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EXISTENCE OF COMPLEMENTED SUBSPACES
ISOMORPHIC TO (¢ IN
QUASI BANACH INTERPOLATION SPACES

J.A. LOPEZ MOLINA

ABSTRACT. Let (Ep, E1) be a compatible couple of quasi
Banach spaces and 0 < € < 1, 0 < ¢ < co. We present a suf-
ficient condition in order that the quasi Banach interpolation
space (Ep, E1)g,q has complemented subspaces isomorphic to
11, extending in this way Levy’s theorem. As an application we
show that every space (IP0(u),IP1(1))g,q, 0 < po < p1 < 00,
has complemented subspaces isomorphic to [? except in the
case that 0 < pg < ¢ < 1, 1/(pg) := (1 — 6)/po + 6/p1 and
0<a<pu{n}) <B <oo,néeN for some o, §in R.

1. Introduction. Let (Ey, E1) be a compatible couple of Ba-
nach spaces. Levy has proved in [10] that every interpolated space
(Eo,E1)p,q, 1 < g < 00,0 < 6 < 1 (real interpolation method) such
that Ey N E; is not closed in Fy + F; has complemented subspaces iso-
morphic to 9. In [4], Brudnyi and Krugljak extend the scope of Levy’s
result to more general interpolation functors.

The theory of real interpolation of Banach spaces has been extended
to quasi Banach spaces by several authors, see for example, Krée [9],
Holmstedt [6], Peetre [15] and Sagher [16]. Essentially with the same
hypothesis of Levy, although with a slightly different presentation,
we have shown in [12] that such interpolation spaces (Ep,E1)g q,
0 < g < oo of quasi Banach spaces Ey, E; have subspaces isomorphic to
9. In this paper we prove that, under suitable hypotheses, these spaces
have indeed complemented subspaces isomorphic to [ too.

In general, our notation is standard. We recall that a quasi Banach
space is a vector space E over the field K of real or complex numbers
which is complete under the metric d(z,y) = ||z — y|| where ||.||: E —
[0, o0[ is a quasi-norm, i.e., a function with properties
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1) ||z]| = 0 if and only if z = 0.
2) For all z € E, for all A € K || Az|| = |A| ||z||.
)

3) There is a Kg > 1 such that for all z,y € E ||z + y|| <
Ke(llzll + llyl)-

B(FE) will denote the closed unit ball in the quasi Banach space E.
We say that a sequence {z,}2°,; C E is a semi-normalized sequence if
there are numbers 0 < a < 3 such that a < ||z,|| < 8 for every n € N.

The paper is organized as follows. Section 2 gives definitions and
results about the real method of interpolation of quasi Banach spaces,
which are the foundation of our main argumentations in subsequent
sections. Likely some of them are well known but dispersed in the
current literature. Since we do not know concrete written references
for them and since they involve delicate constructions, we prefer to give
a detailed account for all necessary facts.

Section 3 is our main general result. In spite of its quite involved hy-
pothesis, this result can be applied to many important concrete exam-
ples. That is done in Section 4, where we prove that the interpolation
quasi Banach spaces (IP°(u), P (1))g,q, 0 < po < p1 < 00, 0 < g < 00,
w an arbitrary measure in IN, have complemented subspaces isomorphic
to [9 with the unique exception of a measure p such that there exists
0 < a < B < oo such that o < u({n}) < B for every n € N and
0 <pg <q<1, where 1/pg := (1 —80)/po + (6/p1).

2. On interpolation of quasi Banach spaces. Suppose (Ey, E1)
is a compatible couple of quasi Banach spaces (this means that Ey and
FE, are continuously embedded in a same larger Hausdorff topological
vector space). The spaces Ey+ E; and EyN E; will always be endowed
with canonical quasi-norms

lallzy+m, = inf {llall, + 1bl5, | ©=a+bac By, be By}

and
ol g0, = max{ all sy, Il s, },
respectively.

For every h € Z, let ||.||[n be the Minkowski functional of the set
e~ B(Ey)+e"=9"B(E}) C Ey+ E1. ||.||n is a quasi-norm on Ey+ E;
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by the classical Aoki-Rolewicz theorem of equivalence between quasi-
norms and r-norms, 0 < r < 1, (see [8] for details) and some facts
proved in [7, page 105]. As in the classical Banach space case, ||.||5 is
equivalent to the initial quasi-norm of Ey + E; and, hence, for every
n €N, (X ih<n |z||%)1/4 is another equivalent quasi-norm in Ey + Fy
(the proof is the same as the one given in [1] in the normed case).

As in the Banach case, we consider the K(t,z, Ey, F)-functional
defined for every ¢ > 0 and every = € Fy + E; by

K(t,z, Ey, Ey)

= inf{HZUOHEO +t||331||E1 T =x9+x1, xg € Fy, 1 € El} .

