research in recent years. If the weight functions $a \equiv b \equiv 1$, the authors Ambrosetti, Brezis and Cerami [1] have investigated equation $(E_{1,1})$. They found that there exists $\lambda_0 > 0$ such that equation $(E_{1,1})$ admits at least two positive solutions for

²⁰⁰⁰ AMS Mathematics subject classification. Primary 35J20, 35J65. Keywords and phrases. Semi-linear elliptic equations, Nehari manifold, concave-

convex nonlinearities.

Received by the editors on July 12, 2006, and in revised form on October 26,

DOI:10.1216/RMJ-2009-39-3-995 Copyright © 2009 Rocky Mountain Mathematics Consortium

 $\lambda \in (0, \lambda_0)$, has a positive solution for $\lambda = \lambda_0$ and no positive solution exists for $\lambda > \lambda_0$. Wu [8] proved that equation $(E_{a,b})$ has at least two positive solutions under the assumptions the weight functions a change sign in $\overline{\Omega}$, $b \equiv 1$, and λ is sufficiently small. For a more general result, de Figueiredo et al. [4] proved the following result:

Theorem 1.1. Assume that the conditions (A) and (B) hold, and in addition

- (C1) there exists a nonempty open subset $\Omega_1 \subset \Omega$ such that, on Ω_1 , $a(x) \geq \varepsilon_1$ for some $\varepsilon_1 > 0$ and b(x) is bounded from below;
- (C2) there exists a nonempty open subset $\Omega_2 \subset \Omega$ such that, on Ω_2 , $b(x) \geq \varepsilon_2$ for some $\varepsilon_2 > 0$ and a(x) is bounded from below.

Then there exists $\overline{\lambda} > 0$ such that if $\lambda \in (0, \overline{\lambda})$, then equation $(E_{a,b})$ has at least two solutions.

The main purpose of this paper is to use a new method to improve Theorem 1.1. In particular, we do this without assuming conditions (C1) and (C2). Our main result is the following.

Theorem 1.2. Assume that the conditions (A) and (B) hold. Then there exists $\Lambda_0 > 0$ such that for $\lambda \in (0, \Lambda_0)$, equation $(E_{a,b})$ has at least two solutions.

Among the other interesting problems which are similar to equation $(E_{a,b})$ for q=1, Brown and Zhang [2] have investigated the following equation:

(1)
$$\begin{cases} -\Delta u = \lambda a(x)u + b(x)|u|^{p-1}u & \text{in } \Omega, \\ u \in H_0^1(\Omega), \end{cases}$$

where Ω is a bounded domain in \mathbf{R}^N and $a, b : \overline{\Omega} \to \mathbf{R}$ are smooth functions which change sign in $\overline{\Omega}$. They found existence and nonexistence results for positive solutions of equation (1) as λ changes.

This paper is organized as follows. In Section 2, we give some notations and preliminaries. In Section 3, we prove that equation $(E_{a,b})$ has at least two solutions for λ sufficiently small.

2. Notations and preliminaries. Throughout this section, we denote by S_l the best Sobolev constant for the embedding of $H_0^1(\Omega)$ in $L^l(\Omega)$, where $1 < l \le 2^*$. Associated with equation $(E_{a,b})$, we consider the energy functional J_{λ} , for each $u \in H_0^1(\Omega)$,

$$J_{\lambda}\left(u\right) = \frac{1}{2} \int_{\Omega} \left|\nabla u\right|^{2} dx - \frac{\lambda}{q+1} \int_{\Omega} a \left|u\right|^{q+1} dx - \frac{1}{p+1} \int_{\Omega} b \left|u\right|^{p+1} dx.$$

It is well known that the solutions of equation $(E_{a,b})$ are the critical points of the energy functional J_{λ} , see Rabinowitz [6]. Moreover, we consider the Nehari minimization problem: for $\lambda > 0$,

$$\alpha_{\lambda}(\Omega) = \inf \{ J_{\lambda}(u) \mid u \in \mathbf{M}_{\lambda}(\Omega) \},$$

where $\mathbf{M}_{\lambda}(\Omega) = \{u \in H_0^1(\Omega) \setminus \{0\} \mid \langle J_{\lambda}'(u), u \rangle = 0\}.$

Define

$$\psi_{\lambda}\left(u
ight)=\left\langle J_{\lambda}^{\prime}\left(u
ight),u
ight
angle =\left\Vert u\right\Vert _{H^{1}}^{2}-\lambda\int_{\Omega}a\left|u\right|^{q+1}\,dx-\int_{\Omega}b\left|u\right|^{p+1}\,dx.$$

Then for $u \in \mathbf{M}_{\lambda}(\Omega)$,

$$\left\langle \psi_{\lambda}^{\prime}\left(u\right),u\right\rangle =2\left\Vert u\right\Vert _{H^{1}}^{2}-\left(q+1\right)\lambda\int_{\Omega}a\left\vert u\right\vert ^{q+1}\ dx-\left(p+1\right)\int_{\Omega}b\left\vert u\right\vert ^{p+1}\ dx.$$

Similarly to the method used in Tarantello [7], we split $\mathbf{M}_{\lambda}(\Omega)$ into three parts:

(2)
$$\mathbf{M}_{\lambda}^{+}(\Omega) = \left\{ u \in \mathbf{M}_{\lambda}(\Omega) \mid \langle \psi_{\lambda}'(u), u \rangle > 0 \right\}, \\ \mathbf{M}_{\lambda}^{0}(\Omega) = \left\{ u \in \mathbf{M}_{\lambda}(\Omega) \mid \langle \psi_{\lambda}'(u), u \rangle = 0 \right\}, \\ \mathbf{M}_{\lambda}^{-}(\Omega) = \left\{ u \in \mathbf{M}_{\lambda}(\Omega) \mid \langle \psi_{\lambda}'(u), u \rangle < 0 \right\}.$$

Then, we have the following results.

