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INCLUSION RELATIONS OF
CERTAIN GRAPH EIGENSPACES

TORSTEN SANDER

ABSTRACT. Motivated by the fact that an inclusion rela-
tion exists between the eigenspace for eigenvalue A of a graph
and the eigenspace for eigenvalue —1 — X\ of its complement,
one may ask if for some given A there exist graph classes such
that the direction of this inclusion is the same for all its mem-
bers. The main result of this paper is that the eigenspace
for eigenvalue 0 of a tree always contains the eigenspace for
eigenvalue —1 of its complement.

1. Introduction. One of the many areas of algebraic graph theory
is the study of graph eigenspaces. Many interesting results have been
obtained so far, some of which are covered by [4].

In particular, trees have been well studied both with respect to spec-
trum and eigenvector structure [7]. Moreover, there exist several pow-
erful algorithms for that purpose. It is possible to test for eigenvalues
and derive the characteristic polynomial in linear time [6, 10]. It is
even possible to efficiently compute the eigenvectors of trees [11].

Our motivation is a well-known result from [3] stating that the
dimension of the eigenspace for eigenvalue A of a given graph and the
dimension of the eigenspace for eigenvalue —1 — A of its complement
cannot differ by more than one. We augment this result by showing
that an inclusion relation exists between these eigenspaces. This serves
as a motivation for our main theorem.

Namely, one may ask if graph classes exist with uniform direction
of this inclusion. For example, for a path it is not difficult to show
that the eigenspace for eigenvalue 0 always contains the eigenspace for
eigenvalue —1 of its complement. The main result of this paper is that
this statement can be extended to trees and forests.
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2. Preliminaries. Let K be a field. Let K™*™ denote the set
of n x m matrices with entries from K and K™ = K™*!. Further,
let J,m € K™™ and j, € K™ have entries only equal to one. Let
I, € K™ denote the identity matrix. Indices may be omitted where
clear from the context.

For the general basics of graph theory, the reader is referred to sources
like [1, 5, 9]. The foundations of algebraic graph theory are treated in
2, 8].

Throughout, we will only consider finite, simple, loopless (undirected)
graphs. Observe that the complement of a graph G = (V, E) is denoted
by G = (V,E). Ng(z) is the set of neighbors of vertex = in G and
N¢(z) = Ng(z) is the set of nonneighbors of z in G.

Let G be a graph with vertex set V = {z1,... ,2,}. Then we define
the adjacency matrix A(G) = (axi) by ar; = 1 if 1, and x; are adjacent
and 0 otherwise.

The eigenvalues of a graph G are the roots of the characteristic
polynomial X(z; G) = det(A(G) — xI). The eigenspace ker(A(G) — \I)
of eigenvalue A is denoted by Eig (A, G). If G is fixed, then we will write
E) = ker(A(G) — M) and E, = ker(A(G) — M), respectively, for the
eigenspaces of G and G.

Since A(QG) is symmetric, it follows that the eigenvalues of a graph are
real and that the multiplicity of a root of X(z; G) equals the dimension
of the corresponding eigenspace. Interpreting graph eigenvectors as
vertex weights, i.e., as functions V(G) — R, it is possible to derive a
notion of graph eigenvectors and eigenspaces that does not depend on
the chosen vertex order.

3. Motivational results. In this section, let A be an n X n matrix
over fixed field K and u € K. We will consider matrices of the form
A — pJ and study their relationship with matrix A. To be more precise,
we study the relationship between the respective kernels.

We will afterwards apply our findings to graphs to motivate why it
is interesting to study their relationship to eigenspaces Ey and E_;.

Lemma 1. Let u # 0. Then

ker ANker(A — pJ) = {z € ker A : jTz = 0}
={z € ker(A — pJ) : j%z = 0}.
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Proof. This is straightforward. o

Corollary 2. Let dimker A = d; and dimker(A — uJ) =ds. Then
dim(ker A Nker(A — pJ)) > max{dy,d2} — 1.

Proof. Observe that the additional condition j7z = 0 poses an at
most one-dimensional restriction for any subspace. ]

Theorem 3. 1. tkA —rk(4A—pJ)| <1,
2. tk A <1k (A~ pJ) = ker(A — puJ) G ker A,
3. tk A > 1k (A — pJ) = ker(A — pJ) 2 ker A.

