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GROUP ALGEBRAS OF FINITE ABELIAN GROUPS
AND THEIR APPLICATIONS TO
COMBINATORIAL PROBLEMS

WEIDONG GAO, ALFRED GEROLDINGER AND FRANZ HALTER-KOCH

1. Introduction and main result. Let G be an additive finite
Abelian group. In the last decades group algebras R[G]-over suitable
commutative rings R—have turned out to be powerful tools for a growing
variety of questions from combinatorics and number theory. Many of
them can be reduced to the problem whether for some given sequence
g1 ...-gr over G we have

(X9 —a1)-...- (X9 —q;) #0 € R[G] for all ay,...,a; € R\ {0}.

The present paper is devoted to this crucial problem. Before presenting
our new results we recall the classical application of group algebras to
the investigation of zero-sumfree sequences which is due to van Emde
Boas, Kruyswijk and Olson, see [7, 8, 19]. Let d(G) denote the
maximal length of a zero-sumfree sequence over G. Then d(G) + 1
is the Davenport constant of G. For an overview of classical results
concerning the Davenport constant, we refer to [16, Chapter 5]. Note
however, that the problem of determining d(G) for all finite abelian
groups is still wide open, see [3, 13].

For a commutative ring R, let d(G, R) denote the supremum of all
I € NU{oo} having the following property:

There is some sequence S = g - ... - g; of length [ over G such that
(X9 —aq) ... (X9 —a;) #0 € R[G] for all ay,...,a; € R\ {0}.

If S is zero-sumfree, R is an integral domain, ay,...,a; € R\ {0} and

F=(X"—a)-...- (X9 —a)) = Y ¢ X,
geG

2000 AMS Mathematics subject classification. Primary 20K01, 11B50, 05B15.
Keywords and phrases. Group algebras, finite Abelian groups, zero-sum se-

quence, additive Latin squares.
This work has been supported in part by NSFC with grant number 10671101

and by the Austrian Science Fund FWF (Project-No. P18779-N13).
Received by the editors on October 15, 2005, and in revised form on Septem-

ber 11, 2006.
DOI:10.1216/RMJ-2009-39-3-805 Copyright ©2009 Rocky Mountain Mathematics Consortium

805



806 W. GAO, A. GEROLDINGER AND F. HALTER-KOCH

then ¢y # 0; hence, f # 0, and it follows that
d(G) < d(G, R).

Up to now no finite Abelian group G is known such that d(G) <
d(G, K) for all splitting fields K of G.

The following Theorem A is due to van Emde Boas, Kruyswijk
and Olson (proofs in the present terminology may be found in [16,
Theorems 5.5.5 and 5.5.9]).

Theorem A. Let G be a finite Abelian group with exp(G) =n > 2.
1. Let K be a splitting field of G with char (K) { exp(G). Then

d(G,K) < (n—1)+nlog €]

77
and if G is cyclic, then d(G) =d(G,K) =n — 1.
2. If G is a p-group, then d(G) = d(G, Z/pZ).

For many combinatorial problems, it is sufficient to consider group
algebras over fields (and this was the main approach in the past). Recall
that, for any two finite Abelian groups G and G’ with |G| = |G'| and
every splitting field K of G and G’, we have K[G] = K!¢| = K[G'], but
we clearly may have d(G) # d(G’). However, by Higman’s theorem,
Z|G] = Z|G'] implies that G = G’', see [18, Corollary 3.5.6 and
Theorem 9.1.4]. Therefore, any combinatorial problem in G can, at
least in principle, be tackled via the group algebra Z[G]. Only recently
this approach allowed refinement of some classical results on the number
of zero-sum subsequences of some given sequence, see [11]. For more
applications of group algebras to combinatorial problems, we refer to
the bibliography (in particular, [10, 12], [16, Chapter 5] and also to
Section 5.

In this paper, we investigate products of the form
(X9 —ay)-...- (X9 —a) € RG]

over an arbitrary integral domain R. The main results are as follows
(notations and definitions will be explained in detail in Sections 2
and 3).
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Theorem 1.1. Let G be a finite Abelian group, R an integral domain,
Il eN, ke [1,l], and let ¢g1,...,91 € G be such that g1,...,gx are
independent. For i € [1,1], let n; = ord (g;) > 2, and suppose that

O S S L D et

i=1 "t =2 1<v1 <o <vi<k My i
Then
f=X%"—a1) ...- (X9 —a;) #0 for all ay,... ,a; € R.
If S = g1-... g and k(S) denotes the cross number of S, then (x)

holds if either k(S) <1 ork(S) <1 and k > 2.

