A CONVERSE THEOREM FOR HILBERT-JACOBI FORMS

KATHRIN BRINGMANN AND SHUICHI HAYASHIDA

1. Introduction and statement of results. Doi and Naganuma, see [6], constructed a lifting map from elliptic modular forms to Hilbert modular forms in the case of a real quadratic field with narrow class number one. A converse theorem for Hilbert modular forms was one of their basic tools. This gives rise to the question of constructing a lifting map in the case of Jacobi forms. Here we do the first step in that direction and prove a converse theorem for Hilbert-Jacobi forms.

Studying the connection between functions that satisfy certain transformation laws and the functional equation of their associated L-functions has value on its own and a long history. In a celebrated paper, see [9], Hecke showed that the automorphy of a cusp form with respect to $\mathrm{SL}_2(\mathbf{Z})$ is equivalent to the functional equation of its associated L-functions. That only one functional equation is needed is in a way atypical and highly depends on the fact that $\mathrm{SL}_2(\mathbf{Z})$ is generated by the matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. This situation already changes if one considers cusp forms with respect to a subgroup of $\mathrm{SL}_2(\mathbf{Z})$ which have a character. In this case the functional equation of twists is required, see [18].

Hecke's work has inspired an astonishing number of people and a lot of generalizations of his "converse theorem" have been made, e.g., generalizations to Hilbert modular forms as mentioned above, see [6], Siegel modular forms, see [2, 10], or Jacobi forms, see [14, 15]. Maass showed an analogue of Hecke's result for nonholomorphic modular forms, see [13]. He proved that these correspond to certain L-functions in quadratic fields. An outstanding generalization of a converse theorem for GL(n) was done by Jacquet and Langlands for n = 2, see [11],

²⁰⁰⁰ AMS Mathematics subject classification. Primary 11F41, 11F50, 11F66. Received by the editors on June 20, 2006, and in revised form on August 18, 2006

 $^{{\}rm DOI:} 10.1216/{\rm RMJ-}2009-39-2-423 \quad {\rm Copyright © 2009 \; Rocky \; Mountain \; Mathematics \; Consortium \; Consortium$

Jacquet, Piatetski-Shapiro and Shalika for n = 3, see [12], and Cogdell and Piatetski-Shapiro for general n, see [5].

In this paper, we prove a converse theorem for Hilbert-Jacobi cusp forms over a totally real number field K of degree $g := [K : \mathbf{Q}]$ with discriminant D_K and narrow class number 1. The case g = 1, i.e., Jacobi forms over \mathbf{Q} as considered by Eichler and Zagier, see [7], is treated in two interesting papers by Martin, see [14, 15]. To describe our result, we consider functions $\phi(\tau, z)$ from $\mathbf{H}^g \times \mathbf{C}^g$ into \mathbf{C} that have a Fourier expansion with certain conditions on the Fourier coefficients, see (3.4), (3.5) and (3.6). We show that ϕ is a Hilbert-Jacobi cusp form (for the definition see Section 2) if and only if certain Dirichlet series $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$, see (3.9), satisfy functional equations. More precisely, we show the following.

Theorem 1.1. Let k be an integer, and let $m \in \mathfrak{d}_K^{-1}$ be the inverse different from K. A function ϕ satisfying (3.3), (3.4), (3.5) and (3.6) is a Hilbert-Jacobi cusp form of weight k and index m if and only if for all ν satisfying (3.1) and (3.2) and for all $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$ the functions $\mathcal{L}(s,\phi,r,\chi_{m,\nu})$, see Definition 3.2, have analytic continuations to the whole complex plane, are bounded in every vertical strip and satisfy the functional equations

$$\begin{split} \mathcal{L}(s,\phi,r,\chi_{m,\nu}) &= \frac{1}{\sqrt{D_K}} \, i^{-kg} \, \mathbf{N}(2m)^{-1/2} \\ &\times \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) \mathcal{L}(k-s-1/2,\phi,\mu,\chi_{m,-\nu}), \end{split}$$

see Section 2 for the definition of **N** and $e_{2m}(\cdot)$.