It is easy to see that

(1) K(taw + y7E07E1) < maX{KEmKEl}
X (K(tvmuEmEl) + K(t7y7E07E1))'

Then, given 0 < § < 1 and 0 < ¢ < oo, the interpolation space
(Eo, E1)p,q is defined as

K(t,z,Ep, E dt
(Eo, E1)o,q = {$€E0+E1 ‘ %EL‘]([O,W[,T)},

which becomes a quasi Banach space provided with the quasi norm

[zllo.q =

K(t,iL’, E07E1)
0

L‘I([O,oo[,%)

(see [15] for details). However, for our purposes it will be more
convenient to use on (Ey, E1)g, some equivalent alternative quasi-
norms. Since, for every h € Z, we obtain

K(e" z,Ey, E1) < e K(e"™', z, Ey, Ey),

we have for 0 < ¢ < o0,
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</°° (ZhEZ K(eh’vaO’El)X[ehvethl[)q dt) "
0

t9q+1

K t T Eo,El) d Ya
t0q+1 ¢

t X Eo,El) d Ya
Z t9q+1 ¢
heZ
h+1 q 1/q
) Ly EOa El) d
Z t9q+1 t
heZ

6 7$7E07E1)q Ha
Z t0q+1 dt
hez’e"
< (Zhez K(eh’waEOaEl)X[eh e’“rl[)q 1a
=e / ’ dt ,
0

tba+1

and, with obvious changes, we get a similar result for the case ¢ = oo
As a consequence, the first function of the chain of inequalities defines
an equivalent quasi-norm on (Eg, E1)p, for 0 < ¢ < oo. Hence,
using the definition of K (t,z, Fo, E1), it is easy to show that another
equivalent quasi-norm on (Ejy, E1)g q is, when 0 < ¢ < o0,

. 1/q
il =int { s (320", )
j=0,1 J

heZ
— 0 1.0 1
‘LE—.’Eh—i-.’Eh,Q?hGEo,LEhEEl for all hEZ}.

With the usual changes, we obtain a similar formula for ¢ = .
From this we recover for the quasi Banach case one of the discrete
classical alternative descriptions of (Ey, E1)g,q in the normed case (see
for instance [1]). This allows us to check that the proof given in [1,
Chapter I, Section 4, Proposition 4] in the case of Banach spaces can
be repeated in the quasi Banach case using the quasi-norm |||.|||g,q in
order to show that the initial quasi-norm of (Ey, E1)s 4 is equivalent to
the new quasi-norm, for all € (Ey, E1)s,q,

2) lella = (3 IIwIIZ>1/q-

hEZ
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From now on, we shall be concerned exclusively with the case 0 <
q < 0o. We define for later use ¢ := 00 if 0 < ¢<1,¢ :=¢q/(g—1)
ifl<q,g=1if0<qg<1andq=qifqg>1. Clearly, ¢ <q always
holds. We remark that the equalities

T~ 1N\ (E 7E ) 3
(3) (Eo,E1)oq = (BoNEy) 07"
and
E() El
(4) (Eo, Er)o,q= (EoNEy) ,(EoNEy) )og

hold as in the normed case (for instance, [1, Chapter II, Proof of
Proposition 1] in the Banach case can be repeated in our setting).

In the rest of the section we always assume that Ey N Eq is dense in
every E;, i = 0,1 and Ey + Ey has a separating dual (Eg + E1)’. Let

IQU:EoﬂEl—)E()—FEl, ImiZEoﬂEl—)Ei, i:O,l,

denote the canonical inclusion maps. Then each E;,i = 0,1, (Eo, E1)g,q
and EyN E; also have nontrivial separating duals and the adjoint maps
II£1U : (E0+E1); — (EomEl)/ and Ir’-“ : Ezl — (EomEl)/, = 0, ]., must
be injective. Hence, every E! can be looked at as a linear subspace of
(Ey N Ey) and Ey + E; as a linear subspace of (Ey + E1)"”. Moreover,
we can write (Ep + F1)' = E{ N E] as in the Banach case, see [3].

Let B be the closed unit ball of the quasi Banach space (Ey +
E1,||.]|n). We denote by ||.||; the dual norm of |.||» in the dual space
(Eo + E1) and by Bj: its closed unit ball. ((Ey + E1),|.|}) is
a nontrivial Banach space. Let |.||}* be the dual norm of |||} in
(Eo + E1)", and let Bj* be its closed unit ball. Clearly, we have,
for all © € (Ey, E1)g,4 and for all h € Z,

(5) ll5* < ll]|n-

We denote by Fg,, i =0,1 (or F;, i = 0,1 in short if there is no risk
of confusion) the topological subspace of E!

Fg,:==F =E,nE"", i=0,L
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Since each E; is a Banach space, F} is a quotient of E}'. Let K, : E' —
F! be the canonical quotient map. Clearly, F; N F} is dense in each Fj,
i=0,1and FyNF, = E,NE]. Hence, F, i = 0,1, is a linear subspace
of (Fp N Fy)'. Moreover, every F; being a Banach space, we have

(6) Fo+ F = (FonFy) = (EyNEY) = (Eo+ Ep)".
For every h € Z we consider the convez set in Fj + F}

Wy, := e " B(F}) + =" B(F))
= ¢~ "Ko(B(Ey)) + "~ "K\(B(EY)).

Let pw, be the Minkowski functional of W7,.