In particular, if p is the smallest prime divisor of exp(G) and |S| < p,
then f # 0.

Corollary 1.2. Let G be a cyclic group of order n > 2, g1,... ,gn—1
€ G and K a splitting field of G. Then the following statements are
equivalent:

(a) (X9 —ay)-...- (X9t —a, 1) #0 forall ay,... ,an1 € K*.
(b) ord (g1) = ... = ord (gn—1) = n.

Corollary 1.2 shows that Theorem 1.1 is sharp for cyclic groups,
provided that we deal with the group algebra over a splitting field.
In Example 4.2 we present a sequence g - ... gp+1 Over an elementary
Abelian p-group containing two independent elements such that

(X9 —1)-...- (X% —1) =0 € R[G]

for any commutative ring R. Thus Theorem 1.1 is also sharp in the
noncyclic case.

Consider the last statement of Theorem 1.1. In the case of p-groups,
a first (but entirely different) proof was given in [14, Lemma 4 (ii)].
In the special case G = Z/pZ & Z/pZ and R = Z/pZ, Theorem 1.1
was first shown by Peng, see [20, 21], in his investigations of additive
bases. Moreover, for sequences S =gy - ...- g; of length [ € [p,2p — 2],
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he gave conditions on the structure of the sequence S implying that
(X9 —1)-...- (X9 —1) is either zero or nonzero.

In Section 2 we fix our notations (in particular those concerning
sequences) and in Section 3 we deal with group algebras. There we
establish the results which are needed for the proof of Theorem 1.1 but
which are also of independent interest. The proofs of Theorem 1,1 and
of Corollary 1.2 are given in Section 4. Finally, in Section 5 we apply
Theorem 1.1 to a problem dealing with transversals of additive Latin
squares which was recently studied by Alon et al., see [1, 5, 14, 22,
23].

2. Notations. Let N denote the set of positive integers and Ny =
N U {0}. For a,b € Z we use the notation [a,b] = {z € Z | a < z < b}
(in particular, [a,b] = @ if @ > b). For a finite set X, we denote by
|X| € N its cardinality.

Let G be a finite Abelian group (throughout, Abelian groups will be
written additively). For g € G, we denote by ord (g) € N the order of
g.

If r € N and eyg,...,e, € G\ {0}, then the r-tuple (eq,...,e,) is

called independent if, for all my,... ,m, € Z,
miey + ...+ mpe, = 0 implies that mye; = ... = m,e, = 0.
In that case, we also say that the elements eq,... ,e, are independent.

Concerning sequences, we adopt the terminology used in [16, Chapter
5]. We denote by F(G) the free (Abelian, multiplicative) monoid with
basis G. Its elements are called sequences over G (indeed, the elements
of F(G) are finite sequences of elements of G disregarding the order).
In particular, 1 € F(G) is the empty sequence.

For a sequence
S=g1-...-q € F(G) (with Il € Ny and g1,...,9 € G)

we call [ its length, supp (S) = {g1,..- , g} its support, g1 +...+91 € G
its sum and

l
1
K= 2 5t
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its cross number. A sequence T € F(G) is called a subsequence of
S, if S = TT' for some sequence 7" € F(G). The sequence S is
called squarefree if gi,...,g, are (pairwise) distinct, and it is called
zero-sumfree if there is no nonempty subsequence with sum zero.

We refer to [16, Chapter 5] for various results concerning cross
numbers and to [2] for some recent progress. Moreover, it was proved in
[15] that every sequence S € F(G) of length [ > |G| has a zero-sumfree
subsequence T with cross number k(7T') < 1. For a graph theoretical
approach, we refer to [6].

3. Group algebras and characters. Let R be a commutative
ring (throughout, we assume that R has a unit element 1 # 0) and G
a finite Abelian group. The group algebra R[G] of G over R is a free
R-module with basis {X9 | ¢ € G} (built with a symbol X), where
multiplication is defined by

( > ang> (Z ng9> =Y ( > ahbg_h>Xg.

geG geG geG “heG

We view R as a subset of R[G] by means of a = aX? for all a € R.
An element of R is a zero-divisor [a unit] of R[G] if and only if it is a
zero-divisor [a unit] of R.

