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VARIATION OF THE RADON TRANSFORM

JAMES V. PETERS

ABSTRACT. Estimates are obtained for the variation of
the Radon transform. The analysis is motivated in part by
Kakeya-Besicovitch sets in the plane.

1. Introduction. Given a compact set E C R", let E(z) denote
its characteristic function and F (0,t) its Radon transform obtained by
integrating E(z) over the hyperplane (f,z) = t where § € S™~! and
t € R!. Integrating E(x) over the hyperplane and then with respect to
t yields

(1.1) u(p) = [ Bl da - /_Oo B(6,1) dt

for all # € S™ ! where i denotes Lebesgue measure on R™. We seek
estimates of p(E) in terms of the variation of its Radon transform.
Given a FIXED direction 6 € St and € > 0, it is easy to find a set F in
the plane satisfying F(0,t) = 1 for |¢{| < ¢ and 0 otherwise. By (1.1),
(1(E) = 2 with « arbitrary while the variation of E(0,t) as a function
of t equals 2. As these examples suggest, any estimate of u(E) based on
the variation of its Radon transform requires integration over almost
every direction. Integrals with respect to # are always over S™ 1.

A problem originally stated by Kakeya was to find a set of smallest
area in the plane containing a line segment of unit length in every
direction. Besicovitch solved the problem by finding a set of measure 0
having this property. More precisely, there is a sequence {Ej} of
measurable sets in the plane, each containing a line segment of unit
length, such that u(Er) — 0 as k¥ — oco. In our notation, for each
6 € St and k > 1, we have E\k(ﬂ,t) > 1 for some t. The construction
along with some of the history of the problem can be found in [4].
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By contrast, any compactly supported function f(z) € L?(R™) with
n > 3 satisfies the inequality
(1.2)

/5 sup \f(e,t)\ do < A(/ Af (@)l e+ (/ n[f(w)]zdw>1/2>

where the constant A, depends only on the dimension n. The proof
of (1.2), as outlined in [2], depends on Fourier transform methods.
We establish an inequality that is similar to (1.2). Our methods are
different and, at least for the odd dimensional case, independent of
the Fourier transform. Where best estimates are possible, numerical
values of the constants are computed. The natural setting is absolutely
integrable functions with compact support. Estimates for characteristic
functions are obtained as a special case.

2. Preliminaries. If f(z) € L'(R"™) has compact support,
then so does its Radon transform f(6,¢). Since f(z) is absolutely
integrable, f(@,t) is defined for almost every t for each § € S™~1.
Let Var f(6) = sup 3| £ (0, yj11) — f(0,t;)] for fixed 6. If df(6,t)/dt is
absolutely integrable with respect to ¢, then
(2.1)

20| (O)lloc = 25up ‘f(e,t)‘ dt < /O; ‘6f(9,t)/8t‘ dt = Var f(6).

In fact, integration of the positive and negative parts of 8f (6,t)/0t
yield monotone functions, each of which has variation greater than
or equal to ||f(8)]lsc. These observations extend to the derivatives of
f (,t), for almost every 6 where Var® f (6) denotes the variation of the
kth partial derivative with respect to t. Thus, 2||D¥ f(6)||ec < Var®f(6)
where the operator D¥ = 9% /ot*.

Remark 2.1. A simple modification of the Kakeya-Besicovitch con-
struction shows that Var f(f) can be made arbitrarily large while
f(z) is bounded in the L' norm. If we put fx(z) = arEk(z) where
1/ay = u(Ek), then the integral over R? of each fi(z) > 0 equals 1 for
all k > 1. By (2.1), Var f,(#) grows without bound as k — cc.