Lemma 1. We have, for all v € (Ey + E1)”,

(7) pw, (z) < [lzll}" < 2 pw, (2).

Proof. As every B(F}) = K;(B(E!)), i = 0,1, is o(F}, F;)-compact
(Alaoglu Bourbaki theorem), they are o(F§ + Fy, Fy N Fi)-compact
too. Then W), is o(Fj + Fi,Fy N Fy)-closed. On the other hand,
by the bipolar theorem, B;* is the o((Ey + E1)", Ey N E})-closure of
the absolutely convex cover I'(Bp) of Bp. If 0 # z € (Ey + E1)”,
we have x € |||[;*B;*. Then there is a directed set A and a net
{zq,a € A} C T'(Bp) such that for every n € N there are nets
{zi" o € A} C B1(E;), i = 0,1, such that for all a € A,

1\ 2=
Ty = <1 + ;) Z Ty (e‘ehmg’” + e(l_g)hmi""’>,
y=1

with "7 € B(E;) for every i = 0,1, 1 < v < 74, a € A, Z;‘;l Iny] <1
for each o € A, and moreover, z = lim,e4 ||z||}* 2o in the topology
o((Eo+ Ev)",E{NE}]). As every B(F}), 1 = 0,1, is absolutely convex,
we have for all a € A,
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1 Yo Yo
— (1 - —0h Ko (207 (1-6)h K 1ny
(14 ) (™ Y mBalatry + €023 Kaatr)

y=1 y=1
1
S (1 + —> Wh,
n

and so we obtain

a€EA n—oo

1 1
o=t Jim (14 1) ol 20 € (14 2 ) ol Wi

As a consequence, n being arbitrary, pw, (z) < ||z||}*.

Conversely, z € (pw, (z)+(1/n))W}, for every n € N and hence there
is an f* € B(E!), i = 0,1, such that

z _ —6h h (1-0) h h
=e ""Ko(fy) +e Ki(f1').
But B(E}') = B(E;)°°, i = 0,1. By the bipolar theorem, there are
nets {z;*, a; € A;} in the absolutely convex cover I'(B(E;)) of B(E;)
which are o(E/, E})-convergent to f!', i = 0,1. Since B; C EjN Ej
and "= P B(E;) C By, for every i = 0,1, we have

* %
T

= sup lim lim
@pEB; ®0€A0 a1€4;

x
= sup

)
h pEB; <pWh (CE) + (1/n)
(e MEo(age) + €00 K af), 0] < 2

getting ||z|[7* < 2 pw, (z) + (1/n) for every n € N. In consequence
llz]|7* < 2 pw, (z), and the lemma follows. O

Let Fy N F; be the closure of Fy N F} in the interpolation Banach
space (Fu, F1)g,q- By the remark following [3, Theorem 3.7.1], we have

(8) (FoNF) = (Fy, Fy)og-
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Directly from (2) and Lemma 1, we get

Corollary 2. The canonical norm in (Fy, F{)e g is equivalent to the
norm, for all x € (F§, F{)o 3,

el ]+ = (Z(H:cnz*ﬁ)w.

heZ

Lemma 3. For every h € Z, the normed space ((Eo, E1)a,q, ||.|/7%)
is a topological subspace of the normed space ((Fy, F{)og, |.17"), and
hence, (Eo,E1)e,q can be looked at as an algebraic linear subspace of
(Fo, F1)o.a-

Proof. With suitable natural changes in the proof given in the
Banach case in [1, Chapter IV], and using (4), we obtain the continuous
inclusions

9) Fo N F1 C (Fo, F1)o,g = (Eg, E1)o,q C ((Eos E1),q)',

and taking transposed maps, by (6) we get the chain of natural map-
pings

(E07E1)97q — ((E07E1)97q)” — ((FO,Fl)e’Q’)I
= (Fy, F1)o,g C (Eo + E1)".

Let H : (Eo,E1)eq — (Fy, Fi)gg denote the composition of the
corresponding maps of this chain. As a consequence, for all z €
(Eo, E1)p,q and for all y € (Fy, F1)g, D FoNF1 D E{NEY, (H(z),y) =
(x,y), and hence, for all x € (Ey, E1)g,4 and for all h € Z,

(10)

|H @)l = sup{ [(H @), )], v € (Bo+ B0)', Iyl <1}

=sup{l(z,9)l, v € (Bo+Bn),lylly <1} = alli”. o
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3. Main result.

Theorem 4. Let 0 < g < 00, and let (Ey, E1) be a compatible couple
of quasi Banach spaces such that Eg+E, has a separating dual. Assume
that there is a semi-normalized sequence {x,}3>, in (Eo, E1)g,q, which
is semi-normalized too in (Fy ,Fp )eg, but lim, o ||z,||gy+8, = 0.
Then, (Ey, E1)g,q has a complemented subspace isomorphic to 19.

Proof. By (3) and (4) we can suppose without loss of generality that
Ey N Ej is dense in every E;, i = 0,1. By hypothesis and Corollary 2,
there are a bounded sequence {x,,}22; C (Ey, E1)g,q and numberse > 0
and 0 < o < B such that

(11) i zals s =0, inf fleallly 2
and, for all n € N,

(12) 0 < a<||za]|™ < B.