The augmentation map

e: R[G] — R, defined by 5( Z agX-") = Z ag
geG geG

is an epimorphism of R-algebras. For every f € R[G] the multiplication
py: R[G] — R[G], defined by g — fg for every g € R|G]

is an R-module homomorphism. Clearly, pf is surjective if and only if
f € R[G]*, and py is injective if and only if f is not a zero-divisor of
R[G]. Consequently, if R is a field, then every element of R[G] is either
a unit or a zero-divisor.

If R is an integral domain with quotient field K, then every finitely
generated torsion free R-module M is contained in a vector space V
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over K such that KM = V. In particular, M contains a K-basis of V,
and we call rk (M) = dimg (V') the rank of M.

Let K be a field, exp(G) = n € N and u,(K) = {x € K | 2" = 1}
the group of nth roots of unity in K. An nth root of unity x is
called primitive if ™ # 1 for all m € [1,n — 1]. We denote by
Hom (G, K*) = Hom (G, pn(K)) the character group of G with values
in K. Every character X € Hom (G, K*) has a unique extension to a
K-algebra homomorphism X: K[G] — K (again denoted by X) acting

by means of
X( Z ang> = Z agX(9)-

geG geaq

Following [4, Section 17], we call K a splitting field of G if p,(K) =
pin (K) for some algebraic closure K of K. In particular, if char (K) { n,
then K is a splitting field of G if and only if |u,(K)| = n, and if
char (K) = p and n = p®m, where e, m € N and p { m, then K is a
splitting field of G if and only if |p,(K)| = m.

If K is a splitting field of G with char (K) t n, then G = Hom (G, K *),
the orthogonality relations hold, and for every f € K[G] we have f =0
if and only if X(f) = 0 for every X € Hom (G, K*), see [16, Proposition
5.5.2]. Moreover, if X(f) # 0 for all X € Hom (G, K*), then f € K[G]*
(explicitly, a simple calculation using the orthogonality relations shows

that
1 1 X(—9) g
d ‘|G|Z< 2 X(f))X'

g€G * X€Hom (G,K*)

We proceed with some simple but less common facts concerning group
algebras.

Proposition 3.1. Let G be a finite Abelian group, g € G, ord (g) =
n € N and R an integral domain.

1. If a € R, then X9 — a is a zero-divisor of R[G] if and only if
a™ =1.

2. If char (R)tn,l € N and ny,... ,n; € [L,n — 1], then

(X™9 —1)-...-(X™9 —1) £0 € R[G].



GROUP ALGEBRAS 811

Proof. We may assume that n > 2. Let R[T] be a polynomial ring,
and let ¢: R[T] — R[G] be the unique homomorphism of R-algebras
satisfying ¢(1T') = X9. Then Ker (¢) = ("™ — 1)R[T].

1. If a € R, then
l-a" = (X" —a" = (X9 —a)f,

where
n—1

f=Y (X9 am .

3=0
Since f = <p(f) for some polynomial f € R[T] of degree less than n, we
obtain f # 0.

If a™ = 1, then (X9 —a)f = 0, and thus X9 — a is a zero-divisor of
R[G]. If a™ # 1, then a™ — 1 # 0 and thus a™ — 1 is not a zero-divisor
of R|G]. Hence also X9 — a is not a zero-divisor of R[G].

2. We must prove that
(T™ —1)-...-(T™ —=1) ¢ (T™ — 1)R[T].

Since char (R) t n, there exists a primitive nth root of unity w in some
field containing R. Then w™ —1 =0 and w™ — 1 = 0 for all i € [1,1],
whence the assertion follows. ]

Proposition 3.2. Let G be a finite Abelian p-group.

1. Let R be an integral domain of characteristic p and f € R|[G].
Then we have f € R[G]* if and only if (f) € R*.

2. If f € Z|G] and (f) ¢ pZ, then f is not a zero-divisor of Z[G].

Proof. Let n = exp(G).

1. Since (X9)" = 1 for all ¢ € G, we obtain f* = e(f)" for
all f € R[G], and consequently we have f € R[G]* if and only if
e(f) € R[G]*NR = R*.