VARIATION OF THE RADON TRANSFORM 929

The requirement that E’(G,t) > «a with a = 1 is merely a matter of
scale in the Kakeya-Besicovitch construction. In this paper, we scale
and translate so that f(z) and E(z) vanish for ||z|]| > 1. Of course,
this places an upper bound on p(F) independent of the variation of
the Radon transform. Specifically, if B = {x € R" : ||z| < 1}
then u(B) = ©/2/T'(n/2 + 1) where I denotes the gamma function.
The Radon transform of B(z) will be needed in what follows. A
computation yields

(2.2) E(H,t) = E(t) =Q, (1 - t2)(n—1)/2

for |t| < 1 and 0 otherwise, where Q,,_; = 7(""1/2/T'(n/2 4+ 1/2).

For n odd, the Plancherel theorem for the Radon transform can be
stated as follows. Given compactly supported functions f(z) € LP(R"™)
and g(z) € LY(R™) with 1/p+1/g =1,

23) [ @ de=c, /S N { /_ Dm0, 6)D™ (6, t) dt| a6

where m = (n — 1)/2 and ¢, = [2(27)" 1|71, The integral on
the righthand side of (2.3) is to be understood in the formal sense
only unless additional information about f(z) or g(z) is available.
If we put f(z) = g(z), then the mapping of f(z) € L*(R") to
D™f(6,t) € L*(S™ ! x RY) is an isometry [3, page 29]. Support
f(x) C B implies that f(6,t) vanishes for |t| > 1. Both f(6,t) and
its derivatives up to order m are absolutely integrable for almost every
0. The derivatives of f(9,t) are absolutely continuous up to order
m — 1 for these directions. In particular, if f(z) € L?(R?) then f(6,t)
is absolutely continuous for almost every 6.

The L? isometry for n even is from f(x) € L?(R") to the derivative
of f(0,t) of half integer order (n — 1)/2. Since support f(z) C B,
we have D™ f(6,t) € L*(S"! x R') for mm = n/2 — 1. This implies
the absolute continuity of the derivatives of order < m as in the odd
dimensional case. However, D™ f (0,t) need not be continuous if n is
even. We avoid derivatives of fractional order by replacing f (0,t) by
an integral of fractional order

fi0.0 = oy [ LOD

Je=rp T
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Remark 2.2. While f(0,7) vanishes for |7| > 1, f;(6,t) can have
compact support only if the integral of f(z) over R™ equals 0. In
particular, E; is not compactly supported for any nonvoid compact
set E.

The operator D™ 11/2 applied to fI is isometric to Dmf. This can be
shown, for example, by looking at the corresponding Fourier multiplier.
Granting for the moment that f;(6, ) is the Radon transform of some
f1(z) € L2(R"), we can write the Plancherel theorem as

/[fz x_c”/snl/ [D™f(8,t) dt]? d

where m = n/2 — 1 and ¢, = [2(2m)" ] L.
Now we show that f;(6,t) is the Radon transform of

B f(y)
@) = d”/B le—yl12 ¥

where d, = (22")'/2I'(n/2 — 1/4)T'(1/4). Indeed, both f;(z) and
fl (0,t) are obtained as convolution integrals. A straightforward inte-
gration gives
n(r=/27(1/4)
I(n/2—1/4)

|7n+1/2 .

|t|_1/2

as the Radon transform of |z| The computed value of d,
follows directly from this. Regarding the integrability of f;, we appeal
to the Hardy-Littlewood-Sobelev theorem on fractional integration [5,
page 119]. Since support f(z) C B, f(z) € L*(R"™) implies that f(z)
is in LP(R™) for p = 2n/(n + 1). It follows that f;(z) € L*(R™) and

(2.4) A, / dx>/sn / (D™ £(6,)]2dt do

for some constant A,. The last inequality requires Jensen’s inequality
applied to f(z) as well as the Hardy-Littlewood-Sobelev theorem.