We proceed as follows. In Section 2 we recall basic facts about Hilbert-Jacobi cusp forms. In particular, we show that these have a theta decomposition, see (2.3), where the involved theta series satisfy some transformation law, see Lemma 2.1. Section 3 deals with certain characters of Hecke type and the Dirichlet series needed for the converse theorem. In Section 4, we prove Theorem 1.1.

2. Basic facts about Hilbert-Jacobi cusp forms. We let K be a totally real number field of degree $g := [K : \mathbf{Q}]$ and denote by \mathcal{O}_K ,

 \mathcal{O}_K^{\times} , \mathfrak{d}_K , and D_K its ring of integers, units, different, and discriminant, respectively. We denote the jth embedding, $1 \leq j \leq g$, of an element $l \in K$ by $l^{(j)}$. An element $l \in K$ is said to be totally positive, l > 0, if all its embeddings into \mathbf{R} are positive.

Let us now briefly recall some basic facts about Hilbert-Jacobi cusp forms, see also [16]. We put $\Gamma_K := \operatorname{SL}_2(\mathcal{O}_K)$. Let the Hilbert-Jacobi group be defined as the set $\Gamma_K^J := \Gamma_K \ltimes (\mathcal{O}_K \times \mathcal{O}_K)$, with the group multiplication

$$\gamma_1 \cdot \gamma_2 := \left(\left(\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array} \right) \left(\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array} \right), (\lambda_1, \mu_1) \left(\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array} \right) + (\lambda_2, \mu_2) \right),$$

where we put

$$\gamma_i := \left(\left(\begin{array}{cc} a_i & b_i \\ c_i & d_i \end{array} \right), (\lambda_i, \mu_i) \right) \in \Gamma_K^J, \quad \left(\begin{array}{cc} a_i & b_i \\ c_i & d_i \end{array} \right) \in \Gamma_K,$$

and $(\lambda_i, \mu_i) \in \mathcal{O}_K \times \mathcal{O}_K$. The Hilbert-Jacobi group is generated by the following three types of elements

(2.1)
$$\begin{pmatrix} \begin{pmatrix} \varepsilon & \lambda \\ 0 & \varepsilon^{-1} \end{pmatrix}, (0, 0) \end{pmatrix}, \\ \begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, (0, 0) \end{pmatrix},$$

and

$$\left(\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\lambda,\mu\right)\right),$$

where $\lambda, \mu \in \mathcal{O}_K$ and $\varepsilon \in \mathcal{O}_K^{\times}$, see [1, 4, 17].

The Hilbert-Jacobi group acts on ${\bf H}^g \times {\bf C}^g$ (${\bf H}$ is the usual upper half-plane) by

$$\begin{split} \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda, \mu) \right) \circ (\tau, z) \\ &:= \left(\left(\frac{a^{(1)}\tau_1 + b^{(1)}}{c^{(1)}\tau_1 + d^{(1)}}, \dots, \frac{a^{(g)}\tau_g + b^{(g)}}{c^{(g)}\tau_g + d^{(g)}} \right), \\ & \left(\frac{z_1 + \lambda^{(1)}\tau_1 + \mu^{(1)}}{c^{(1)}\tau_1 + d^{(1)}}, \dots, \frac{z_g + \lambda^{(g)}\tau_g + \mu^{(g)}}{c^{(g)}\tau_g + d^{(g)}} \right) \right), \end{split}$$

where

$$\left(\left(egin{array}{cc} a & b \\ c & d \end{array} \right), \left(\lambda, \mu \right) \right) \in \Gamma_K^J,$$

 $\tau=(\tau_1,\ldots,\tau_g)\in \mathbf{H}^g$ and $z=(z_1,\ldots,z_g)\in \mathbf{C}^g$. Throughout this paper, we write $\tau=u+iv,\ z=x+iy,\ \tau_j=u_j+iv_j$ and $z_j=x_j+iy_j,\ 1\leq j\leq g$.