2. Let ¢:Z[G] — Z/pZ|G] be the canonical epimorphism. Then

e(e(f)) = ¢(e(f)) # 0 and thus ¢(f) € Z/pZ[G]* by 1. Assume now
that f is a zero-divisor in Z[G]. Then there exists some g € Z[G] such
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that ¢ # 0 and fg = 0, and we may assume that g ¢ pZ[G]. Then
©(g9) # 0 and ¢(f)e(g) = ¢(fg) =0, a contradiction. O

4. Proofs of Theorem 1.1 and of Corollary 1.2. Proposition 4.1
is crucial for the proofs of Theorem 1.1 and Corollary 1.2.

Proposition 4.1. Let G be a finite Abelian group, R a commutative
ring, k € N, g1,... ,9xs € G, a1,... ,ar € R and

V={beR[G]| (X" —ai) ... (X% —ap)b=0}.

1. An element
b= b0)X" € R[G]
oc€G
lies in 'V if and only if, for all 0 € G and mq,... ,m; € N, we have

(4) (—1F! (f[m) b(o+ img)

k-1
=3y 3 () oo+ Soma).
7=0 IC[1,k] i€l i€l
|I|=3
2. Let g1,...,9x € G be independent with ord (g;) = n; > 2 and

a;* =1 for all i € [1,k]. Let Q@ C G be a set of representatives for
G/{g1,--- ,9k) and M the set of all (k + 1)-tuples (7,m1,... ,mg),
where T € Q, my,... ,my € [0,n; — 1] for all i € [1,k] and m; =0 for
at least one i € [1,k]. Then we have:

For every family (a(T,m1,... ,mM&))(r.my,... mp)eM € RM | there exists
a unique b € V' such that

k
b<7’+2migi> =a(r,my,... ,myg) for all (1,m1,... ,mg) € M.
i=1

In particular, V is a free R-module and

1 (V) = M1 = o 1 f[l(l_ )
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Proof. 1. We set

H X9 — q;) Zb = Zbk,(o)X”,

oc€G oc€G
and we prove by induction on k that for all o € G we have
CREACES AR wEED ol (1 (L CED w13
j=0 IC[1,k] “iel el
|I=3

For k = 0, there is nothing to do.
k>1,k—1— k. We have

(X% —ar) 3 broa(0)X = Y (bk_l(a ) — akbk_l(o))X";

oceG oceG

hence, b (o) = bp—1(0 — gr) — axbr—1(0) and therefore, for all o € G,

k-1 k-1
bk<o+Zgz> = bk 1<U+Zgz>—akbk 1<U+gk+zgl>
i=1

Together with the induction hypothesis, this implies (P).

By definition, we have b € V if and only if bi(c) = 0 for all ¢ € G,
or, equivalently, bx(c + g1 + ...+ gx) =0 for all 0 € G. By (P), this is
true if and only if (A) holds for my = --- = my = 1. Thus it remains to
prove that (A) holds for all (my,...,my) € N* provided that it holds
for (1,...,1) € Nk,

If (mq,... ,m) € N¥ and (A) holds for (1,...,1) € N¥, then the
associated element b lies in V' and (X9 —ay) -...- (X9 —ax)b = 0.
This implies that

(X™9 — g") ...« (X™*9% — q)b =0,

and thus (A) holds for (mq,...,m) € NF.

2. Let (a(r,my,...,mk))(r,ma,.. me)eM € RM be given. By 1 there
exists a unique map b: M = Qx[0,n;—1]x...x[0,n—1] — R such that



814 W. GAO, A. GEROLDINGER AND F. HALTER-KOCH

b(t,mq,... ,my) = a(r,my,... ,my) for all (r,mq,...,mg) € M and
(A) holds for all (o, my,... ,mg) € Ax[1,n; —1]X...x[1,nE—1]. Since
g1, --- ,gr are independent, every o € G has a unique representation
k
o= T+Zmigi with (7,mq,... ,mg) € M,
i=1

and we define b* (o) = b(1,m1,... ,my) and

b= b*(0)X7.

oeG

Since a}* =1 for all ¢ € [1,k], it follows that (A) holds for all o € G
and mq,...,m; € N, and consequently 1 implies that b* € V. Hence
the assignment