By [12], and switching to a suitable subsequence, it can be assumed
that the closed linear span G in (Ey, E1)g,q of {zn}52; is isomorphic
to [9. That means that there is a K > 0 such that for every (a,) € KN

(13) %(i>/s' i qu(iw)”q-

n=1 n=1

Define, for all n € N,
Ln

- M S (EI(],E‘l)g7 .
]l !

Up :

The closed linear span of the sequence {u, }2° ; is again isomorphic to
19 since by (13) and (12), for every (a,) € KN, we have

1 o . 1/q 1 © q\ 1/q
m(5er) = w (Xl

‘ ianun SK<i
n=1 q n=1

K oo 1/q
s (Snr)”
(0%

n=1

an

*k
[[[zn]ll

an

*k
[zl

IN

q) 1/q

(14)

IN
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Let C' > 1 be the quasi-norm constant corresponding to |||.|||; and fix
a number 0 < § such that (0CKj)/a < 1. We consider separately the
cases ¢ < 1l and ¢ > 1.

Case ¢ < 1. Put h; = 1. Suppose we have to find strictly increasing
finite sequences (m;)}, and (h;)7~; in N with mg = 0, hy = 1, such
that forall1 < j<mand foralll<s <j,

69 1/q
(15) | Z [Jun, [[7* < (W> )
i >m;
forall1 <k <mn,
me s
(16) 1= > i < SED/ACK
li|=mp_1+1
and for all 7 =2,3,... ,n,

54 1/q
(17) Z ||“hJHz S(W) -

li|<m;_1
Remark that for all n € N,

(18) a1 = llualliy =1

meZ

and that, by (5) and (11), for all h € N,

1/q
Jm Sl < tim (3 ()

l7l<h liI<h
(19) ”
: q —
<t (X wlf) =0,
liI<h

having in mind that (3; <, ||ac||g-)1/q is a quasi-norm in Ey + Ej
equivalent to its canonical quasi-norm. Then we can find h, 1 > hy,
such that (17) holds for j = n+1. Now, by (18), there is an m, 11 > m,
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such that (15) and (16) hold for j = n + 1 and the process can be
repeated indefinitely.

Let X be the closed linear span of {uy, }22, in (Ey, E1)g,q. Clearly,
X is again isomorphic to [9. For every n € Z, let H,, be the Banach
envelope of the quasi-normed space (Ey + E1,||.||n). Clearly, H, is a
topological subspace of ((Eo+ E1)", ||.||%*). Since H], = (Ey+ E1)’, for
every n € Z there is a ¢, € ((Eo + E1)',||.||};) such that for all n € N
and for all m,, | +1 < |i| < m,,

(20) leilli <1 and (@i, un,)| = [fun, [l

We define T': (Ey, E1)g,qy — X by, for all x € (Ey, E1)g,q,

(1) =3 ¥ n)u.

n=1 |i|=m,—1+1

Mn

T is well defined and continuous since, by (14) and (20) we have

K/ a\ 1/q
iz <5 (X )
\i|:mn,1+1

n=1
K oo Mn 1/q
8 1*)a a
(XX el

n=1 [i|=m,_1+1

IN

<zl
— A .

Let W : X — X be the restriction of T to X. If we show that the
inverse operator V := W ™! exists, the proof will be finished since the
composition V7T will be a continuous projection onto X.

In order to show the existence of V, it will be enough to see that
IIx — W] < (6KB)/a (where Ix is the identity map on X) since in
such a case, by consecutive application of the additive property of a
quasi-norm, we will obtain for all £, h € N,

k+h

> (W —Ix)"

n=~k

h+1
_ C((6KB)/a)*
< E CM\W =T k+n—1 < ,
it | x| T 1-CW - Ix|
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which is arbitrarily small letting & — oo since C||W — Ix]||
(0CKpB)/aw < 1. This means that the series of operators V
Yoo o(Ix — W)™ will be convergent and, since

TIA

(fj(fx W) (o~ (1 W) = Ix,

n=0
the operator W will be invertible with inverse V.
Hence, let us see that [|[W — Ix|| < (6K8)/a. Let

oo
T = E anup, € X.
n=1

Using (14), we get

i@ el = (( X ene)—an)un,
n=1 Y |jl=mu_1+1 ¢
' Z((Zat< Zn (pjauht>> an)“hn
n=1 [7l=mn_1+1 4
< C‘ Z << Zn ‘Pj,uhn> - 1>anuhn
n=1 N |jl=ma_1+1 q
S (el )
n=1 “t#n [jl=mp_1+1 q
oo my 1/
§C§<Z << Z cpj,uhn>—1>an q) ’
F A= N i1
mn q\ l/q
(22) +(J§<Z Sal Y ¢j,uht>‘ )
>\ i li|=mn_1+1

and by (20) and (16)