Lemma 2.1. There exists $\lambda_1 > 0$ such that for each $\lambda \in (0, \lambda_1)$ we have $\mathbf{M}^0_{\lambda}(\Omega) = \varnothing$.

Proof. Suppose otherwise, that is, $\mathbf{M}_{\lambda}^{0}(\Omega) \neq \emptyset$ for all $\lambda > 0$. Then, for $u_0 \in \mathbf{M}_{\lambda}^{0}(\Omega)$, we have

(3)
$$0 = \langle \psi_{\lambda}'(u), u \rangle = (1 - q) \|u\|_{H^{1}}^{2} - (p - q) \int_{\Omega} b |u|^{p+1} dx$$

(4)
$$= (1-p) \|u\|_{H^1}^2 - \lambda (q-p) \int_{\Omega} a |u|^{q+1} dx.$$

By the Sobolev imbedding theorem, there exist positive numbers C_1, C_2 such that

$$\|u\|_{H^{1}}^{2} \leq C_{1} \|u\|_{H^{1}}^{p+1}$$
 and $\|u\|_{H^{1}}^{2} \leq \lambda C_{2} \|u\|_{H^{1}}^{q+1}$

or

$$\|u\|_{H^1} \ge C_1^{1/1-p}$$
 and $\|u\|_{H^1} \le (\lambda C_2)^{1/1-q}$.

If λ is sufficiently small, this is impossible. Thus, we can conclude that there exists $\lambda_1 > 0$ such that for $\lambda \in (0, \lambda_1)$, we have $\mathbf{M}_{\lambda}^0(\Omega) = \emptyset$. \square

Lemma 2.2 (i) If
$$u \in \mathbf{M}_{\lambda}^{+}(\Omega)$$
, then $\int_{\Omega} a|u|^{q+1} dx > 0$; (ii) If $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, then $\int_{\Omega} b|u|^{p+1} dx > 0$.

Proof. The proof is immediate from (3) and (4).

By Lemma 2.1, for $\lambda \in (0, \lambda_1)$, we write $\mathbf{M}_{\lambda}(\Omega) = \mathbf{M}_{\lambda}^+(\Omega) \cup \mathbf{M}_{\lambda}^-(\Omega)$ and define

$$\alpha_{\lambda}^{+}\left(\Omega\right)=\inf_{u\in\mathbf{M}_{\lambda}^{+}\left(\Omega\right)}J_{\lambda}\left(u\right);\qquad\alpha_{\lambda}^{-}\left(\Omega\right)=\inf_{u\in\mathbf{M}_{\lambda}^{-}\left(\Omega\right)}J_{\lambda}\left(u\right).$$

The following lemma shows that the minimizers on $\mathbf{M}_{\lambda}(\Omega)$ are "usually" critical points for J_{λ} .

Lemma 2.3. For $\lambda \in (0, \lambda_1)$, if u_0 is a local minimizer for J_{λ} on $\mathbf{M}_{\lambda}(\Omega)$, then $J'_{\lambda}(u_0) = 0$ in $H^{-1}(\Omega)$.

Proof. Our proof is almost the same as that in [2, Theorem 2.3].

For each $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, we write

$$t_{\max} = \left(\frac{(1-q) \|u\|_{H^1}^2}{(p-q) \int_{\Omega} b |u|^{p+1} dx}\right)^{1/(p-1)} > 0.$$

Then, we have the following lemmas.

Lemma 2.4. Let $\lambda_2 = (p-1)/(p-q)(1-q)/(p-q)^{(1-q)/(p-1)} \times (1/(\|a\|_{L^{r_q}}S_r^{q+1}))(1/(S_s^{p+1}\|b\|_{L^{s_p}}))^{(1-q)/(p-1)}$. Then for each $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$ and $\lambda \in (0,\lambda_2)$, we have

- (i) if $\int_{\Omega} a|u|^{q+1} dx \leq 0$, then $J_{\lambda}(u) = \sup_{t>0} J_{\lambda}(tu) > 0$;
- (ii) if $\int_{\Omega} a|u|^{q+1} dx > 0$, then there is a unique $0 < t^+ = t^+(u) < t_{\max}$ such that $t^+u \in \mathbf{M}_{\lambda}^+$ and

$$J_{\lambda}\left(t^{+}u\right)=\inf_{0\leq t\leq t_{\max}}J_{\lambda}\left(tu\right),\qquad J_{\lambda}\left(u\right)=\sup_{t\geq t_{\max}}J_{\lambda}\left(tu\right).$$

Proof. Fix $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$. Let

$$h(t) = t^{1-q} \|u\|_{H^1}^2 - t^{p-q} \int_{\Omega} b |u|^{p+1} dx \text{ for } t \ge 0.$$

We have h(0) = 0, $h(t) \to -\infty$ as $t \to \infty$, h(t) achieves its maximum at t_{max} , increasing for $t \in [0, t_{\text{max}})$ and decreasing for $t \in (t_{\text{max}}, \infty)$. Moreover,

$$\begin{split} h\left(t_{\text{max}}\right) &= \left(\frac{(1-q)\left\|u\right\|_{H^{1}}^{2}}{(p-q)\int_{\Omega}b\left|u\right|^{p+1}dx}\right)^{(1-q)/(p-1)}\left\|u\right\|_{H^{1}}^{2} \\ &- \left(\frac{(1-q)\left\|u\right\|_{H^{1}}^{2}}{(p-q)\int_{\Omega}b\left|u\right|^{p+1}dx}\right)^{(p-q)/(p-1)}\int_{\Omega}b\left|u\right|^{p+1}dx \\ &= \left\|u\right\|_{H^{1}}^{q+1}\left[\left(\frac{1-q}{p-q}\right)^{(1-q)/(p-1)} - \left(\frac{1-q}{p-q}\right)^{(p-q)/(p-1)}\right] \\ &\times \left(\frac{\left\|u\right\|_{H^{1}}^{p+1}}{\int_{\Omega}b\left|u\right|^{p+1}dx}\right)^{(1-q)/(p-1)} \\ &\geq \left\|u\right\|_{H^{1}}^{q+1}\left(\frac{p-1}{p-q}\right)\left(\frac{1-q}{p-q}\right)^{(1-q)/(p-1)}\left(\frac{1}{S_{s}^{p+1}\left\|b\right\|_{L^{s_{p}}}}\right)^{(1-q)/(p-1)}, \end{split}$$

or

(5)
$$h(t_{\max})$$

$$\geq \|u\|_{H^1}^{q+1} \left(\frac{p-1}{p-q}\right) \left(\frac{1-q}{p-q}\right)^{(1-q)/(p-1)} \left(\frac{1}{S_s^{p+1} \|b\|_{L^{s_p}}}\right)^{(1-q)/(p-1)}.$$