Proof. Let, for example, tkA < rk(A — pJ). It follows that
d1 = d2 + 1. By a suitable linear combination we can choose a basis of
ker A such that at least d; — 1 basis vectors have vanishing component
sum. But then, by Lemma 1 we have found a basis for ker(A — pJ). O

At this point we know that if the two kernels have different dimensions
the smaller kernel is contained in the other one. But in the case of equal
dimensions the kernels need not necessarily be identical. Examples are
easy to find.

If, however, we know that the matrix A is symmetric, the two kernels
must be identical:

Theorem 4. Let A= AT and tk A =1k (A — pJ). Then,
ker A = ker(A — pJ).

Proof. For p = 0 this is obvious. Therefore, let p # 0, and assume
that ker A # ker(A — pJ).

Since the kernels have equal dimension it cannot be that one kernel
contains the other because then they would be identical. Therefore,
there exists a vector b € ker(A — pJ) \ ker A.
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Let s = pJTb. Then Ab= (A — puJ)b+ puJb = uJb = sj. We see that
necessarily s # 0 because otherwise b € ker A by Lemma 1.

Now let A = (4] 7). Then j € im A if and only if rk A =rk A. But
A((1/s)b) = j; therefore, tk A =rk A.

Let A’ = AT. Then ker A’ C ker A. By tk A’ =tk AT =tk A =1k A,
we even see that ker A’ = ker A. Hence, j7x = 0 for all = € ker A. By
Lemma 1 this means that ker A C ker(A — uJ).

Since we have assumed that the kernels have equal dimension the
theorem follows. O

Remark 5. Consider the following congruence relation. Given a fixed
matrix M, we will say that the two matrices A and B are congruent
modulo M, A = B, if there exists u € K such that A — B = pM.
Now let M = J. Then K™*™ gets partitioned into congruence classes
CA)={A—puJ :p€K}.

These classes possess a rather interesting property that is straightfor-
ward to show: Within each class C'(A) there occur at most two different
matrix ranks. Moreover, the lower of these two ranks is attained for
exactly one member of that class.

Let us transfer our results to eigenspaces of graphs and their comple-
ments.

From A(G) = J — A(G) — I it follows directly that E_;_y =
ker(J — (A(G) — AI)). Based on this observation and the fact that
A(Q) is symmetric, our previous results can be immediately applied to
eigenspaces of graphs if we substitute A — AI for the matrix A.

Theorem 6.

l. |[dimE _, ; —dimE) | <1,

2. dimF_y_1 <dimEy = E_\_; ;_ E,,
3. dmE_» 1 >dimE\ = E_y_1 2 E,,
4. dimFE_y_1 =dimE\ = E_,_; = E,.

The first part of this theorem can also be found in [3]. However, a
different proof technique is employed.
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Theorem 6 implies that for an arbitrary graph at least one of the
eigenspaces Ey and F_; is contained in the other one.

For an r-regular graph it is well-known that j is an eigenvector for
eigenvalue r. Consequently, if  is an eigenvector of an r-regular graph
for eigenvalue A # r, then the sum over its components vanishes (note
the symmetry of adjacency matrices). From Lemma 1 we may therefore
immediately deduce the following result:

Lemma 7. Let G be regular and neither a complete nor a null graph.
Then, o -
Ey=FE_,, E_| =F.

For nonregular graphs equality of Fy and E_; cannot generally be
expected, but one may ask if there exist graph classes with a uniform
direction of inclusion. For paths this is easy to see.

Lemma 8. For all paths

holds.

_ Proof. Let P be a path on n vertices. It is readily checked that
E_; # {0} if and only if n =3 mod 4. In this case E_; is spanned by
(1,0,-1,0,1,...), a vector with a vanishing component sum. o

4. Main result. The main result of this section is that for trees the
eigenspace Fy always contains F_;, extending Lemma 8.

For the following lemma recall that a matrix is called totally unimod-

ular if the determinant of every square submatrix of it is either 0, 1 or
-1, cf. [2].

