ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 39, Number 2, 2009

CRITICAL CURVE OF THE NON-NEWTONIAN
POLYTROPIC FILTRATION EQUATIONS
COUPLED VIA NONLINEAR BOUNDARY FLUX

ZHAOYIN XIANG, CHUNLAI MU AND YULAN WANG

ABSTRACT. This paper is concerned with the critical
curve of non-Newtonian polytropic filtration equations cou-
pled via the nonlinear boundary flux. We obtain the critical
global existence curve by constructing various self-similar su-
persolutions and subsolutions. The critical Fujita curve is
conjectured with the aid of some new results.

1. Introduction. In this paper, we consider the following doubly
degenerate parabolic equations
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Oz or |,

where m; > 1, p; > 2 and ¢; > 0, ¢ = 1,2, are parameters. We consider
initial data

(1.3) u(z,0) = uo(z), wv(z,0)=vo(z), x>0,

2000 AMS Mathematics subject classification. Primary 35K50, 35K55, 35K65,
35B33.

Keywords and phrases. Non-Newtonian polytropic filtration equations, nonlinear
boundary flux, global existence, blow-up, critical curve.

This work is supported in part by NNSF of China (10771226), China Postdoc-
toral Science Foundation, Youth Foundation of Science and Technology of UESTC

and NSF Project of CQ CSTC 2007BB2450.
Received by the editors on August 2, 2006, and in revised form on December 12,
2006.

DOI:10.1216/RMJ-2009-39-2-689 Copyright (©2009 Rocky Mountain Mathematics Consortium

689



690 ZHAOYIN XIANG, CHUNLAI MU AND YULAN WANG

which are assumed to be continuous, nonnegative and compactly sup-
ported in R.

Parabolic systems like (1.1)—(1.3) appear in population dynamics,
chemical reactions, heat transfer, and so on. In particular, equations
(1.1) may be used to describe the nonstationary flows in a porous
medium of fluids with a power dependence of the tangential stress
on the velocity of displacement under polytropic conditions. In this
case, equations (1.1) are called non-Newtonian polytropic filtration
equations. See [5, 10, 12] and references therein.

For systems (1.1)—(1.3), the local in time existence and the com-
parison principle of nonnegative weak solutions, defined in the usual
integral way, can be easily established as for instance in [2, 5, 10, 12].
In this work, we are interested in the large time behavior of solutions of
the nonlinear boundary problem (1.1)—(1.3) and investigate the critical
global existence curve and the critical Fujita curve, a subject that has
deserved a great deal of attention in recent years, see for example the
books [9, 10], the surveys [1, 6] and the references therein.

As a precedent we have the work of Wang et al. [11], where they
study the single-equation case

du 9 [|oum [P gum
gu _ 9 t<T
ot a;:;( oz oz > v>0, 0<i<T,
(1.4) Bum [P gym
_ - = u?(0,t t<T
‘ 52 oo |, u™(0,t), 0<t<T,

u(z,0) = uo(z), x>0,

where m; > 1, py > 2. They show that if 0 < ¢ < ¢ :=
((m1 + 1)(p1 — 1))/p1, then all nonnegative solutions of (1.4) are global
in time, while for g, > ((m1 + 1)(p1 — 1))/p1 there are solutions with
finite time blow-up. Thus, g¢ is the critical global existence exponent.
Moreover, it was also shown that g. := (m; + 1)(py — 1) is a critical
exponent of Fujita type. Precisely, g. has the following properties:
if g0 < g1 < g., then all nontrivial nonnegative solutions blow up
in a finite time, while global nontrivial nonnegative solutions exist if
g1 > gc. These results of [11] are the extensions of those of Galaktionov
and Levine [3], in which the authors dealt with three classical cases of
(1.4): the heat equation (p; = 2, m; = 1); the porous medium equation
(p1 = 2) and the p-Laplace equation (m; = 1).
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Another extension of [3] is the recent work of Quirés and Rossi [8],
where they considered systems (1.1)—(1.3) with p; = py = 2,