(i) $\int_{\Omega} a|u|^{q+1} dx \leq 0$. There is a unique $t^- > t_{\max}$ such that $h(t^-) = \int_{\Omega} a|u|^{q+1} dx$ and $h'(t^-) < 0$. Now,

$$(1-q) \|t^{-}u\|_{H^{1}}^{2} - (p-q) \int_{\Omega} b |t^{-}u|^{p+1} dx$$

$$= (t^{-})^{2+q} \left[(1-q) (t^{-})^{-q} \|u\|_{H^{1}}^{2} - (p-q) (t^{-})^{p-q-1} \int_{\Omega} b |u|^{p+1} dx \right]$$

$$= (t^{-})^{2+q} h'(t^{-}) < 0,$$

and

$$\langle J_{\lambda}'(t^{-}u), t^{-}u \rangle = (t^{-})^{2} \|u\|_{H^{1}}^{2} - (t^{-})^{q+1} \lambda \int_{\Omega} a |u|^{q+1} dx$$

$$- (t^{-})^{p+1} \int_{\Omega} b |u|^{p+1} dx$$

$$= (t^{-})^{q+1} \left[h(t^{-}) - \lambda \int_{\Omega} a |u|^{q+1} dx \right] = 0.$$

Thus, $t^-u \in \mathbf{M}_{\lambda}^-(\Omega)$ or $t^-=1$. Since, for $t>t_{\mathrm{max}},$ we have

$$(1-q) \|tu\|_{H^{1}}^{2} - (p-q) \int_{\Omega} b |tu|^{p+1} ds < 0, \qquad \frac{d^{2}}{dt^{2}} J_{\lambda}(tu) < 0$$

and

$$\frac{d}{dt}J_{\lambda}(tu) = t \|u\|_{H^{1}}^{2} - \lambda t^{q} \int_{\Omega} a |u|^{q+1} dx - t^{p} \int_{\Omega} b |tu|^{p+1} dx = 0$$
for $t = t^{-}$.

Thus, $J_{\lambda}(u) = \sup_{t \geq 0} J_{\lambda}(tu)$. Moreover,

$$J_{\lambda}\left(u
ight)\geq J_{\lambda}\left(tu
ight)\geq rac{t^{2}}{2}\left\Vert u
ight\Vert _{H^{1}}^{2}-rac{t^{p+1}}{p+1}\int_{\Omega}b\leftert u
ightert ^{p+1}\,dx\quad ext{for all }t\geq0.$$

Similar to the argument in the function h(t), we obtain

$$J_{\lambda}\left(u\right) \geq rac{p-1}{2\left(p+1
ight)} \left(rac{\left\|u
ight\|_{H^{1}}^{p+1}}{\int_{\Omega} b\left|u
ight|^{p+1} dx}
ight)^{2/(p-1)} > 0.$$

(ii)
$$\int_{\Omega} a|u|^q dx > 0$$
. By (5) and

$$\begin{split} h\left(0\right) &= 0 < \lambda \int_{\Omega} a \left|u\right|^{q+1} \, dx \leq \lambda \left\|a\right\|_{L^{r_q}} S_r^{q+1} \left\|u\right\|_{H^1}^{q+1} \\ &< \left\|u\right\|_{H^1}^{q+1} \left(\frac{p-1}{p-q}\right) \left(\frac{1-q}{p-q}\right)^{(1-q)/(p-1)} \left(\frac{1}{S_s^{p+1} \left\|b\right\|_{L^{s_p}}}\right)^{(1-q)/(p-1)} \\ &\leq h\left(t_{\max}\right) \quad \text{for } \lambda \in (0,\lambda_2), \end{split}$$

there are unique t^+ and t^- such that $0 < t^+ < t_{\text{max}} < t^-$,

$$h\left(t^{+}\right) = \lambda \int_{\Omega} a \left|u\right|^{q+1} dx = h\left(t^{-}\right)$$

and

$$h'\left(t^{+}\right) > 0 > h'\left(t^{-}\right).$$

We have $t^+u \in \mathbf{M}_{\lambda}^+(\Omega)$, $t^-u \in \mathbf{M}_{\lambda}^-(\Omega)$, and $J_{\lambda}(t^-u) \geq J_{\lambda}(tu) \geq J_{\lambda}(t^+u)$ for each $t \in [t^+, t^-]$ and $J_{\lambda}(t^+u) \leq J_{\lambda}(tu)$ for each $t \in [0, t^+]$. Thus, $t^- = 1$ and

$$J_{\lambda}\left(u\right) = \sup_{t\geq0}J_{\lambda}\left(tu\right), \qquad J_{\lambda}\left(t^{+}u\right) = \inf_{0\leq t\leq t_{\max}}J_{\lambda}\left(tu\right).$$

This completes the proof.

Lemma 2.5 (i) $\alpha_{\lambda}(\Omega) \leq \alpha_{\lambda}^{+}(\Omega) < 0$;

(ii) J_{λ} is coercive and bounded below on $\mathbf{M}_{\lambda}(\Omega)$.