As in the odd dimensional case, the Plancherel theorem can be
applied to different functions. Given compactly supported functions
f(z) € LP(R™) and g(z) € LY(R™) with 1/p+1/q =1,
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(2.5)
[ f@gla)da =, /S [/_w D™ F(0, ) D™ (6, 1) dt | df

where m = n/2 — 1 and §g denotes the Hilbert transform of § with
respect to t. Subject to an integration by parts, (2.5) follows from
the Radon inversion formula [3, page 27]. The operator D commutes
with the Hilbert transform so we can carry out the operations in either
order to compute D™ g (0,t). For the application we make, D™ G (0, t)
is continuous. The distribution of finite order, formally written as
D™H1§(0,t), need not be identifiable with an ordinary function.

3. Main results. We treat the odd dimensional case first. Inequal-
ity (3.1) below applies to the extended reals.

Theorem 3.1. Suppose that f(z) € L*(R™) for n odd and support
f(z) C B. Then

(3.1) Jr@ra=3 [ vantiopa

where m = (n — 1)/2. If, in addition, D™ f(0,t) is continuous in t
for almost every 6 € S"~1, then

/Bf(x) dz

Proof. 1f f(x) ¢ L?(B), then the lefthand side of (3.1) is infinite.
Otherwise, the L? isometry and Jensen’s inequality give

[reraz% [ ([ |prjoo|a)

so inequality (3.1) follows from (2.1).

To establish (3.2), put g(z) = B(z) in (2.3) and integrate by parts to
obtain

/Bf(ar)g(m) dz = —c, /SH [/1 D™ f(9,6) D™+ 5(6, 1) dt} db.

-1

(3.2)

< otz (zm) [ D™ F0)]
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For n odd, 2,1 = n™/m! so (2.2), and the formula of Rodrigues, give

~

D™B(t) = (=1)"(2m)"pm (1)

where p,,,(t) denotes the Legendre polynomial of degree m. We put
D™T1B(t) = du(t) where the measure p has jumps at the endpoints
t = £1. For almost every fixed §, D™~ f(6,t) is continuous in ¢ so

33 |[ P e )] < 10" )l

where ||u|| denotes the variation of the measure p.

We can disregard the endpoints since D™~ f(,t) = 0 for t = +1.
The variation of p(t) =t for —1 <t <1lis2so ||u||=4rif m=1. A
simple overestimate for m > 1 is obtained by multiplying (27)™ by 2m
where we use the fact that |p,,(t)] <1 for |t| < 1. Integrate (3.3) over
S"~1 and move the absolute values outside the integral. This yields
(3.2) which ends the proof. u]

It is easy to show that the inequalities of Theorem 3.1 are best
possible on R3. The function f(z) = ||z||~! for 0 < ||z|| < 1 and
0 otherwise makes (3.1) an equality. The relevant example for (3.2) is
the characteristic function of the set E, = {z € R3 : a < ||z]| < 1}
where 0 < a < 1. The lefthand side of (ii) equals 47(1 — a®)/3 and the
righthand side is 2m(1 — a?). In the limit as a — 1, the ratio of these
quantities approaches 1.

If E C R3 satisfies ||[E(0)||oo > o for all § € $2, then Var E(6) > 2a.
This implies that u(E) > o?/m by inequality (3.1). For n = 5, the
estimate depends on Var'E(f). If |E(6)|| > o, then we also have
|D*E(6)]||sc > a. This follows from the mean value theorem since, for
each 6, both E (0,t) and its derivative are continuous and vanish for
|t| > 1. This extends to derivatives of higher order for n > 5, providing
a lower bound for u(E).

Corollary 3.2. If the Radon transform of E. C R™ for n odd satisfies
|E(8)||co > o for all § € S, then u(E) > o?/[[(n/2)2"~2x"/2-1].
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The even dimensional case is divided into an analysis for n = 2 and
n > 4. For a set E C R?, (2.4) gives

Aop(E) > /02” (/ll[E(G,t)]Zdt> a9

for some constant A;. But we also have

W(E)? = = 0% [/_11 E(6,1) dtrda,

2

< i :W </_11[E(0,t)]2dt> de

by (1.1) and Jensen’s inequality. Thus, convergence of p(Ey) to 0 for

some sequence {Ey} is equivalent to the convergence of {Ek} to 0 in
L2(S" 1 x RY).