Uy = (uml)zza Ut = (va)zw,
x>0, 0<t<T,
(1 5) - (uml)z (Oa t) =¥ (Oa t)’ - (vmz)z (07 t) =u® (07 t)v
' 0<t<T,
u(z,0) = up(z), v(z,0) = vo(z),
x> 0.
Denoting by
= 2q1 +mo +1
T i+ ) (ma+ 1) — 4o’

g1(m1 — 1 —2g2) + my(mz + 1)

e (m1+1)(m2 + 1) — 4q1¢2

_ 2q2+m1—|—1
7T i+ Dme + 1) — s
_— g2(m2 — 1 —2q1) + ma(m1 + 1)

(m1+1)(m2 + 1) — 4q102

they proved that the solutions of (1.5) are global if 4g1g2 < (m1 +
1)(m2 +1) and may blow up in finite time if 4g1g2 > (m1 +1)(m2 +1).
In the case of 4q1g2 > (my + 1)(ma + 1), if 1 + 71 <0or y2 + 72 <0,
then every nontrivial nonnegative solution of (1.5) blows up in a
finite time, while global nonnegative solutions exist if v; + 71 > 0
and 9 + 7 > 0. Therefore, the critical global existence curve is
4q192 = (m1+1)(m2+1) and the critical Fujita type curve is described
by min{v; + 71,72 + 72} = 0.

Motivated by the above cited works, in this paper we will construct
various kinds of self-similar supersolutions and subsolutions to obtain
the critical global existence curve of system (1.1)—(1.3). The critical
curve of Fujita type is conjectured with the aid of some new results.
These results seem to be natural extensions of [3, 8, 11, 13, 14]. We
remark that, by using our methods, which are essentially due to (1.4),
it is easy to deal with the system coupled through nonlinear boundary
conditions as [14, 15].



692 ZHAOYIN XIANG, CHUNLAI MU AND YULAN WANG

To state our results, we need to introduce the following numbers. Let

(pr — 1)(p2 — 1)(m2 + 1) + (p2 — 1)p1aa

a1 = ,
' (p1 — 1) (p2 — 1)(my1 + 1)(m2 + 1) — p1p2g1g2
By =mioy — —— 12
ay = (pr—1)(p2 —1)(m1 +1) + (p1 — 1)p2ge
(p1 — 1)(p2 — 1)(m1 +1)(ma + 1) — p1p2qiga’
/32 = ma2Q2 — 2 a1,
p2—1

if 12 # ((p1 — 1)(p2 — 1)(mq + 1)(mo + 1)) /p1p2. The values aq, as,
B1, B2 are the exponents of self-similar solutions to problem (1.1)—(1.3).

Our results read as follows.

Theorem 1.1. (i) If qigz < ((p1 — 1)(p2 — 1)(ma + 1)(m2 + 1))/
p1p2, then every nonnegative solution of system (1.1)—(1.3) is global in
time;

(i) If 12 > ((p1 —1)(p2 — 1)(m1 + 1)(ma + 1)) /p1p2, then the
system (1.1)—(1.3) exists with solutions blowing up in a finite time.

Remark 1.1. The results of Theorem 1.1 for system (1.1)—(1.3) do
coincide with those of [8, 11, 13, 14]. Theorem 1.1 shows that
the critical global existence curve of system (1.1)—~(1.3) is qigz =

((pr = D(p2 — (m1 +1)(m2 + 1)) /p1pe.

Theorem 1.2. Assume qig2 > ((p1 — 1)(p2 — 1)(my1 + 1)(m2 + 1))/
Ppip2-
(i) If min{a;y + B1, a2 + B2} > 0, then there exists a global solution
to system (1.1)—(1.3);

(i) If max{aj + B1, a2 + B2} < 0, then every nonnegative nontrivial
solution of (1.1)—(1.3) blows up in finite time.

Remark 1.2. The results of Theorem 1.2 for system (1.1)—(1.3) do
coincide with those of [8, 11, 13, 14]. The restriction max{a;+p1, as+
B2} < 0 in (ii) is rather technical. It comes from the construction
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of self-similar solutions, which are similar to the so-called Zel’dovich-
Kompaneetz-Barenblatt profile. We believe that the critical Fujita
curve should be given by min{a; + 81, as + 82} = 0.