Proof. (i) Given $u \in \mathbf{M}_{\lambda}^{+}(\Omega)$, we have

$$J_{\lambda}(u) = \frac{p-1}{2(p+1)} \|u\|_{H^{1}}^{2}$$

$$+ \left(\frac{q-p}{(p+1)(q+1)}\right) \lambda \int_{\Omega} a |u|^{q+1} dx$$

$$< \left[\frac{1}{2} - \frac{1}{q+1}\right] \frac{p-1}{p+1} \|u\|_{H^{1}}^{2} < 0.$$

This yields $\alpha_{\lambda}(\Omega) \leq \alpha_{\lambda}^{+}(\Omega) < 0$.

(ii) For $u \in \mathbf{M}_{\lambda}(\Omega)$, we have $||u||_{H^1}^2 = \lambda \int_{\Omega} a|u|^{q+1} dx + \int_{\Omega} b|u|^{p+1} dx$. Then by the Hölder and Young inequalities,

$$J_{\lambda}(u) = \frac{p-1}{2(p+1)} \|u\|_{H^{1}}^{2} - \lambda \left(\frac{p-q}{(p+1)(q+1)}\right) \int_{\Omega} a |u|^{q+1} dx$$

$$\geq \frac{p-1}{2(p+1)} \|u\|_{H^{1}}^{2} - \lambda \left(\frac{p-q}{(p+1)(q+1)}\right) \|a\|_{L^{r_{q}}} S_{r}^{q+1} \|u\|_{H^{1}}^{q+1}.$$

Thus, J_{λ} is coercive and bounded below on $\mathbf{M}_{\lambda}(\Omega)$.

3. Proof of Theorem 1. First, we will use the idea of Ni and Takagi [5] to get the following results.

Lemma 3.1. For each $u \in \mathbf{M}_{\lambda}(\Omega)$, there exist $\varepsilon > 0$ and a differentiable function $\xi : B(0; \varepsilon) \subset H_0^1(\Omega) \to \mathbf{R}^+$ such that $\xi(0) = 1$, the function $\xi(v)(u-v) \in \mathbf{M}_{\lambda}(\Omega)$ and

(6)
$$\langle \xi'(0), v \rangle = \frac{2 \int_{\Omega} \nabla u \nabla v \, dx - (q+1) \lambda \int_{\Omega} a |u|^{q-1} uv \, dx - (p+1) \int_{\Omega} b |u|^{p-1} uv \, dx}{(1-q) \int_{\Omega} |\nabla u|^2 \, dx - (p-q) \int_{\Omega} b |u|^{p+1} \, dx}$$

for all $v \in H_0^1(\Omega)$.

Proof. For $u \in \mathbf{M}_{\lambda}(\Omega)$, define a function $F : \mathbf{R} \times H_0^1(\Omega) \to \mathbf{R}$ by

$$\begin{split} F_{u}\left(\xi,w\right) &= \left\langle J_{\lambda}'\left(\xi\left(u-w\right)\right),\xi\left(u-w\right)\right\rangle \\ &= \xi^{2} \int_{\Omega}\left|\nabla\left(u-w\right)\right|^{2} \, dx - \xi^{q+1} \lambda \int_{\Omega} a \left|u-w\right|^{q+1} \, dx \\ &- \xi^{p+1} \int_{\Omega} b \left|u-w\right|^{p+1} \, dx. \end{split}$$

Then $F_u(1,0) = \langle J'_{\lambda}(u), u \rangle = 0$ and

$$\frac{d}{d\xi} F_u(1,0) = 2 \int_{\Omega} |\nabla u|^2 dx - (q+1) \lambda \int_{\Omega} a |u|^{q+1} dx
- (p+1) \int_{\Omega} b |u|^{p+1} dx
= (1-q) \int_{\Omega} |\nabla u|^2 dx - (p-q) \int_{\Omega} b |u|^{p+1} dx \neq 0.$$

According to the implicit function theorem, there exist $\varepsilon > 0$ and a differentiable function $\xi : B(0; \varepsilon) \subset H^1(\mathbf{R}^N) \to \mathbf{R}$ such that $\xi(0) = 1$,

$$\left\langle \xi'\left(0\right),v\right\rangle =\frac{2\int_{\Omega}\nabla u\nabla v\,dx-(q+1)\lambda\int_{\Omega}a\left|u\right|^{q-1}uv\,dx-(p+1)\int_{\Omega}b\left|u\right|^{p-1}uv\,dx}{(1-q)\int_{\Omega}\left|\nabla u\right|^{2}\,dx-(p-q)\int_{\Omega}b\left|u\right|^{p+1}\,dx}$$

and

$$F_u(\xi(v), v) = 0$$
 for all $v \in B(0; \varepsilon)$

which is equivalent to

$$\langle J'_{\lambda}\left(\xi\left(v\right)\left(u-v\right)\right),\xi\left(v\right)\left(u-v\right)\rangle=0\quad\text{for all }v\in B\left(0;\varepsilon\right),$$

that is,
$$\xi(v)(u-v) \in \mathbf{M}_{\lambda}(\Omega)$$
.

Lemma 3.2. For each $u \in \mathbf{M}_{\lambda}^{-}(\Omega)$, there exist $\varepsilon > 0$ and a differentiable function $\xi^{-}: B(0; \varepsilon) \subset H_{0}^{1}(\Omega) \to \mathbf{R}^{+}$ such that $\xi^{-}(0) = 1$, the function $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}^{-}(\Omega)$ and (7)

$$\left\langle \left(\xi^{-}\right)'\left(0\right),v\right\rangle =\frac{2\int_{\Omega}\nabla u\nabla v\,dx-(q+1)\lambda\int_{\Omega}a\left|u\right|^{q-1}uv\,dx-(p+1)\int_{\Omega}b\left|u\right|^{p-1}uv\,dx}{(1-q)\int_{\Omega}\left|\nabla u\right|^{2}dx-(p-q)\int_{\Omega}b\left|u\right|^{p+1}dx}$$

for all $v \in H_0^1(\Omega)$.