Lemma 9. Let G be a graph with adjacency matric A € R"*". If A
is totally unimodular, then there exists no solution x € R"™ for

All‘ = jn+1
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where

Proof. We need to show that

Logi\ _ /
rk <jn A> =rkA +1.

Let r = rk A. Then we may assume without loss of generality that
(B B
4= <B1T By >

with invertible matrix B € R"*" and matrices B; € R"*(—7)
B, € R(n—r)x(n—r).

It follows from basic linear algebra and the symmetry of A that there
exists a matrix R € R(™ ")*" such that

PAPT — (B 0>

0 0
where s 0
p_< L In_r>.
Further, we have
T I
L RO IO DICHEd N P O
and
T T
(2) A'PT = ]é yo ,
BT 0

where y = Rj, + jn—r € R?7".
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Case 1. Let y # 0. It follows from equation (2) that rk A’ == + 1.

Moreover,
Logr oyt _
rk <]T B o0 )=T + 1.

Together with equation (1) and y # 0 it follows from this equation that
Lojn ) _
rk (]n A > =r+2.

Case 2. Let y = 0. By equation (2) we have rk A’ = r. By virtue of
equation (1) it now suffices to show that

IR
ir B
is invertible. It follows from

L —'B="\ (1 g 1 0\ _(1-4fB7 ' ©
0 I, j. B)\ =B, I,)” 0 B

that it is equivalent to prove 1 — jX B~1j,. # 0.

There exists an induced subgraph H of G with adjacency matrix B.
The graph H must be bipartite because otherwise it would contain
an induced odd cycle (whose adjacency matrix would correspond to a
submatrix of B, and therefore of A, with determinant 2). Since H is
bipartite it follows that the spectrum of B is symmetric around zero
[2]. The same holds for the spectrum of B~! because its eigenvalues
are the inverses of the eigenvalues of B (with the same multiplicities).
Therefore, tr B~ = 0. Since, like B, the matrix B~! is symmetric and
totally unimodular, it now readily follows that the sum j1 B~1j, of all
entries of B! is even, completing the proof. u]

Lemma 10. Let G be a graph with adjacency matriz A. If A is
totally unimodular, then ker(J — A) C ker J.

Proof. Suppose that G has n vertices, and let = = (x1,... ,2,)7 ¢
ker J. Then j7x # 0. Assume without loss of generality that j7z = 1,
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FIGURE 1. Graph with £_; C Eg but without t.u. adjacency matrix.

i.e., Jx = j. We will show that = ¢ ker(J — A). By assumption, this is
equivalent to Az # j,. But this follows directly from Lemma 9. o

Theorem 11. For all forests,

E_1 C E

holds.

Proof. It is well known and follows by an easy induction that the
adjacency matrix of a forest is totally unimodular. Therefore, the result
follows from Lemmas 1 and 10. o

Let us close this section with some remarks.

Remark 12. Total unimodularity of the adjacency matrix is sufficient

but not necessary for E_; C Ej. Figure 1 shows a graph with
E 1 C Ey but whose adjacency matrix is not totally unimodular.

Remark 13. Consider a symmetric matrix A € R"*". It follows from
basic linear algebra that Az = j is solvable for x € R"™ if and only if
ker A C ker J, which by Lemma 1 is equivalent to ker A C ker(A — u.J).
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FIGURE 2. Example trees with (a) E—1 2 Eo, (b) E-1 = Eo and (c) E-1 G Fo.

Therefore, by Theorem 11, we see that E_; = Ey holds for a forest
with adjacency matrix A if and only if Ax = j is solvable. This is
an interesting condition because it requires finding vertex weights such
that for every vertex the sum over the weights of its neighbors is one.

Remark 14. The relation between the eigenspaces F_; and E; can
be arbitrary even for trees. This means that a result like Theorem 11
does not hold for tree complements. In Figure 2 three representative
examples are shown.

5. Conclusion. In the previous sections we have studied the
relationship between certain eigenspaces of a graph and its complement.
We have shown that one of the eigenspaces Ey and E_; is contained
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in the other one. For most regular graphs these eigenspaces are even
equal. For other graph classes there may not be equality but at least a
uniform direction of the inclusion. For instance, we have proven that
the eigenspace for eigenvalue 0 of a tree always contains the eigenspace
for eigenvalue —1 of its complement.
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