The rest of this paper is organized as follows. In Section 2, we consider
the global existence curve (Theorem 1.1). The proof of Theorem 1.2 is
the subject of Section 3.

2. Critical global existence curve. In this section, we character-
ize when the solutions to problem (1.1)—(1.3) are global in time for any
initial data or they may blow up for some initial values. By construct-
ing self-similar solutions and using comparison arguments, the critical
global existence curve is obtained.

Proof of Theorem 1.1 (i). It is enough to construct global supersolu-
tions with initial data as large as needed. To this purpose, we look for
a globally defined in time strict supersolution of self-similar form

u(z,t) = e™?t (M + eiLlwe_nzt)l/ml ,

kgt L/m
o, t) = est (M+e*L2“ ‘ ) °

x>0, t>0,

where M = max{||luo||Z! + 1,]||vo]|Z> + 1}, and the constants x; > 0,
1 =1,2,3,4, and L; > 0, ¢ = 1,2, are to be determined. Clearly, we
have

u(z,0) > uo(x), v(z,0) > vo(z), = >0.

After a series of computations, we have

l/Tnl

8H t L —rot L t
5 > g1e™ (M+e 1ze ) > ki M ™1 et

p1—2 %ml
ox
p1—2 aaml

Oz
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and
Jv —ngt) /M2
E Z K/Sel'i;}t (M + efL;;ze 4t) Z K/3M1/mzengt’
g™z (P22 gy .
‘ _ _ng—le(pz—1)(m2n3—n4)te—(pg—1)L2w67”4
Ox 0x ’
9 (|o5™ 7272 g™

(

oz Ox ox

> < L12’2 (p2 _ 1)6((172*1)7"2&3*?2&4”‘

Therefore, we see that (@, 7) is a supersolution of system (1.1)—(1.3)

provided that
(2.1)

and
Lll)lfle(plfl)(mlnlfnz)t

(2.2)

LSZ*le(p271)(mzli37H4)t

One can see that (2.2) holds if

(2.3)  (p1 —1)(m1k1 — k2) > K3q1,
and
(24)  LPT> (M1

Firstly, we get (2.4) by taking
Ly = (M + 1)9/(ma(p2=1))

Next, we see that (2.1) is valid if
k1 2> (p1 — 1)miky — pika,

and
k1 MY™ > LR (py — 1),

nlMl/mlemt > Llln (pl _ 1)6((p1—1)m1n1—p1r€2)t’

H3M1/m26n3t > ng (pz _ 1)6((p2—1)mzns—pzn4)t

(M+ 1)(11/m2€li31ht,
(M+ l)qz/m1equt.

(A\VARAY

(p2 — 1)(maks — Ka) > K1g2

L > (M 4 1)%/m™,

Ly

(M + 1)@/(m2(pr=1)) and

kg > (p2 — 1)maks — paka

kaMY™2 > [B2(py —1).

To this purpose, we only need to take k1 and x4 large enough with

-1 -1
(Pl )ml o
P1

(2.5)

1,

D2

Ry = ———————K
3 (pz—l)mg—l

4.
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Finally, to obtain (2.3), we substitute (2.5) into (2.3) and then only
need to confirm

m —-1)—1
(p1 — 1)<m1 - %)“l 2 #’*4’
(2.6) 1 2(D2
mMap2
-l —-1 > .
(p2 )<m2(p2—1)—1 >l€4_Q2K/1
It follows from the assumption

(1 —1)(p2 — 1)(my +1)(m2 +1)
pip2

q1q2 <

that (2.6) is true for suitable k1, k4.

Therefore, we have proved (u,v) is a global supersolution of system
(1.1)-(1.3). The global existence of solutions to problem (1.1)—(1.3)
follows from the comparison principle.

To prove the nonexistence of global solutions, we construct a blow
up self-similar subsolution of system (1.1)—(1.3). Firstly, we have the
following lemma.