(a(T, my,... ,mk)> — b*
(r,m1,... ,m)EM

defines an isomorphism R™ 5 V| and thus we have

k

k
G|
M| =1Q n; — n; —1) ) and |Q| = . ]
||(i|_|1 [T - 1)) ana 2 =

i=1

Proof of Theorem 1.1. We may suppose that R is a field. If a]* # 1
for some i € [1,1], then Proposition 3.1 implies that X9 — a; € R[G]*,
and thus we may assume that o] = 1 for alli € [1,I]. If V = {b €
R[G] | (X9 —aq)-...- (X9 — ai)b= 0}, then Proposition 4.1 implies

that X
dimg(V) = |G| (1 -1 (1 - %))

i=1 v

and therefore

k
1
dimp(X% —ay)-...- (X% —ax)R[G] = |G| —dimpV = |G| ]| <1— n—).
i=1 i
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For i € [k + 1,1] we set V; = {b € R[G] | (X9 — a;)b =0}, and again
Proposition 4.1 implies that

1
di Vi) = |G| —
img (V) = G -
and therefore

1
dimg (X% — a;)R[G] = |G| — dimg V; = |G| (1 — ;>_

(3

If U is any finite-dimensional vector space over R, [ € N and
Aly-.. yA:U — U are R-linear, then it is easily proved by induction
that

l
dimp(A\ 0...0 \)(U) > dimp Ai(U) — (I — 1) dim(U).
i=1

Hence we obtain

dimp (X9 —aq) ... - (X9 — ;) R[G]
Z dimR(X!]l — al) Tt (ng — ak)R[G]
l
+ Y dimp(X¥% —a;) R[G] - (1 - k)|G]

i=k+1
k 1 ’ 1
26 (12 )+ et o) e wie
i=1 ¢ i=k+1 !
k l
1 1
affi(-2)- %2
i=1 v i=k+1 "
1 k ) 1
IR VD 3 D Sl e
i=1 " =2 1<y <.o<yi<k VLTt T
and therefore (X9 —ay)-...- (X9 — q;) # 0. This proves the main
assertion.

As to the assertions concerning the cross number, observe that



816 W. GAO, A. GEROLDINGER AND F. HALTER-KOCH

and

i 1
N e
i=2 1<vi<..<vi<k 1 Vi
k 1 k
:H(l—;> —1+) — >0,
=1 t =1 B

with equality if and only if £ = 1.
If p is the smallest prime divisor of exp(G) and |S| < p, then

<1,

S | !
K= Z; ord(g) = p

which proves the last assertion. a

Proof of Corollary 1.2. (b) = (a). By Theorem 1.1.

(a) = (b). Assume to the contrary that ord(g;) < n for some
i € [I,n — 1], say ord(g1) < m. We shall prove that there exist
Ay .. 5 n-1 € un(K) satisfying

(Xgl 7041) ot (Xgn_l 7an_1) =0.

Case 1. char(K) tn. Let Q = {x € Hom (G, K*) | x(¢g1) # 1}.
Since ord (g1) < n, it follows that X(g1) = 1 for at least one nontrivial
character X € Hom (G,K*), and thus we obtain |Q] < n — 2, say
Q={X2,...,Xs}, where se [I,n—1] and | =s—1. If

s n—1

f= e 1] (X - xi<gi>) I (xo —1) e K(c),

=2 i=s+1

then X(f) =0 for all X € Hom (G, K*) and thus f = 0.

Case 2. char(K) | n. Let char(K) = p and n = p®m, where
e,m € N and p {f m. Then K contains the field F of mth roots of
unity over its prime field, and we may assume that K = F. Let { € C
be a primitive nth root of unity, L = Q({), R the ring of integers in
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L and p a maximal ideal of R with p NZ = pZ. Then R/p = K, see
[17, Chapter IV.1], and we denote by ¢: R[G] — K[G] the canonical

epimorphism. By Case 1 there exist ai,...,a,_1 € pn(L) such that
f=(X%"—ay) ...- (X9 —aqa, 1) =0, and as u,(L) C R\ p, it
follows that ¢(a1),...,p(an—1) € K* and
0=¢(f) = (X = plar)) ... (X9 — p(an 1)) €K[G]. O
Next we provide the announced example of a sequence g; - ... gpt1
in an elementary Abelian p-group containing two independent elements
such (X9 —1)-.... (X9+ — 1) =0 € Z[G].