Proof. Similar to the argument in Lemma 3.1, there exist $\varepsilon > 0$ and a differentiable function $\xi^- : B(0; \varepsilon) \subset H^1(\mathbf{R}^N) \to \mathbf{R}$ such that $\xi^-(0) = 1$ and $\xi^-(v)(u-v) \in \mathbf{M}_{\lambda}(\Omega)$ for all $v \in B(0; \varepsilon)$. Since

$$\left\langle \psi_{\lambda}^{\prime}\left(u\right),u
ight
angle =\left(1-q
ight)\left\Vert u\right\Vert _{H^{1}}^{2}-\left(p-q
ight)\int_{\Omega}b\left|u\right|^{p+1}\;dx<0.$$

Thus, by the continuity of the function ξ^- , we have

$$\langle \psi_{\lambda}' \left(\xi^{-} (v) (u - v) \right), \xi^{-} (v) (u - v) \rangle$$

$$= (1 - q) \| \xi^{-} (v) (u - v) \|_{H^{1}}^{2} - (p - q) \int_{\Omega} b \left| \xi^{-} (v) (u - v) \right|^{p+1} dx < 0$$

if ε sufficiently small, this implies that $\xi^-(v)(u-v) \in \mathbf{M}_{\lambda}^-(\Omega)$.

Proposition 3.3. Let $\Lambda_0 = \min\{\lambda_1, \lambda_2\}$, then for $\lambda \in (0, \Lambda_0)$,

(i) there exists a minimizing sequence $\{u_n\} \subset \mathbf{M}_{\lambda}(\Omega)$ such that

$$J_{\lambda}(u_n) = \alpha_{\lambda}(\Omega) + o(1),$$

$$J'_{\lambda}(u_n) = o(1) \text{ in } H^{-1}(\Omega);$$

(ii) there exists a minimizing sequence $\{u_n\} \subset \mathbf{M}_{\lambda}^{-}(\Omega)$ such that

$$J_{\lambda}(u_n) = \alpha_{\lambda}^{-}(\Omega) + o(1),$$

$$J_{\lambda}'(u_n) = o(1) \quad in \ H^{-1}(\Omega).$$

Proof. (i) By Lemma 2.5 (ii) and the Ekeland variational principle [3], there exists a minimizing sequence $\{u_n\} \subset \mathbf{M}_{\lambda}(\Omega)$ such that

(8)
$$J_{\lambda}\left(u_{n}\right) < \alpha_{\lambda}\left(\Omega\right) + \frac{1}{n}$$

and

(9)
$$J_{\lambda}\left(u_{n}\right) < J_{\lambda}\left(w\right) + \frac{1}{n} \left\|w - u_{n}\right\|_{H^{1}} \quad \text{for each } w \in \mathbf{M}_{\lambda}\left(\Omega\right).$$

By taking n large, from Lemma 2.5 (i) we have

(10)
$$J_{\lambda}\left(u_{n}\right) = \left(\frac{1}{2} - \frac{1}{p+1}\right) \left\|u_{n}\right\|_{H^{1}}^{2}$$

$$-\left(\frac{1}{q+1} - \frac{1}{p+1}\right) \lambda \int_{\Omega} a \left|u_{n}\right|^{q+1} dx$$

$$< \alpha_{\lambda}\left(\Omega\right) + \frac{1}{n} < \frac{\alpha_{\lambda}\left(\Omega\right)}{2}.$$

This implies

(11)

$$\|a\|_{L^{r_q}} S_r^{q+1} \|u_n\|_{H^1}^{q+1} \ge \int_{\Omega} a |u_n|^{q+1} dx > -\frac{(q+1)(p+1)}{\lambda(p-q)} \frac{\alpha_{\lambda}(\Omega)}{2} > 0.$$

Consequently, $u_n \neq 0$ and, putting together (10), (11) and the Hölder inequality, we obtain

$$(12) \qquad \|u_n\|_{H^1} > \left[\frac{(q+1) (p+1)}{\lambda (p-q)} \frac{\alpha_{\lambda} (\Omega)}{2} S_r^{-(q+1)} \|a\|_{L^{r_q}}^{-1}\right]^{1/(q+1)}$$

and

(13)
$$||u_n||_{H^1} < \left[\frac{2\lambda (p-q)}{(p-1)(q+1)} ||a||_{L^{r_q}} S_r^{q+1} \right]^{1/(1-q)}.$$

Now, we will show that

$$||J_{\lambda}'(u_n)||_{H^{-1}} \longrightarrow 0 \text{ as } n \to \infty.$$

Applying Lemma 3.1 with u_n to obtain the functions $\xi_n: B(0; \varepsilon_n) \to \mathbf{R}^+$ for some $\varepsilon_n > 0$, such that $\xi_n(w)(u_n - w) \in \mathbf{M}_{\lambda}(\Omega)$. With $n \in \mathbf{N}$ fixed, we choose $0 < \rho < \varepsilon_n$. Let $u \in H_0^1(\Omega)$ with $u \not\equiv 0$, and let $w_{\rho} = \rho u/\|u\|_{H^1}$. We set $\eta_{\rho} = \xi_n(w_{\rho})(u_n - w_{\rho})$. Since $\eta_{\rho} \in \mathbf{M}_{\lambda}(\Omega)$, we deduce from (9) that

$$J_{\lambda}\left(\eta_{\rho}\right) - J_{\lambda}\left(u_{n}\right) \geq -\frac{1}{n} \left\|\eta_{\rho} - u_{n}\right\|_{H^{1}},$$

and, by the mean value theorem we have

$$\langle J_{\lambda}'(u_n), \eta_{\rho} - u_n \rangle + o(\|\eta_{\rho} - u_n\|_{H^1}) \ge -\frac{1}{n} \|\eta_{\rho} - u_n\|_{H^1}.$$

Thus,

$$(14) \quad \langle J_{\lambda}'(u_{n}), -w_{\rho} \rangle + (\xi_{n}(w_{\rho}) - 1) \langle J_{\lambda}'(u_{n}), (u_{n} - w_{\rho}) \rangle \\ \geq -\frac{1}{n} \|\eta_{\rho} - u_{n}\|_{H^{1}} + o(\|\eta_{\rho} - u_{n}\|_{H^{1}}).$$