Lemma 2.1. If ¢1q2 > ((p1 — 1)(p2 — 1)(my + 1)(m2 + 1))/ (p1p2),
then there exist compactly supported functions f;, i = 1,2, such that
(u,v) is a subsolution of system (1.1), (1.2), where

T

(2.7) u(z, t) = (T =)™ f1(§), §= ma

(2.8) vz, t) = (T —t)*f2(¢), (= ﬁ

Proof. For u defined by (2.7), a direct calculation yields

0

a_% = (T =) 7" (—ar f1(€) + BiESL(€))
Hum™ |P1 72 gy / ’
WO (g g (g 3 (g
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0
Oz

Similarly, for v defined by (2.8), we have

ou™t

Ox

p1—2 8ym1
Oz
= (T - t)(Plfl)mlarmﬁh (| (flml)’ |p172 (ﬁm)')’.

ov _
a—; = (T — t)o‘2 1 (—Oézfz(() + BZ(fé(O) )
du™m2 P22 gyma 1) (e s — m 9 m
530 51; _ (T_t)(Pz 1)(maaz ﬂz)| (fma) |p2=2 (fma)’
2 aymz p2—2 82777,2
Ox Ox Ox

!

= (T — t)(PZ—l)mzaz—Pzﬂz (| (f;nZ)l |P2—2 (fzmz)’) .
Noticing that

ar — 1= (p1 — miay — p1B1, (p1 —1)(micq — B1) = iz,

2.9
(2:9) az — 1= (p2 — I)moaa — p2B2, (p2 — 1)(maaz — B2) = qea1,

we see (u,v) is a subsolution of (1.1), (1.2) if f; and f, satisfy

!

—on f1(€) + BLef1(E) < (| () =2 (1)) (9),

(2.10) , ,,
—az fa(¢) + B2Cf2(0) < (| (£32) 22 (£72)) (©)

and
o U P 0 < £0),

[ (f3") 7272 (f3") (0) < f#(0).
We choose

_ _ g\(p1=1)/(m1(p1—1)-1)

(2.12) f1(&) = Ar(ar — &)Y )

£2(C) = Ag(ay — ¢) P2~ V/tmalp2=D=1)

where A;, a;, i = 1,2, are constants to be determined. It is easy to see
that

O ¢ Bl 22 _ a\r=1)/(ma(pr—1)—1)—1
fl(E) - ml(pl — 1) 1 (a’l E)—I— )
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m1\/ |p1— mi\/ __ ml(pl - l)‘4m1 P
Y P >——(m)

x (ay — g)gflfl)/(ml(mfl)*l)’

(Y P2y = Ay (mff_f)—ﬂ |

X (ay — g)gfl—l)/(M1(p1—1)—1—1),
and
> (2 — 1)A (p2—1)/(ma(p2—1)—1)—1
=——x= 72 (a,— ,
2(() mQ(pQ — 1) — 1( 2 C)+

ma(py — 1) Ay >
mz(pz — 1) —1

(Y P () = (

% ((12 _ C)$’2*1)/(m2(1’2*1)*1)
D2
m2\/ |p2—2 mz’/: M A2 Pz—l( p2—1 >
() ) = magey (o Pk

X (ag — C)SfZ*l)/(WLz(pzfl)fl)fl‘

Therefore, inequalities (2.10) are valid provided that

1— m L -1 p1
b §+m11J171A11(p1 2 1(—p1 _1> +o1a; >0,

mi(pr —1)—1 my(p1 — 1)
nggala
1— [ 1 yma(pa—1)—1 p2—1 b
— T (+mbrT AR — ) +agay >0,
m2(p271)71<- 2 2 m2(p271)71 202
0<¢<as.