;(Zlall")”q
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K [e'S) My, q\ 1/q
OB (Xl Y i)

n=1t#n [jl=mn_1+1
5 o 1/q
- q
<2 (300)
K = *k a
O (S (S X )
n=1 “t>n |7l1<m¢—1
q 1/q
+Z|at|q( ) ||uht||;f*) ))
t<n ‘j|>mn71

and by (17) and (15)

5 oo 1/q
< 2 g
- 2a<§|al| >

K 09
05 (X (S g

n=1 “t>n

1/q
+§ |at|q67q>>
an+l+qCla Ka

t<n

(5 00 1/q
< 2 12
< 204(;'“1' )
K[ 89
_ - q
+0 (3 (grmmmgi >la

n=1 >n

54 1/q
- q
T SntiragaKa tz ] >>

<n
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and by (14)
5§ 6 > V1  sKpB
< | — — q < 7
< (5n50) (Xtawt) < % el
k=1
and hence,
5K
1w — 1] < 252

Case g > 1. The pattern of the proof is the same but with different
technical details. As a first step, with a similar argument to the one
used for (15)—(17) and (19), we find a subsequence {uy, }2° ; such that
for every n € N, we have for all 1 < j <n and for all 1 < s < j,

(23) S (fun, N

q S
i )< 21+(G+)aCaKa’
1| >m;

forall1 <k <mn,

Mk 1/q 5
(24) 1- (I' Z (|Uhk||:*)q) < FHIOK

=mp_1+1

* ok
i

and for all 7 =2,3,... ,n,

*k 6q
(25) Z (Nlun, 157 < +GHaCaKa”

[i]<m;_1

The spaces X and H,, n € Z, are defined as above. By (14), for
every n € N, for all (mi)mlmnilﬂ e Hﬁ" H:

tl=mp_1+1 77"

onen=( <|xz~||z*>q)1/q

‘i|:mn—1+1

defines a norm on Hmlm _,+1Hi getting a Banach space with a
nontrivial dual. Hence, there are p; € (Eg+E1), mp_1+1 < |i| < my,
such that

My (¢—1)/q
(26) ( 3 (mnz)q/(q-”) <1
[i]=

Mp—1+1
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(21) 3 (o) = ( 5 <||uhn||:*>q)l/q.

li|=mp_1+1 lil=mp_1+1

The map T is defined as in (21). By (14), Holder’s inequality, (26)
and (5) we obtain for all z € (Ey, E1)s,q,

mn a\ 1/4q

> e )
1

(
K (8 )
(5 dempen)”

INA
o |
VS
[M]8

\i|:mn,1+1
Mn 1/q
K
(X ele)) < lall
li|=mp_1+1

and T is also continuous.

Now W and V have the same meaning as previously. To show the
existence of V, from (26) and (24) we obtain
q> 1/q

S E ) e
< %(glaqu)uq-

n=1 |]"=mn71+
On the other hand, applying Minkowski’s inequality in (22), we get

E(Elgel 2 an)l)”

n=1

t#” |j|=mn—1+

= my a\ 1/q
<o ylel( S Y eom)])

t=1 n#t [jl=mn_1+1
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K& Mmn a\ 1/4q
<ol lal(X( X el i) )
t=1

n#Et N |jl=ma,_1+1

and by Hoélder’s inequality

<ofym(2( ¥ el pran)”

n#t N |jl=ma_1+1
Mn 1/q
( 3 <||uht||;*>q))
‘j|:mn—1+1
and by (26)
K Mn . 1/q
<obYlal(X X ()

QIN

o0

S

t=1 nt | j|=mn_1+1
(o'} Mn
Z(m(Z S (lun )

n<t [Fl=mn 141

My 1/q
DS (|uht||;*>q)

n>t|jl=mn_1+1
K 0o 1/q
SCEZ%I( > Ui+ X2 <|uht||;-*>q)
t=1 [F1<me—1 [71>me

and by (25) and (23)

K © 54 09 1a
=0y i k| Z (21+(t+1)chKq + 21+(t+1)‘10‘1K‘1>

/q

<o (Z|ak|q> ;

and the proof is finished as in the former case. o

4. Applications. We wish to apply the previous theorem to
the particular case of interpolation spaces (I7°(u),IP*(u))g,q where
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0<py<p1 <0, 0<q<ooand pis an arbitrary measure in N. As
a technical tool we shall use Lorentz sequence spaces [P7(u). We recall
the most relevant aspects for our purposes and refer the reader to [2,
11] for more details.

Given a measure p in N we put pu, := p({n}) for every n € N. For
a sequence a := (a,)2>; € RN, the distribution function yu, of a with
respect to p is the real function y, : [0,00] — R given by, for all A > 0,

pa(A) := p{n € N |]an| > A}.

The decreasing rearrangement of a is the function aj, defined on [0, 0]
by, for all ¢ > 0,

ai(t) == inf A > 0 | pa(A) <t}

In particular, the decreasing rearrangement of a sequence a = (a,) € ¢
is the function a*(t) given by

(28) a’*(t) = |aa(1)| if te [Oaﬂa(l)[

and, for all ¢ > 1,

i1 i
(29) a’(t) =laom| if te [Zﬂa(j)v > (i) [
j=1 j=1
where o : N — N is any map verifying
ap(1)| = max{\an| |n e N},
and, if i > 1,
o) = max{\an\ in¢ {o(1),0(2),... 00 — 1)}}.