From $\xi_n(w_\rho)(u_n-w_\rho)\in \mathbf{M}_\lambda(\Omega)$ and (14), it follows that

$$-\rho\left\langle J_{\lambda}'\left(u_{n}\right),\frac{u}{\left\|u\right\|_{H^{1}}}\right\rangle + \left(\xi_{n}\left(w_{\rho}\right)-1\right)\left\langle J_{\lambda}'\left(u_{n}\right)-J_{\lambda}'\left(\eta_{\rho}\right),\left(u_{n}-w_{\rho}\right)\right\rangle \\ \geq -\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right).$$

Thus,

$$\left\langle J_{\lambda}'\left(u_{n}\right), \frac{u}{\left\|u\right\|_{H^{1}}}\right\rangle \leq \frac{\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}}{n\rho} + \frac{o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right)}{\rho} + \frac{\left(\xi_{n}\left(w_{\rho}\right)-1\right)}{\rho} \times \left\langle J_{\lambda}'\left(u_{n}\right) - J_{\lambda}'\left(\eta_{\rho}\right), \left(u_{n}-w_{\rho}\right)\right\rangle.$$

Since

$$\|\eta_{\rho} - u_n\|_{H^1} \le \rho |\xi_n(w_{\rho})| + |\xi_n(w_{\rho}) - 1| \|u_n\|_{H^1}$$

and

$$\lim_{n\to\infty}\frac{\left|\xi_{n}\left(w_{\rho}\right)-1\right|}{\rho}\leq\left\|\xi_{n}'\left(0\right)\right\|.$$

If we let $\rho \to 0$ in (15), then by (13) we can find a constant C > 0, independent of ρ , such that

$$\left\langle J_{\lambda}'\left(u_{n}\right),\frac{u}{\left\Vert u\right\Vert _{H^{1}}}\right\rangle \leq\frac{C}{n}\left(1+\left\Vert \xi_{n}'\left(0\right)\right\Vert \right).$$

We are done once we show that $\|\xi'_n(0)\|$ is uniformly bounded in n. By (6), (13) and the Hölder inequality, we have

$$\left\langle \xi_{n}'\left(0\right),v\right\rangle \leq\frac{d\left\Vert v\right\Vert _{H^{1}}}{\left|\left(1-q\right)\int_{\Omega}\left|\nabla u_{n}\right|^{2}dx-\left(p-q\right)\int_{\Omega}b\left|u_{n}\right|^{p+1}dx\right|}$$
 for some $d>0$

We only need to show that

(16)
$$\left| (1-q) \int_{\Omega} |\nabla u_n|^2 dx - (p-q) \int_{\Omega} b |u_n|^{p+1} dx \right| > c$$

for some c > 0 and n large enough. We argue by contradiction. Assume that there exists a subsequence $\{u_n\}$. We have

$$(17) \qquad (1-q) \int_{\Omega} |\nabla u_n|^2 dx - (p-q) \int_{\Omega} b |u_n|^{p+1} dx = o(1).$$

Combining (17) with (12), we can find a suitable constant k > 0 such that

(18)
$$\int_{\Omega} b |u_n|^{p+1} dx \ge k \quad \text{for } n \text{ sufficiently large.}$$

In addition, (17), and the fact that $u_n \in \mathbf{M}_{\lambda}(\Omega)$ also give

$$\lambda \int_{\Omega} a |u_n|^{q+1} dx = ||u_n||_{H^1}^2 - \int_{\Omega} b |u_n|^{p+1} dx$$
$$= \frac{p-1}{1-q} \int_{\Omega} b |u_n|^{p+1} dx + o(1)$$

and

$$(19) \qquad \|u_n\|_{H^1} \leq \left[\lambda \left(\frac{p-q}{p-1}\right) \|a\|_{L^{p^*}} \, S_r^{q+1}\right]^{1/(1-q)} + o\left(1\right).$$

This implies

$$\begin{split} &(20) \quad I_{\lambda}\left(u_{n}\right) \\ &= K\left(p,q\right) \left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2p}}{\int_{\Omega}b\left|u_{n}\right|^{p+1}dx}\right)^{1/(p-1)} - \lambda \int_{\Omega}a\left|u_{n}\right|^{q+1}dx \\ &= \left(\frac{1-q}{p-q}\right)^{p/(p-1)} \left(\frac{p-1}{1-q}\right) \left(\frac{(p-q/1-q)^{p}\left(\int_{\Omega}b\left|u_{n}\right|^{p+1}dx\right)^{p}}{\int_{\Omega}b\left|u_{n}\right|^{p+1}dx}\right)^{1/(p-1)} \\ &- \frac{p-1}{1-q}\int_{\Omega}b\left|u_{n}\right|^{p+1}dx \\ &= o\left(1\right). \end{split}$$

However, by (18), (19) and $\lambda \in (0, \Lambda_0)$,

$$\begin{split} I_{\lambda}\left(u_{n}\right) &\geq K\left(p,q\right)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2p}}{S_{s}^{p+1}\left\|b\right\|_{L^{s_{p}}}\left\|u_{n}\right\|_{H^{1}}^{p+1}}\right)^{1/(p-1)} - \lambda S_{r}^{q+1}\left\|a\right\|_{L^{r_{q}}}\left\|u_{n}\right\|_{H^{1}}^{q+1} \\ &= \left\|u_{n}\right\|_{H^{1}}^{q+1}\left(K\left(p,q\right)S_{s}^{(p+1)/(1-p)}\left\|b\right\|_{L^{s_{p}}}^{1/(1-p)}\left\|u_{n}\right\|_{H^{1}}^{-q} - \lambda S_{r}^{q+1}\left\|a\right\|_{L^{r_{q}}}\right) \\ &\geq \left\|u_{n}\right\|_{H^{1}}^{q+1}\left\{K\left(p,q\right)S_{s}^{(p+1)/(1-p)}\left\|b\right\|_{L^{s_{p}}}^{1/(1-p)}\lambda^{-q/(1-q)} \\ &\qquad \times \left[\left(\frac{p-q}{p-1}\right)\left\|a\right\|_{L^{r_{q}}}S_{s}^{q+1}\right]^{-q/(1-q)} - \lambda S_{r}^{q+1}\left\|a\right\|_{L^{r_{q}}}\right\}. \end{split}$$

This contradicts (20). We get

$$\left\langle J_{\lambda}'\left(u_{n}\right), \frac{u}{\left\|u\right\|_{H^{1}}}\right\rangle \leq \frac{C}{n}.$$

This completes the proof of (i).