Here, we use equalities (2.9). To show the above inequalities, we choose
a1 and as with

(213) a; = CIATl(Pl—l)—l, ag = C2A72n2(172—1)—1’
where
= Pl (e Y7
(mi(p1 — 1) = 1)(=a1) +[B1 = 1| \mi(p1 — 1) = 1 ’
o = P21 (el > >0
(m2(pz — 1) = 1)(~a2) + |B2 — 1] \ma(p2 — 1) — 1 '
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Here, we remark that a;,as < 0 under the assumption giga >
((pr = 1)(p2 — 1)(m1 + 1)(m2 + 1))/ (p1p2)-

On the other hand, the boundary conditions in (2.11) are satisfied if
we have

(2.14)

C3A71n1(Pl—l)agpl—1)/(m1(P1—1)—1) < Agla;(Pz—l)m)/(WZ(Pz—l)—l),

C4A72712(Pz*l)agpz*1)/(m2(P2*1)*1) < Atfzag(mfl)fh)/(ml(Pl*l)*l)

)

where

mi(pr—1) \" ma(py —1) \"
“ <m1(P1—1)—1> 70 as <m2(p2—1)—1> -
According to (2.13), we see that (2.14) holds provided that we choose
Ay, A, satisfying
(2.15)

c;:,cgpl_1)/(m1(p1_1)_1)A5m1+1)(m_1) < Cé(l’z—1)!11)/(m2(P2—1)—1)A1212q1,

C4CéP2*1)/(m2(P2*1)*1)Agm2+1)(112*1) < cg(m*1)Q1)/(m1(P1*1)*1)A1171qz_

The condition q1g2 > ((p1 — 1)(p2 — 1)(m1 + 1)(mg + 1)) /(p1p2) en-
sures that we can take A; and A large enough such that inequalities
(2.15) hold. Therefore, we have shown that (u, v) is a weak subsolution
of system (1.1), (1.2).

Proof of Theorem 1.1 (ii). We take the initial data (up,vo) large
enough such that up(z) > u(z,0) = T fi(x/T?) and vo(z) >
v(z,0) = T fo(x/TP?), where u,v and fi, f» are defined in Lemma 2.1.
According to the construction of fi(£) and f2(¢) in the proof of
Lemma 2.1, we see that lim;_,7- u(0,t) = +o0 and lim;_,7— v(0,t) =
+oo if q1gz > ((pr —1)(p2 — 1)(m1 + 1)(m2 +1))/(p1p2). Then it
follows from the comparison principle that a solution blowing up in
a finite time exists in system (1.1)—(1.3).

3. Critical curve of Fujita type. In this section, we turn our
attention to the results of Fujita type and give the proof of Theorem 1.2.

Proof of Theorem 1.2 (i). We construct the following auxiliary
functions

(3-1)  ae,t) = (r+ 1) f1(), V(z,t) = (1 +1)*f2(0),
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where 7 > 0, £ = z(7 + ) and ¢ = (7 +t)7P2. Then

Ju _
o = (0" (@A) - BEA©),
aﬂml ne? aﬂml —1)(mio1— m — m
52 5 = (7-_|_t)(p1 D(miay 51)‘(f1 N P2 (|
9 (|oum | oum™
Oz Oz Ox

!

= (r )P (| (PR (Fm))
Similarly, we have

v

ot (T 48 (a2f2(¢) — B2££5(C)),
g™ pe go™? —1)(maas— m — m
P Ta = (g lmsan B (g 2 g
3 aimz P2—285m2
ox Oz ox

!

= (T + t)(Pz—l)mzaz—szz (| (f;"z)/ |P2—2 (mez)’) .

It follows from (2.9) that (@, ) is a supersolution of (1.1), (1.2) provided
that f1(€) and fo(C) satisfy

Gz (E PN © +AERE - ah© <0
(=) 272 (£272)') () + BaC £5(C) — azfa(C) < 0,
and
(3.3)
—[ () P2 (0) > £41(0), =1 (f372) 17272 (£372) (0) > £ (0).
Set,
(3.4)
pr/(p1—1) _ )P/ (P11 (p1—1)/(m1(p1—1)-1)
£1(6) = Ar ((dra)™ /7Y — (g + @)/ 7)) 7 ,

d1>1,

(p2—1)/(m2(p2—1)—1)
fZ(C) = Ay ((d2a2)Pz/(P2*1) _ (C + aQ)Pz/Pz*1> P2 2Pz ,

+
do > 1.
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We claim that there exist A;, a; such that inequalities (3.2) are valid
for f;, i =1,2, defined by (3.4). In fact, it is easy to verify that

mi\/ (p1— miN\! m1P1Am1 Pt
(L) P2 (1)) __(’rnl(Tll)—l>

x AT (f1(8) + (€ + a1) f1(8)),

a1 L€+ a1 < djas;
ma\/ |pa— ma\/\/ _ m2p2Am2 P2l
(2 ) = (i)
x A7 (f2(0) + (€ + a2) £5(0)),

az < (+ a2 < daas.