Suppose now 1 < p < 00, 1 < ¢ < co. Then the Lorentz space [P?(u)
consists of all (a,,) € in RN such that

00 1/q
— 1/p g * 1 ﬂ
lpq i= </0 (t a (t)) ; > < 00.

(30) 1/




916 J.A. LOPEZ MOLINA

It can be proved that |||, p ¢ is a quasi-norm in I”9() (see, for instance,
[2, Chapter 4, Theorem 4.3]). However, in concrete computations
with elements of I”7(u) N cp, it will be more easy to use a quasi-norm
equivalent to ||.||p.q, see [12], defined, for all a = (a,,) € P9(p) N co, as

00 i (a/p)—1
) llallpg = (X lawwlhoo ( Sher) )
i=1 j=1

1/q

Let p = {p;}32, be a sequence of strictly positive numbers. In some
instances we shall need weighted spaces

P (py p) = {(wi) | (wipi) € 179(p)} -

In such cases, the canonical quasi-norm of (z;) € I"9(p, ) is

[ (zipi)llwap)-

Given « > 0, the symbol p* will denote the sequence (u$). Analo-

gously, we define p/pu == (pi/pi), 1/p = (1/pi) and pp := (p;p;). For
every ¢ € N, the sequence (0,0,...,1,0,0,...) with 1 in the ith place
will always be denoted by the symbol e;.

The next result of Freitag [5] will be important for us:

Theorem 5. 1) If 0 < p <00, 0 <80 < 1,0 < q < o0, the
isomorphism

Po
P (w 1 (wy 0.0~ 1P/ (=0 (g Wo
( 05 M), y b ,q ) 14
w1

holds by means of the identity map.

2) If 0 <py <p1 <o0,0<6<1,1/p:=(1-0)/po+0/p1 and
0 < g < o0, the identity map gives us the isomorphism

wP 1/(p1—po) wo pop1/(p1—Po)
(170 (wo, ), 1P (w1, 1)) g,q = 179 (<w—§o> ; <—> u)-

0 w1

In order to study the existence of complemented subspaces isomorphic
to 7 in interpolated spaces of type A := (IP°(u), P*(1))s,q, We remark
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that, after projection onto a sectional subspace, we can assume the
measure space (N, i) enjoys one of the following possibilities:

1) There are 0 < a < B in R such that, for all n € N,
(32) o < pin < B
In this case we have (19(u),l*°(1))g,q ~ (17,1°)g 4 indeed.

2) The sequence {un}52  is strictly increasing and lim,, o g, = 0o.

3) The sequence {p,}52 , is strictly decreasing, lim,_, o pt, = 0 and
p(N) = 32701 i < 00.
Given X as above, define pg such that 1/pg = (1 — 6)/po + 0/p1.

Theorem 6. Let u be a measure on N of types 1), 2) or 3). Let
0 < pp <p1 < o0 and 0 < g < oco. Then (IP(u), P (1))e,q has
complemented subspaces isomorphic to 19 except when 0 < pg < g <1
holds in the case of type 1).

Proof. By Theorem 5 we have the isomorphisms

(17 (1), 1P (1)) o,q = 170 () 2 (14D P2 (), 1 (1) ,q-

Hence, having in mind Levy’s theorem, it is enough to consider the
case of non Banach spaces of type \ := (IP(u),1%°(u)g,q = P/ 1=91(y).

Case 1) Assume (32) holds. If ¢ = p/(1 — 6) we obtain A = [? and
there is nothing to prove. We only need to consider two subcases.

Case la) Assume moreover ¢ < p/(1 —6). To avoid the Banach
space case we have ¢ < 1 necessarily. If p < ¢, take 0 < v < 1 such
that (¢(1 —6)/p) < 1 —v. By Freitag’s result, we have

P00 (17,1)g,q = (P00 1),
and ¢ < (p(1 —v))/(1 —0). Hence, we can assume g < p < p/(1 —10)
and 0 < ¢ < 1.

Subcase 1lal) Suppose moreover p < 1. Put ko := 0 and suppose
{k;}h_, and {z;}}_, are defined. The sequence {logn/(log(kn+n))}nzs
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is strictly increasing with limit 1. Since 0 < 1—(gq (1 — 6))/p < 1, choose
B > 0 such that

-0)(p—q) - q(1-19)

q(l
(33) 0<h= p(l—q) p

and ap+1 < 1 small enough in order that

q(1-9)

(34) app1+B+1- <1,
(1 q)ants log 2 logn
35 Con>2,
%) 1—(q/p) ~log(kn+2) ~ log(kn+n)
and
q1-0)(p—q)
36 ane +8) < 2T
(36) (an+1 + B) o0 a)
Then, for all n > 2,
(37) (kj +n)*i+t < (kj +n)?% nl—(a/p)