Let $k \in \mathbb{N}$, $m \in \mathfrak{d}_K^{-1}$ totally positive,

$$\gamma = \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda, \mu) \right) \in \Gamma_K^J,$$

and a function $\phi: \mathbf{H}^g \times \mathbf{C}^g \to \mathbf{C}$. Then we define

$$\phi|_{k,m}\gamma(\tau,z) := \mathbf{N}(c\tau+d)^{-k}$$

$$\cdot e\left(-\left(\frac{cm(z+\lambda\tau+\mu)^2}{c\tau+d} + m\tau\lambda^2 + 2m\lambda z\right)\right)$$

$$\cdot \phi(\gamma\circ(\tau,z)),$$

where for $\alpha \in K$ and for $z \in \mathbf{C}^g$, we define $\mathbf{N}(\alpha z) := \prod_{j=1}^g (\alpha^{(j)} z_j)$, $\operatorname{tr}(az) := \sum_{j=1}^g a^{(j)} z_j$ and $e(\alpha z) := e^{2\pi i \operatorname{tr}(\alpha z)}$.

A holomorphic function $\phi: \mathbf{H}^g \times \mathbf{C}^g \to \mathbf{C}$ is called a $\mathit{Hilbert-Jacobi}$ $\mathit{cusp form}$ of weight k and index m if $\phi|_{k,m}\gamma(\tau,z) = \phi(\tau,z)$ for all $\gamma \in \Gamma^J_K$ and if it has a Fourier expansion of the form

$$\sum_{\substack{n,r\in\mathfrak{d}_{K}^{-1}\\4nm-r^{2}>0}}c(n,r)\,e\,(n\tau+rz)\,.$$

In [16], m is chosen to be in \mathcal{O}_K , but our choice $m \in \mathfrak{d}_K^{-1}$ seems more natural since in this way the coefficients of Hilbert-Siegel modular forms are examples for Jacobi forms as in the classical case.

If ϕ is a Hilbert-Jacobi cusp form, then the transformation $(\tau, z) \rightarrow (\tau, z + \lambda \tau + \mu)$ leads to

(2.2)
$$c(n,r) = c(n + \lambda r + \lambda^2 m, r + 2\lambda m), \text{ for all } \lambda \in \mathcal{O}_K.$$

From this, we can deduce that

(2.3)
$$\phi(\tau, z) = \sum_{r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} f_r(\tau) \, \vartheta_{m,r}(\tau, z),$$

where, for $r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$, we define

(2.4)
$$f_r(\tau) := \sum_{\substack{n \in \mathfrak{d}_K^{-1} \\ 4nm - r^2 > 0}} c(n, r) e_{4m} \left(\left(4nm - r^2 \right) \tau \right),$$

$$\vartheta_{m,r}(\tau,z) := \sum_{\lambda \in \mathcal{O}_{K}} e_{4m} \left(\left(r + 2\lambda m \right)^{2} \tau + 4m \left(r + 2\lambda m \right) z \right),$$

and where, for $\alpha, \beta \in K$, $\beta \neq 0$ and $z \in C^g$, we define $e_{\beta}(\alpha z) := e(\beta^{-1}\alpha z)$.

The theta series $\vartheta_{m,r}$ satisfy the following transformation law.

Lemma 2.1. If $m \in \mathfrak{d}_K^{-1}$ is totally positive and $\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$, then we have

$$\vartheta_{m,\mu}\left(-\frac{1}{\tau},\frac{z}{\tau}\right) = \frac{1}{\sqrt{D_K}} \mathbf{N} \left((\tau/i)^{1/2}\right) \cdot \mathbf{N} \left(2m\right)^{-1/2}$$
$$\cdot e\left(\frac{m \cdot z^2}{\tau}\right) \sum_{r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) \vartheta_{m,r}(\tau,z),$$

where we put $(\tau/i)^{1/2} := ((\tau_1/i)^{1/2}, \dots, (\tau_g/i)^{1/2})$, and we take the principal value of the square root, namely, $-\pi/2 < \arg(w) \le \pi/2$ for $w \in \mathbf{C}$.