(ii) Similarly, by using Lemma 3.2, we can prove (ii). We will omit the detailed proof here. \qed

Now, we establish the existence of a local minimum for J_{λ} on $\mathbf{M}_{\lambda}^{+}(\Omega)$.

Theorem 3.4. Let $\Lambda_0 > 0$ be as in Proposition 3.3. Then for $\lambda \in (0, \Lambda_0)$ the functional J_{λ} has a minimizer u_0^+ in $\mathbf{M}_{\lambda}^+(\Omega)$ and it satisfies

- (i) $J_{\lambda}(u_0^+) = \alpha_{\lambda}(\Omega) = \alpha_{\lambda}^+(\Omega);$
- (ii) u_0^+ is a solution of equation $(E_{a,b})$.

Proof. Let $\{u_n\} \subset \mathbf{M}_{\lambda}(\Omega)$ be a minimizing sequence for J_{λ} on $\mathbf{M}_{\lambda}(\Omega)$ such that

$$J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}\left(\Omega\right)+o\left(1\right)\quad\text{and}\quad J_{\lambda}'\left(u_{n}\right)=o\left(1\right)\quad\text{in }H^{-1}\left(\Omega\right).$$

Then by Lemma 2.5 and the compact imbedding theorem, there exist a subsequence $\{u_n\}$ and $u_0^+ \in H_0^1(\Omega)$ such that

$$u_n \rightharpoonup u_0^+$$
 weakly in $H_0^1(\Omega)$

and

(21)
$$u_n \longrightarrow u_0^+$$
 strongly in $L^r(\Omega)$ for $1 < r < 2^*$.

First, we claim that $\int_{\Omega} a|u_0^+|^{q+1} dx \neq 0$. If not, by (21) and the Hölder inequality we can conclude that

$$\int_{\Omega} a |u_n|^{q+1} dx \longrightarrow \int_{\Omega} a |u_0^+|^{q+1} dx = 0 \quad \text{as } n \to \infty.$$

Thus,

$$\int_{\Omega} |\nabla u_n|^2 dx = \int_{\Omega} p |u_n|^{p+1} dx + o(1)$$

and

$$J_{\lambda}\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{p+1}\right)\int_{\Omega}\left|\nabla u_{n}\right|^{2}\,dx+o\left(1\right),$$

this contradicts $J_{\lambda}(u_n) \to \alpha_{\lambda}(\Omega) < 0$ as $n \to \infty$. Moreover,

$$o\left(1\right) = \left\langle J_{\lambda}'\left(u_{n}\right), \phi\right\rangle = \left\langle J_{\lambda}'\left(u_{0}\right), \phi\right\rangle + o\left(1\right) \quad \text{for all } \phi \in H_{0}^{1}\left(\Omega\right).$$

Thus, $u_0^+ \in \mathbf{M}_{\lambda}$ is a nonzero solution of equation $(E_{a,b})$ and $J_{\lambda}(u_0^+) \ge \alpha_{\lambda}(\Omega)$. We now prove that $J_{\lambda}(u_0^+) = \alpha_{\lambda}(\Omega)$. Since

$$\begin{split} J_{\lambda}\left(u_{0}^{+}\right) &= \frac{1}{2} \left\|u_{0}^{+}\right\|_{H^{1}}^{2} - \frac{\lambda}{q+1} \int_{\Omega} a \left|u_{0}^{+}\right|^{q+1} dx \\ &- \frac{1}{p+1} \int_{\Omega} b \left|u_{0}^{+}\right|^{p+1} dx \\ &= \left(\frac{1}{2} - \frac{1}{p+1}\right) \left\|u_{0}^{+}\right\|_{H^{1}}^{2} \\ &+ \left(\frac{\lambda}{p+1} - \frac{\lambda}{q+1}\right) \int_{\Omega} a \left|u_{0}^{+}\right|^{q+1} dx \\ &\leq \liminf_{n \to \infty} \left(\left(\frac{1}{2} - \frac{1}{p+1}\right) \left\|u_{n}\right\|_{H^{1}}^{2} \\ &+ \left(\frac{\lambda}{p+1} - \frac{\lambda}{q+1}\right) \int_{\Omega} a \left|u_{n}\right|^{q+1} dx \right) \\ &= \liminf_{n \to \infty} J_{\lambda}\left(u_{n}\right) = \alpha_{\lambda}\left(\Omega\right). \end{split}$$

Thus, $J_{\lambda}(u_0^+) = \alpha_{\lambda}(\Omega)$. Moreover, we have $u_0^+ \in \mathbf{M}_{\lambda}^+(\Omega)$. In fact, if $u_0^+ \in \mathbf{M}_{\lambda}^-(\Omega)$, by Lemma 2.4, there are unique t_0^+ and t_0^- such that $t_0^+ u_0^+ \in \mathbf{M}_{\lambda}^+(\Omega)$ and $t_0^- u_0^+ \in \mathbf{M}_{\lambda}^-(\Omega)$, we have $t_0^+ < t_0^- = 1$. Since

$$\frac{d}{dt}J_{\lambda}\left(t_{0}^{+}u_{0}^{+}\right)=0\quad\text{and}\quad\frac{d^{2}}{dt^{2}}J_{\lambda}\left(t_{0}^{+}u_{0}^{+}\right)>0,$$

there exists $t_0^+ < \bar{t} \le t_0^-$ such that $J_{\lambda}(t_0^+ u_0^+) < J_{\lambda}(\bar{t} u_0^+)$. By Lemma 2.4,

$$J_{\lambda}\left(t_{0}^{+}u_{0}^{+}\right) < J_{\lambda}\left(\bar{t}u_{0}^{+}\right) \leq J_{\lambda}\left(t_{0}^{-}u_{0}^{+}\right) = J_{\lambda}\left(u_{0}^{+}\right),$$

which is a contradiction. Since $J_{\lambda}(u_0^+) = J_{\lambda}(|u_0^+|)$ and $|u_0^+| \in \mathbf{M}_{\lambda}^+(\Omega)$, by Lemma 2.3 we may assume that u_0^+ is a solution of equation $(E_{a,b})$.