The series

- 1
Zl (kh + n)o‘h+l+5n1—(‘1 (1-0))/p

is divergent. Then let sp4+1 € N be the least natural number such that

Sh+1

1
(38) 1= Zl (o £ )i #8 =G =/p =
We define kp11 := kp, + Sp41, and
Sh+1 1
e Z:l (kp, + n)(@nt1+8)/a Chitn-

Then by (31) and (38)

Sht1 1 1/q /
_ 1/q
L<llznsallx = < 2 (kn + n)ah+1+ﬁn1—((q(1—9))/p)> sz

n=1
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On the other hand, A = (I?,1®)g,4 = (I*,c0)p,q and [ ﬁlll = cg,
and hence (Fp , Fpp Jog = (I',1%)g,1 ~ 1/0=9:1_ By (31) and (38) we
obtain

Sh41

1
th+1||l1/(179),1 = Z (kh+n)(ah+1+ﬁ)/qn0

n=1

Sh+1

1
E ;::1 (kn +n)ah+1+,3 nl—(a(1-0))/p 2 1.

Since [P 4+ [*° = [*° and

1 1
[zhtallie < Lo th < s
h
the proof is finished.
Subcase 1a2) Suppose that p > 1. Put kg := 0, and de-

fine inductively {k;}32; noting that, once {kj}?:l are defined, since
(q(1—0))/p < 1, the series

= 1

Zl (kn + 1)a0=0)/p 1= -0/

is divergent, we can define kj 1 as the greatest natural number such
that

khi1 1
(39) < Z1 (kp, +n)1(1=0)/p p1—(¢(1-0))/p <2

Let us see that {kp}5°; is not decreasing. Assume we have shown
that k1 < ks < -+ < kp, and that kp41 < kp holds. By definition of
kp+1 and kp, we have

ki1 1

te Zl (ki + )10 0)/p L @@ 0))/p

1
kh+n)‘1(1 0)/p pl—(q(1-6))/p

|
Uon 1+ n)a =00 pi=G(=a)/p = >

IN

'i
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and hence, again by the definition of k1 there would be k;, < kpy1
in contradiction with the hypothesis. Hence, k;, < kp41.

Now put sp := k1 + k2 + - - - + kp, and define for all h € N,

Khy1 1
Zhi1 = Zl o £ )07 Sontn

Then by (39),

Fnia 1 1/g
= 1/a
lznlln = ( 2 (kn, +n)a(0=0)/p nl—(q(l—ﬁ))/p> =2

n=1

From (4) we have (I°°,1')g, = (co,!')s,q’, and hence, in every case
(Fpy» Fiz)og = (1P,1°)g,1 ~ 1P/(1=9:1 We finish by noting that

knt1

1
||Zh+1||lp/(179),1 = Z_:l (k'h +n)(1_9)/1’n1—((1—9)/p)
> " 1
B Z:l (kp, +n)(1=0)/p p1—(1/(1-0)
> kn !
T (2ky)1-0)/p - (A-0/) T 20-0)/p
and
lim ||Zh||l°° = lim —_— 7 = 0.
h—o0 h—oc0 (k'h + l)T

Case 1b) Assume p/(1 —6) < ¢. To avoid the Banach case we
can suppose moreover that p/(1 —6) < 1. Let » € N be such that
1+((r—1)/q) <(1—08)/p <1+ (r/q). Hence,

q(1-90)
p

(40) 0<q+r— <qg+r—(¢g+r—-1)=1.

Subcase 1bl) Suppose furthermore that 1 < g. Choose 0 < v < 1
such that 1/(1 — v) < ¢q. By Freitag’s result we have

P09 g (19,1%%)g g e (PO 019),, = (17010 19),, 4,
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where pg := p(1 — v)2/(1 — 6). Then

o _pl-v) __p
1-v 1-96 1-0

<gq

and ¢(1 —v) > 1. Hence, we can assume moreover that ¢(1 —6) > 1.

For every h € N, let 7, € N be such that

Th 1
(41) 1<thjq <2.
j=1

Suppose we have defined {kh’i}g;ll € N for some 1 < j < r,. By (40)
the series

i (kht + kna + -+ knj 1 +n)a1=0)/p)-1
1 nq—l—r—l

is divergent. Hence, let kj, ; be such that

kn. i
2 (k k R (q(1-6)/p)—1
l<z(h,1+ h2+ o+ knjo1+n)

(42) natr—1

< 2.

n=1
Put s, = k‘h71 + kh72 —+ e+ khﬂ"h’ and define

r knj

1
=) b jnlatr—1/q Ssn-itns

j=1n=1

We have

WL 1-9)/p)—1\ 1/
(kna + knyz + - - + kg +n)@0-0/P
= (2% L ,

449 netr—1

j=1ln=1

and, since ¢ > 1, by (42) and (41),

Th 9 1/q Y
q
= <Z hqu> < 475

i=1
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Now (Fp; , Fl; )og = (I*,1°)g,q = 1"/(1794 We have

n kn,j

Z (kpa +kno+ -+ kpjo1 +n)2d-0-1 1/
ha ja natr—1

||ZhHl(1/(1*9)),q =

T
<j_1 n=1
ry kn,j 1 1/q Th 1 1/q
2 < L ha j4 nq+r1> =z <Z1 hqjq> 2 1.
j=ln= j=

Finally,

Subcase 1b2) Assume p/(1 — ) < ¢ < 1. We show that in this case
there is no complemented subspace isomorphic to 19 in \ = [P/(1=0).q
In fact, since (I*)’ = [*° isometrically for every 0 < s < 1 and
po c [p/(1=0)a [P for every py < p/(1—6) < p1 < 1, we obtain
easily that X = (1P/(1=9):9)" ~ [, Moreover, A C I' with dense image.
By a result of Mendez and Mitrea, see [14], the Banach envelope of A
is isomorphic to I'.