From Lemma 2.1, we obtain

Corollary 2.2. A function $\phi : \mathbf{H}^g \times \mathbf{C}^g$ having a decomposition of the form (2.3) satisfies

$$\phi\left(-\frac{1}{\tau}, \frac{z}{\tau}\right) = \mathbf{N}(\tau)^k e\left(\frac{mz^2}{\tau}\right)\phi(\tau, z)$$

if and only if

(2.6)
$$f_r(\tau) = \frac{1}{\sqrt{D_K}} i^{-kg} \mathbf{N} \left((\tau/i)^{1/2 - k} \right) \mathbf{N} (2m)^{-1/2}$$

$$\times \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m} (-\mu r) f_{\mu} \left(-\frac{1}{\tau} \right),$$

for all $r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$. In particular, if ϕ is a Hilbert-Jacobi cusp form, then ϕ satisfies (2.6).

Exactly as in the case of elliptic modular forms, one can show:

Lemma 2.3. Assume that ϕ is a Hilbert-Jacobi cusp form, with f_r defined as in (2.4). Let c_1 be a positive real number, and let S be the subset of \mathbf{H}^g such that for all $\tau \in S$ the components v_j , $1 \leq j \leq g$, are larger than c_1 . Then we have

(2.7)
$$|f_r(\tau)| \ll_{\phi,c_1} e^{-c_2 \left(\sum_{j=1}^g v_j\right)},$$

where c_2 is a positive constant, and where the constant implied in \ll_{ϕ, c_1} depends on ϕ and on c_1 .

Lemma 2.4. If ϕ is a Hilbert-Jacobi cusp form of weight k and index m, then the function

$$g(\tau, z) := \mathbf{N}(v)^{k/2} \exp\left(-2\pi \operatorname{tr}\left(\frac{my^2}{v}\right)\right) \phi(\tau, z)$$

is bounded on $\mathbf{H}^g \times \mathbf{C}^g$.

By using Lemma 2.4, we have the following.

Lemma 2.5. If ϕ is a Hilbert-Jacobi cusp form of weight k and index m with Fourier coefficients c(n,r), then $|c(n,r)| \ll_{\phi} \mathbf{N}(4mn - r^2)^{k/2}$.

3. Hecke-type characters and Dirichlet series. For the remainder we assume that k is an integer. For $m \in \mathfrak{d}_K^{-1}$, we let T_m be the subgroup of \mathcal{O}_K^{\times} defined by

$$T_m := \left\{ arepsilon \in \mathcal{O}_K^ imes \mid arepsilon - 1 \in 2m \mathfrak{d}_K
ight\}.$$

We have that $\varepsilon \in \mathcal{O}_K^{\times}$ is in T_m if and only if $\varepsilon r - r \in 2m\mathcal{O}_K$ for every $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$.

We let u_1,\ldots,u_{g-1} be a basis of T_m^2 , where $T_m^2:=\{\varepsilon^2\mid \varepsilon\in T_m\}$. We take $\varepsilon_1,\ldots,\varepsilon_{g-1}\in T_m$ which satisfy $\varepsilon_l^2=u_l$ for $l=1,\ldots,g-1$. If m is not a generator of the different inverse, then T_m does not contain -1; hence, the ε_l are uniquely determined. If m is a generator of the different inverse, then T_m contains -1, and we choose $\varepsilon_l>0$ as a solution of the above equation.

For integers N_l , $1 \le l \le g-1$, we choose pure imaginary solutions ν_1, \ldots, ν_g which satisfy the following equations

(3.1)
$$\sum_{j=1}^{g} \nu_j = 0,$$

(3.2)
$$\sum_{j=1}^{g} \nu_j \log \left(u_l^{(j)} \right) = 2\pi i \left(N_l + \frac{1}{2} \delta_l \right),$$

where we put $\delta_l = 0$ or 1 if $\mathbf{N}(\varepsilon_l)^k = 1$ or -1, respectively. For any integers N_l , $l = 1, \ldots, g - 1$, we have a solution to (3.1) and (3.2), because

$$\det \begin{pmatrix} 1 & \cdots & 1 \\ \log(u_1^{(1)}) & \cdots & \log(u_1^{(g)}) \\ \vdots & \cdots & \vdots \\ \log(u_{g-1}^{(1)}) & \cdots & \log(u_{g-1}^{(g)}) \end{pmatrix} = (-1)^{g+1} g \cdot \det((\log(u_l^{(j)}))_{l,j=1,\dots,g-1}) \neq 0,$$

where the last inequality can be obtained from the fact that basis elements u_l are multiplicatively independent.