Example 4.2. Let G be an elementary Abelian p-group (for an ar-
bitrary prime p), g, h € G two independent elements, R a commutative
ring,

S = ghpl:[(g +ih) € F(G)
i=1
and
f=0-X9(1- Xh)pf[(l — X9+ ¢ R[G).
i=1

We shall prove that f = 0. Since there is a natural homomorphism
¢: Z|G] — R[G], we may suppose that R = Z, and clearly, it suffices
to show that f = 0 € K[G] for some algebraic number field K. Let K
be the field of pth roots of unity over Q. Then K is a splitting field
of G, and it suffices to prove that X(f) = 0 for all x € Hom (G, K*).
Thus, let X € Hom (G, K*). If X(9) = 1 or X(h) = 1, then obviously
X(f) = 0. Thus we may assume that X(g) = ¢ and x(h) = ¢, where
¢ € K is a primitive pth root of unity and k € [1,p — 1]. Then there is
some i € [1,k — 1] such that ki + 1 = 0 mod p and

p—1

X(f)=1-9a-"J[a-¢* =0 o

=1
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5. Transversals of additive Latin squares. In this section we
apply our main result on group algebras to the problem of finding
large Latin transversals in Cayley matrices of Abelian groups. We
do not recall these combinatorial notions but describe the problem in
completely elementary terms. In fact, we start with a slightly more
general approach. For [ € N, let G; denote the group of permutations
of [1,1].

Let G be an additive Abelian group and [ € N. We say that [ has
property (P) (for G) if

for every squarefree sequence gy - ...- g; € F(G) and every sequence
hi-...-h € F(G), there is some permutation 7 € &; such that the
sequence (g1 + hr(1)) - ... (91 + hr(y) is squarefree.

If G is torsionfree, then every [ € N has property (P). Indeed, there
is a total order < on G. If g1 -...- g € F(G) is a squarefree sequence
and hy - ... - h € F(G) is any sequence then (after renumbering if
necessary) we may assume that g1 < ... < g; and h; < ... < hy,
whence g1 + h; < ... < g+ h; and thus (g1 + hy) - ... - (g1 + l) is
squarefree.

Now let ¢ € G be an element of order I € N. If g; = (i — 1)g
for i € [1,1], hy = 0 for ¢ € [1,] — 1] and h; = g, then the sequence
g1 --.-qi € F(G) is squarefree, but there is no permutation such that
the sequence (g1 +hq)-... (g1 + hi) is squarefree. In particular, if G has
some element of order 2, then the 1 is the only integer with Property

(P).

Conjecture (see [5, page 23] and [22, Conjecture 3]). If G is a
finite Abelian group of odd order and p is the smallest prime divisor of
exp(QG), then every l € [1,p — 1] has Property (P).

This conjecture was first proved for prime cyclic groups by Alon [1],
and then for cyclic groups of prime power order and for elementary
p-groups by Dasgupta et al. [5, Theorem 2]. Theorem 1.1 and a
crucial combinatorial lemma by Dasgupta (Proposition 5.1) offer a new
approach to this problem which we present in Theorem 5.2 and in
Corollary 5.3 (statements 2 and 3 of Corollary 5.3 were first obtained
in [14]).
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Let A be a commutative ring and [ € N. For zy,... ,2; € A, let
1 ... 1
V(xlv 7171) = o l;l
s a:f 1

denote the Vandermonde matrix, and for some (I,!)-matrix M =
(4,5)i,jen, over A, let

Per M = Z Tim(l) - Tue@) € A4,
TES,

denote the permanent of M. In subsequent applications we will deal
with the group algebra A = Z[G] for some Abelian group G.

Proposition 5.1. Let A be a commutative ring, | € N and
Tyeer s T Y1y--- Y1 € A. Then

Z H (TYn(j) — TiYr@y) = Det V(zy, ... ,2) Per V(yi,... ,u).
7€ 1<i<j<I

Proof. This follows from [5, Lemma 5]. O

Theorem 5.2. Let G be a finite Abelian group of odd order, | € N,
91 -.--g1 € F(G) a squarefree sequence and hy -...-h € F(G) any
sequence of length l. In each of the following cases there exists some
permutation ™ € &; such that the sequence (g1 +hr1)) -+ .-+ (g1 + hr())
s squarefree:

1. G is a p-group, | < p and Det V(X9%,...,X9) #£0 € Z|G].

2. G is cyclic, and Per V(X" ... X™) is not a zero-divisor in Z|G].

3. For the sequence

S= T (69— ki) € F(O),

1<i<j<l

we have either k(S) < 1, or k(S) < 1 and supp (S) contains at least
two independent elements.