Assume now that there would be an isomorphism S : [9 — X C A
onto a subspace X of A and a continuous projection P : A — X
from X\ onto X. Let P, : [? — K be the continuous projection onto
the nth axis of 1%, and put z, := S(e,) for every n € N. Then
on = BSTIP € X =1 and ||p,|| < |P||IS7Y||- Clearly {z,},
is a semi-normalized sequence in A and, for every n € N, we have

lzalln < ISNzallx < ISTISTH

and

1
n > e ny ¥n
[zl > TP |(zn> @n)|

1 _

= TPIIS1 (S (2n), Pa)]
1

= WK%&M
1

IREIE
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which means that {z,}5°; is a semi-normalized sequence in I too.
Then {z,}5%, would be equivalent to the standard bases of [¢ and I*
simultaneously, which is absurd.

Case 2) Assume now that there is a subsequence {k,, }5>; such that
lim,, 00 g, = 00. Projecting onto a suitable sectional subspace we
can suppose that lim,,_, @, = 0.

Subcase 2a) Suppose p/(1 — 0) > q. As above we assume moreover
q < 1 to avoid the Banach case. We define, for all h € N,

1

= T-o)/p °h
h

Zh

Then, by (31)

" 1/q
ll2nllx = ( (q(l_g)/p)+1—(q(1—0)/p)> =1
Hp

On the other hand, if p < 1, using the fact that (IP)’ = [, it is easy
to check that the dual (I”(u))’ is the weighted space 1°°(u'~(1/P) 1)
under the duality formula for all (z;) € IP(u) and

(120, (80) = 3 o

for all (3;) € 1°(u'~(/P) u). Now we have Fg, = co(u'=1/P) p),
Fg, =1 (u) and

(Fp,, Fog = (H(uMP 71 1), 1°(1))g,1 = 1M/ A=D1 (u2/P),

‘We obtain

1/p
Iz = o =1
Zh ll/(1—9),1(H1/p) = (1-0)/p 0/p =
Fh kpy1+i

and

i {|2fiee ) = lim Pl 0.
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If 1 < p, we obtain analogously (Fj, , Fy )eg = 1P/} (1) and

S S

_ Hkpy1+i o 1
||Zkh+1||l(1’/(1*9))11(p,) - Zl ia/q'u(lfa)/? 17((17'9)/13) - Z Ma

khy1+i Pkpp1+i =1

and we finish as above.

Subcase 2b) Now suppose p/(1 — ) < ¢q. The quasi Banach case is
present only if p < (p/(1 —0)) < 1. We define as above, for all h € N,

1
(43) Zh = W ey
Ky
Then
1-6)/p)—1 1
(44) ”Z || _ s H;Lq( )/p) /a _,
hllA(w) q(1-0)/p ’
Hp

As in Subcase 2a), if ¢ < 1, we get (Fg ,Fg )og = 1Y/ A=0)1 (1P,
Hence,

ul/p
(45) 2l =001 my =~ = o
h h
and 1
i (zh e ) = lm —m—0 = 0.
Ky,

If ¢ > 1 we obtain (Fg, Flg )o,g = 11/ (1=9)9(1/P) and, since ¢(1—6) <
1

)

ul/p 1/q
(46) 2 llix/-00auarey = < 7(1-0)/p h(l—q(l-f)))/?) =L
Hh Fh

and we follow as above.

Case 3) Assume u(N) = 3272, pj < oo. The proof goes along
the same lines of Case 2, choosing the same z,, h € N, the space
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(F,» Fiz, )og as above in every alternative p < 1 or p > 1, but noting
that IP(u) +1°°(p) = IP(p) because u(N) < oo, and hence

1
li = i w \VP_ lim 27 =0
hgréouzh””’(u)— rm ui e = am gy =00

h—o0 h—o0

Remark. In [18, Lemma 3.1] it is asserted that if ¢ < v, there are
noncompact maps from {P4(v) into [“?(u) for every measure v and
in n, whatever p and u be. Due to the conclusion of case 1) when
0 <p/(1-46)< g <1, the proof given in [13] is actually wrong under
these circumstances. However, the conclusion of Lemma 3.1 in [13] is
correct still. In fact, note that in that case we have p < q. If p < u,
the inclusion [”¢ C [*" is not compact. If p > u, we have the chain of
continuous inclusions {P*¢ C [? C [ whose composition is not compact.
Since [V is always a subspace of [V, the proof is complete.
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