Next, we establish the existence of a local minimum for J_{λ} on $\mathbf{M}_{\lambda}^{-}(\Omega)$.

Theorem 3.5. Let $\Lambda_0 > 0$ be as in Proposition 3.3. Then, for $\lambda \in (0, \Lambda_0)$, the functional J_{λ} has a minimizer u_0^- in $\mathbf{M}_{\lambda}^-(\Omega)$ and it satisfies (i) $J_{\lambda}(u_0^-) = \alpha_{\lambda}^-(\Omega)$;

(ii) u_0^- is a solution of equation $(E_{a,b})$.

Proof. By Proposition 3.3 (ii), there exists a minimizing sequence $\{u_n\}$ for J_{λ} on $\mathbf{M}_{\lambda}^-(\Omega)$ such that

$$J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}^{-}\left(\Omega\right)+o\left(1\right)\quad \text{and}\quad J_{\lambda}'\left(u_{n}\right)=o\left(1\right)\quad \text{in }H^{-1}\left(\Omega\right).$$

By Lemma 2.5 and the compact imbedding theorem, there exist a subsequence $\{u_n\}$ and $u_0^- \in \mathbf{M}_{\lambda}^-(\Omega)$ such that

$$\begin{array}{ll} u_n \rightharpoonup u_0^- & \text{ weakly in } H^1_0(\Omega), \\[1mm] u_n \longrightarrow u_0^- & \text{ strongly in } L^s(\Omega) \end{array}$$

and

$$u_n \longrightarrow u_0^-$$
 strongly in $L^r(\Omega)$ for $1 \le r < 2^*$.

Since

$$o(1) = \langle J_{\lambda}'(u_n), \phi \rangle = \langle J_{\lambda}'(u_0), \phi \rangle + o(1)$$
 for all $\phi \in H_0^1(\Omega)$

and

$$0 > \langle \psi_{\lambda}'(u_n), u_n \rangle = (2 - q) \|u_n\|_{H^1}^2 - (p - q) \int_{\partial \Omega} g |u_n|^p ds$$
$$\geq (2 - q) \|u_0\|_{H^1}^2 - (p - q) \int_{\partial \Omega} g |u_0|^p ds.$$

Thus, $u_0^- \in \mathbf{M}_{\lambda}^-(\Omega)$ is a nonzero solution of equation $(E_{a,b})$. We now prove that $u_n \to u_0^-$ strongly in $H_0^1(\Omega)$. Suppose otherwise; then $\|u_0^-\|_{H^1} < \liminf_{n \to \infty} \|u_n\|_{H^1}$ and so

$$\|u_0^-\|_{H^1}^2 - \lambda \int_{\Omega} a |u_0^-|^{q+1} dx - \int_{\Omega} b |u_0^-|^{p+1} dx$$

$$< \liminf_{n \to \infty} \left(\|u_n\|_{H^1}^2 - \lambda \int_{\Omega} a |u_n|^{q+1} dx - \int_{\Omega} b |u_n|^{p+1} dx \right) = 0.$$

This contradicts $u_0^- \in \mathbf{M}_{\lambda}^-(\Omega)$. Hence, $u_n \to u_0^-$ strongly in $H_0^1(\Omega)$. This implies

$$J_{\lambda}\left(u_{n}\right) \longrightarrow J_{\lambda}\left(u_{0}^{-}\right) = \alpha_{\lambda}^{-}\left(\Omega\right) \quad \text{as } n \to \infty.$$

Since $J_{\lambda}(u_0^-) = J_{\lambda}(|u_0^-|)$ and $|u_0^-| \in \mathbf{M}_{\lambda}^-(\Omega)$ by Lemma 2.3, we may assume that u_0^- is a solution of equation $(E_{a,b})$.

Now, we complete the proof of Theorem 1.2: By Theorems 3.4, 3.5 and equation $(E_{a,b})$, there exist two solutions u_0^+ and u_0^- such that $u_0^+ \in \mathbf{M}_{\lambda}^+(\Omega)$, $u_0^- \in \mathbf{M}_{\lambda}^-(\Omega)$. Since $\mathbf{M}_{\lambda}^+(\Omega) \cap \mathbf{M}_{\lambda}^-(\Omega) = \emptyset$, this implies that u_0^+ and u_0^- are different.

REFERENCES

- 1. A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.
- 2. K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equations 193 (2003), 481–499.
- ${\bf 3.}$ I. Ekeland, On the variational principle, J. Math. Anal. Appl. ${\bf 17}$ (1974), 324–353.
- 4. D.G. de Figueiredo, J.P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal. 199 (2003), 452–467.
- 5. W.M. Ni and I. Takagi, On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819-851.
- **6.** P.H. Rabinowitz, *Minimax methods in critical point theory with applications to differential equations*, Regional Conference Series Math., American Mathematical Society, 1986.
- 7. G. Tarantello, On nonhomogeneous elliptic involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Lineairé 9 (1992), 281–304.
- 8. T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl. 318 (2006), 253–270.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL UNIVERSITY OF KAOHSIUNG, KAOHSIUNG 811, TAIWAN

Email address: tfwu@nuk.edu.tw