For $x \in K$ and $\nu := (\nu_1, \dots, \nu_q)$ satisfying (3.1) and (3.2), we set

$$\chi_{m,\nu}(x) := \prod_{j=1}^g \left| x^{(j)} \right|^{\nu_j}.$$

To define the Dirichlet series needed, we consider functions $\phi(\tau, z)$ from $\mathbf{H}^g \times \mathbf{C}^g$ into \mathbf{C} that have a Fourier expansion of the form

(3.3)
$$\phi(\tau, z) = \sum_{\substack{n, r \in \mathfrak{d}_K^{-1} \\ 4nm - r^2 > 0}} c(n, r) e(n\tau + rz)$$

that is absolutely and locally uniformly convergent. We regard c(n,r) = 0 unless $4nm - r^2 > 0$ or unless $n, r \in \mathfrak{d}_K^{-1}$. Moreover, we demand that its Fourier coefficients satisfy

(3.4)
$$c(n,r) = c(n + \lambda r + \lambda^2 m, r + 2\lambda m)$$
 for all $\lambda \in \mathcal{O}_K$,

(3.5)
$$c(\varepsilon^2 n, \varepsilon r) = \mathbf{N}(\varepsilon)^k c(n, r), \text{ for all } \varepsilon \in \mathcal{O}_K^{\times}),$$

$$(3.6) c(n,r) \ll_{\phi} \mathbf{N} (4nm - r^2)^M$$

for an integer M.

Lemma 3.1. (1) Condition (3.4) implies that we can decompose $\phi(\tau, z)$ as in (2.3).

(2) Conditions (3.4) and (3.5) imply by the definition of T_m that

$$c_r(N) := c\left(\frac{N+r^2}{4m}, r\right), \quad N \in \mathfrak{d}_K^{-2},$$

is well defined on $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$, where we put $\mathfrak{d}_K^{-2} := \mathfrak{d}_K^{-1} \cdot \mathfrak{d}_K^{-1}$.

(3) ϕ is a Hilbert-Jacobi cusp form if and only if (3.3), (3.4), (3.5) and (3.6) hold, and if ϕ satisfies the transformation law

(3.7)
$$\phi\left(-\frac{1}{\tau}, \frac{z}{\tau}\right) = \mathbf{N}(\tau)^k e\left(\frac{mz^2}{\tau}\right) \phi(\tau, z).$$

(4) From Corollary 2.2, we see that a function ϕ satisfying (3.3), (3.4), (3.5) and (3.6) is a Hilbert-Jacobi cusp form if and only if (2.6) is satisfied for all $r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$.

Proof. These are straightforward. We omit the proof of this Lemma. \square

Let us now define the Dirichlet series needed for Theorem 1.1.

Definition 3.2. For a function ϕ satisfying (3.3), (3.4), (3.5) and (3.6), $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$, and ν satisfying (3.1) and (3.2), we define

(3.8)
$$L(s,\phi,r,\chi_{m,\nu}) := \sum_{\alpha \in \mathfrak{d}_K^{-2}/T_w^2} \chi_{m,\nu}(\alpha) \cdot c_r(\alpha) \cdot \mathbf{N}(\alpha)^{-s},$$

(3.9)
$$\mathcal{L}(s,\phi,r,\chi_{m,\nu}) := 2^{gs} \pi^{-gs} \prod_{j=1}^{g} \Gamma(s-\nu_j) \mathbf{N}(m)^s$$
$$\times \prod_{j=1}^{g} \left(m^{(j)}\right)^{-\nu_j} L(s,\phi,r,\chi_{m,\nu}).$$

Due to (3.6), the series $L(s, \phi, r, \chi_{m,\nu})$ is absolutely convergent for $\sigma = \text{Re}(s) > M + 1$.

We have the following lemma.