(3.5)

Substituting (3.5) into (3.2), we have

((51 - (LATI)MAN) (€+a1) - ,Blcu)f{(&)

mi(pp—1)—1

mip AT \PTN

—<a1+<m> Ay >f1(£)§07

(3.6) 1
A2 p2
((62 - (%) A51> (¢+a2) = ,62a2>f;(g)
m2 p2—1
<0‘2 i (%) A;1>f2(<) <o0.

Notice that f1(€) and f3(¢) are defined by (3.4), and then

Aip _
") = —————2 (£ +ap)Y/ P11
fi(6) ml(p1—l)—1(£ 1)
(pr—1)/(m1(p1—1)—-1)—1
X ((dlal)Pl/(iﬁfl) . (€+a1)p1/(p171)) P1 1(p1 ,
2(0) = *L(( + a2)1/(p271)

mg(pg — 1) -1

(p2—=1)/(m2(p2—1)-1)—1
% ((daaz)??/ @21 — (4 ag)pe/ e T .
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Therefore, denoting by z = £ + a1, n = ¢ + a2 and noticing (2.7), we
transform (3.6) into the following inequalities with respect to z and #:

Am1 p1—1
gaa:=(on1+1xm,n(;;%f%jﬁ:q) Arll)zm“m”

+praifizt/ P (my(pr — 1) — 1)

(3.7)
X (al + <4m1p1A’1"1 >p11A1>(d1a1)P1/(p1—1) <0
ml(pl - ].) —1 1 =7
m -1
mapa Ayt \PT /(pa=1)
= 1 1) —==="= AT — 1 ) P2/ (P2
ol = ((ma ) =) (722 ) Tyt 1)
+paazBon'/ P27 — (ma(py — 1) — 1)
(3.8)
(a4 <LA?‘2>”“ 457 ) s
2 ma(ps —1) — 1 9 203
<o.

To obtain g1(z) < 0 (inequality (3.7)), we divide its proof into two
cases.

Case I. 1/((m1+1)(p1 —1)) > —a1. Then we may take A; such
that

Am™ p1—1
< (L) Al <

mi(pr — 1) — 1 (m1+1)(p1 = 1)

Thus, for any z > 0, g1(z) attains its maximum at z* = (a1581)/
(1 — (my + 1)(p1 — 1)l;). Here, we use the assumption 8; > —a; >
0 whenever gig2 > ((p1 —1)(p2 — 1)(m1 + 1)(m2+1))/(p1p2). We
impose ¢1(z*) < 0. To do this, we substitute z* into the definition
of g1(z) and then only need to choose d; sufficiently large such that

-1
dll’l/(m )

(pr — D)(1 = (my + 1) (p1 — 1)ly)~Y/ =D gpr/ 2D
>maX{ (mi(pr —1) = 1)(on + 11) ,1}.
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Case II. 1/((m1 +1)(p1 — 1)) < —a;. It follows from a3 + 51 > 0
that 81 > (1/(mq +1)(p1 — 1)). We take A; with

1 ( mlplAinl

p1—1
-1._
(m1+1)(p1—1) m1(p1—l)—1> Al =1 <181‘

Then g4 (z) is nondecreasing with respect to z > 0. So for z € [a;,d1a4],
g1(z) attains its maximum at z* = dya;. To obtain g;(z) < 0 for all
z € la1,d1ay], we impose g(dia;) < 0. To this purpose, we only need
to choose d; with

(Ii = B1) di + 51 <0,

or equivalently,

d; > max {,81 (81 — ll)f1 , 1} .

Therefore, we have shown that there exist A; and dy such that g;(z) <0
holds.