Theorem 3.3. Suppose that f(z) € L*(R"™) for n > 4 and support
f(z) C B. Then

A [ =G [ vart )R

for some constant A,, where m =n/2 — 1.

Proof. For f(z) € L*(R™), apply (2.4) and Jensen’s inequality as in
the odd dimensional case. The inequality is valid in the extended reals
if f(z) ¢ L?(R™) so this ends the proof. o

Theorem 3.1 and Corollary 3.2 place a lower bound on x(E) in terms
of the integral of [Var E(6)]2. By (2.1) and Jensen’s inequality applied
to S™~1, this improves on (1.2). For f(z) € L?*(R"), Theorem 3.1
provides a double inequality. Indeed, as noted in Section 2, f(z) €
L?(R™) for n odd implies the continuity in ¢ of D™~ (6, ¢) for almost
every § € S"~1.

The even dimensional analog of (3.2), obtained from (2.5), is the
inequality

(3.4) < e M, Var™ f () df

Sn—1

/Bf(:c) dx
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where
M, = max ‘DMEH(t)‘ .
—1<i<1

The boundedness of M, follows from the continuity of D™ By (t) which
we now establish. The mth derivative of B(t) can be written as a
polynomial in ¢ times (1 —¢2)!/2 for |t| < 1. Thus, Dmﬁ(t) is Lipschitz
continuous of order 1/2 which implies the continuity of its Hilbert
transform.

The estimate is made more precise by computing M,, or at least
finding a numerical upper bound. To accomplish this, we use the fact

that
~ 1 o0
Bo= 1 [ T0)costrt)dy
m™Jo
where the spherically symmetric function Y(v) is the n-dimensional
Fourier transform of B(x). This is easily expressed in terms of Bessel
functions. Specifically, for n even,

1
() =20 [ gl
0
where J,,, denotes the Bessel function of order m = n/2 — 1.

Theorem 3.4. Suppose that f(z) € L*(R™) for n = 2(m + 1) and
support f(z) C B. Then inequality (3.4) holds with

(3.5) M, <2 / Y 1 ()] -
0

Proof. Tt is sufficient to show that Y (7) is the one-dimensional inverse
Fourier transform of a function with L' norm equal to the quantity on
the righthand side of (3.5). This integral converges since Jy,+1(7) /7™ !
is bounded and J,, 1(v) is asymptotic to v /2 as v — oo.

By Sonine’s integral formula [1, page 98], Y(v) = 27y~ +1).7, 1 (v).
Applying the operator D™ to B and computing a Hilbert transform
corresponds to the Fourier multiplier (i)™ signum (). It follows that

DmgH(t) is continuous with parity opposite that of m and maximum
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value < the righthand side of (3.5) for all ¢. The inequality is evidently
satisfied for |t| < 1 so this ends the proof. O

We carry out a computation for n = 2. The Hilbert transform of B
is the odd function

§H(t) = g /1 7(1 - T2)1/2 dr

T J_1 t—T1

that attains its maximum at ¢ = 1. An integration gives My =
By (1) = 2, which is an improvement over (3.5) for m = 0. For n = 2,
this sharpens inequality (3.4) to

/B f(z)dx

The function F(z) = (1—||z||?)~%/2 for ||z|| < 1 and 0 otherwise shows
that this inequality is best possible. Indeed, the Radon transform of
F(z) is F(t) = m for |t| < 1 and 0 otherwise. Since Var F'(§) = 27 for
all § € S1, the righthand side of (3.6) equals 2. The integral of F(z)
over R? gives the same value.

By Remark 2.1, the righthand side of (3.6) can be made arbitrarily
large with the lefthand side held constant.

1 2 N
< — .
<o ) Varf(6)ds

(3.6)
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