820 W. GAO, A. GEROLDINGER AND F. HALTER-KOCH

Proof. By Proposition 5.1, we have
Det V(X9,...,X9%)Per V(XM ... XxM)
— Z H (ng+h7r(j) _Xgi+hw(i)),

T€G; 1<i< i<l

and it suffices to prove that Det V(X9:,... , X9)Per V(X ... XM)
# 0. Indeed, then there exists some 7 € &; such that

H (ng+h7r(j) _ Xgi+h7r(i)) £ 0,
1<i<j<t
whence the sequence (g1 + hr(1)) - ... (g1 + hr()) is squarefree.

1. By the very definition of the permanent, we have e(Per V(X" ... |
XM)) = 1! ¢ pZ. Hence, Per V(X",... X™) is not a zero-divisor in
Z|G] by Proposition 3.2, and thus

Det V(X9 ..., X9)Per V(XM ... XM)#£0.
2. Tt suffices to prove that Det V(X9',.-- ,X9) # 0. By Proposi-

tion 3.1 we have
H (ngigi - 1) 7é 05

1<i<j<l
and since X9 € Z[G]* for all i € [1,1], we obtain
Det V(X%,---, X9) = ] (x%-x9)= J[ X% (X9 9%-1)#0.

1<i<j<i 1<i<j<I

3. We view the matrices V(X9',... , X9%) and V(X" ... X") as
matrices over K[G|, where K = Z/2Z = {0,1} denotes the field with
two elements. Then it suffices to prove that

f=DetV(X9%,...,X9) Per V(X" ... X")#£0¢c K[G].
We obtain
f=DetV(X9, .-, X"Det V(X" ... XM)
= ] x#-x9 ] (x"-x")

1<i<j<l 1<i<j<l
— H X 9ithi (X099 — T)(th*hi ~1)#0,

1<i<j<l
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since X9ithi ¢ K[G]* for all i € [1,1] and

H (X9i9 —T)(X" " _T)#0 by Theorem 1.1. O

1<i<j<l

Corollary 5.3. Let G be a finite Abelian group of odd order, | € N,

g1 ... g1 € F(G) a squarefree sequence and hy -...-h € F(G) any
sequence of length I. In each of the following cases there exists some
permutation m € &; such the sequence (g1 + hr(1)) ... (91 + hx()) is
squarefree:

1. G is a p-group, | < p, and for the sequence

S = H (9; — gi) we have k(S) < 1.

1<i<j<l

2. G is a p-group and 2l <1+ +/8p + 1.

3. The sequence hy-...-h; is squarefree, and 2l < 1+ +/4p + 1, where
p denotes the smallest prime divisor of |G|.

Proof. 1. We have

Det V(X9 .-  X9) = H X9i H (X979 —1).
1<l 1<i<j<l

Since the first factor is a unit in Z[G], and the second factor is nonzero
by Theorem 1.1, the assertion follows by Theorem 1.1.

2. Since

1 1/1
1§;§l ord (g; — 9:) p\2
the assertion follows from 1.

3. Since both g1 -...-g; and hy - ... - h; are squarefree, it follows that
the sequence

S= I (95 —9)(h; — i) € F(G)

1<i<j<l
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satisfies
1 1 2(1
k($) = < + >§—<><1,
1S;j§l ord (gj —g;) ord (h]' — h;) p\2
whence the assertion follows from Theorem 5.2.3. O

Note added in proof. When this article went to press in spring
2009, we were informed on much recent progress (achieved by Zhi-Wei
Sun et al. [9]) on Snevily’s conjecture and a conjecture by Dasgupta-
Kaérolyi-Serra-Szegedy [24].

Acknowledgments. We are indebted to Florian Kainrath who
pointed out an incorrectness in a former proof of Proposition 4.1. This
work was completed when the first author visited the Fields Institute
of Canada and he would like to thank them for their support and
hospitality.
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