Analogously, we may choose As and dy such that g>(n) < 0, that is,
inequality (3.7) holds. In a word, we have proved our claim. a

Now we consider the boundary condition (3.3). We only need to show
(3.9)

mip A7\ (dpl/(pl_l) ~ 1)(p1—1>/(m1(p1—1)—1>
my(pr —1) —1 '

~ ag(mﬁl)(m*1))/(M1(P1*1)*1)

((p2—1)q1)/(m2(p2—-1)—1)
> A% (dgz/(m*l) _ 1) P2 2Pz agp2¢11)/(m2(112*1)*1)’

< maopa A5 )p21 (dp2/(p2_1) 3 1)(102—1)/(m2(p2—1)—1)
2
mg(pg — 1) -1

% a;(mz'*‘l)(m—l))/(mz(Pz—l)—l)

Z, A‘fz (dzl)l/(plil) . 1) ((pl71)q2)/(m1(pl71)71)a§p1qz)/(M1(p171)71) '

For fixed A;, d1, A2 and ds, the assumption

(p1 = 1)(p2 — 1)(m1 +1)(m2 + 1)
Pip2

q192 >
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ensures that there exist a; and as small enough such that the above
inequalities hold.

(ii) We construct the following well known self-similar solutions
(which are similar to the so called Zel’dovich-Kompaneetz-Barenblatt
profile, see [3, 5, 9]) to (1.1)—~(1.3) in the form

up (.’13, t) = (7' + t)_l/((pl_l)(ml"rl))hl (g),
=z(r+1t _1/((P1—1)(m1+1))’
(3.10) §=a(r )1 s
vp(z,t) = (1 + )~V (2= DmatD)p, ()
¢ = z(r + )~V (2= D(ma41))

where 7 > 0 and

ha(€) = Cma, py) (P #*71) — gri/ (=1 () m ==,

(3.11)
ha(Q) = C(ma, pa) (c?/ (7270 — ¢pa/(pam0) =/ malpa =)

with ¢y, ce > 0 and
(3.12)

C( ) ( 1 (ml(pl B 1) - l)l’i—1>1/(mi(1’i—1)_1)
mi,pi) = )
PO -0+ )\ maps

It is easy to check that h;, ¢ = 1, 2, satisfy

(| ()" P22 (R™)) (€) +

1 , B
or = D0y 7 1) &8 + (&) =0,

h1(0) =0,

ma\/ |pz—2 ma\/ 1 / _
(1= 1272 (052)) (€) F gy g gy (CP2(0) +ha(€)) =0,

h,(0) = 0.

Since u(z, t) and v(z, t) are nontrivial and nonnegative, we see u(0,ty) >
0 and v(0,%) > 0 for some ty > 0 (compare with a Barenblatt solution
of the corresponding equations). Noticing that u(zx,tp), v(z, o) > 0 are
continuous, see [4, 12], there exist 7 > 0 large enough and ¢; > 0,
1 = 1,2, small enough such that

u(z,to) > up(z,to), v(z,tg) > vp(z,ty), forz>0.
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A direct calculation shows that (up,vp) is a weak subsolution of
(1.1)-(1.3) in (0, 00) X (o, +00). By the comparison principle, we obtain
that
u(z,t) > up(z,t), wv(z,t) >vg(z,t), forz>0,t>t.
Since max{a; + B1,az + B2} < 0, we see
TAr <« T, TP2 <« T2 for large T.

So there exists a t* > tg such that

Th « (r+ t*)l/((ml-i-l)(m—l)) < T,

(3.13) TPz « (74 ¢*)/ (M2t D(p2-1) a2,

Let (u,v) be defined by (2.10) in the proof of Lemma 2.1. The
inequalities (3.13) imply that

IS

(.’E,O) < ’U‘B(xat*) < u(l'at*)a
v(z,0) < vp(w,t*) < v(z,t"),
for z > 0.

It follows from Lemma 2.1 and the comparison principle that (u,v)
blows up in a finite time. Observing that (3.13) holds for general
nontrivial (up,vp), and we know that every nonnegative, nontrivial
solution of (1.1)—(1.3) blows up in finite time.

Acknowledgments. The authors are grateful to Professor M. Brio
for his kind help.
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