Lemma 3.3. For $\sigma > M + 1$, we have the identity

(3.10)
$$\mathcal{L}(s,\phi,r,\chi_{m,\nu}) = \int_{T_m^2 \backslash \mathbf{R}_+^g} f_r(iy) \mathbf{N}(y^{s-\nu}) \frac{dy}{\mathbf{N}(y)},$$

where $f_r(\tau)$ is the form defined in (2.4) with Fourier coefficients c(n,r).

Proof. This can be directly calculated by using the Fourier expansion of $f_r(iy)$ and by using the relation $\mathbf{N}(u_l^{\nu}) = \mathbf{N}(\varepsilon_l)^k$ for $l = 1, \dots, g-1$, where u_l and ε_l are defined in the beginning of this section. We leave the details to the reader, see also [3, page 87].

4. Proof of Theorem 1.1. Theorem 1.1 follows directly from the two lemmas proven in this section.

Lemma 4.1. If ϕ is a Hilbert-Jacobi cusp form, $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$ and ν satisfies (3.1) and (3.2), then the functions $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$ have

analytic continuations to the whole complex plane. They are of rapid decay and satisfy the functional equations
(A 1)

$$\mathcal{L}(s,\phi,r,\chi_{m,\nu}) = \frac{1}{\sqrt{D_K}} i^{-kg} \mathbf{N}(2m)^{-1/2}$$

$$\times \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) \mathcal{L}(k-s-1/2,\phi,\mu,\chi_{m,-\nu}).$$

Proof. To prove the analytic continuation of $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$, we show that the righthand side of (3.10) is analytic for all s. For this, we separate the integral into a part with $\mathbf{N}(y) \geq 1$ and a part with $\mathbf{N}(y) \leq 1$. Using the transformation law of f_r , one can see that it is enough to consider the part with $\mathbf{N}(y) \geq 1$. To estimate this, we use the variables $y_0 \in \mathbf{R}_+$ and $t = (t_1, \ldots, t_{g-1}) \in \mathbf{R}^{g-1}$, where

$$y_i := y_0 \cdot e^{\sum_{l=1}^{g-1} t_l \log(u_l^{(j)})}.$$

Then a fundamental domain of $T_m^2 \backslash \mathbf{R}_+^g$ is given by the inequalities $y_0 > 0$ and $0 \le t_l < 1, \ l = 1, \ldots, g-1$, and the part with $\mathbf{N}(y) \ge 1$ is given by $y_0 \ge 1$. The analyticity now follows if we use Lemma 2.3, since for c > 0 and $\sigma \in \mathbf{R}$ arbitrary the integral $\int_1^\infty e^{-cy} y^{\sigma} dy$ is convergent. The boundedness of $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$ in every vertical strip also follows from this convergence.

Moreover, by using the transformation law of f_r and Lemma 3.3, equation (4.1) follows since 1/y runs through $T_m^2 \setminus \mathbf{R}_+^g$ if y does.

Lemma 4.2. Assume that ϕ is a function satisfying (3.3), (3.4), (3.5) and (3.6), and that for all $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$ and for all ν satisfying (3.1) and (3.2) the series $\mathcal{L}(s,\phi,r,\chi_m)$ have analytic continuations, satisfy (4.1) and are of rapid decay. Then ϕ is a Hilbert-Jacobi cusp form of weight k and of index m.

Proof. By analytic continuation it is enough to show (2.2) for $\tau = iy$. We parametrize the integrals as before and use the Mellin inversion formula to get, for σ sufficiently large

$$\int_{[0,1]^{g-1}} f_r(iy_0 \cdot e^{tR}) e^{-\nu tR} dt = \frac{1}{2gR_m \pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \mathcal{L}(s/g, \phi, r, \chi_{m,\nu}) y_0^{-s} ds,$$

where

$$R_m := \det((\log(u_l^{(j)}))_{l,j=1,\dots,g-1})$$

$$f_r\left(iy_0\cdot e^{tR}\right):=f_r\left(iy_0e^{\sum_{l=1}^{g-1}t_l\,\log\left(u_l^{(1)}
ight)},\cdots,iy_0e^{\sum_{l=1}^{g-1}t_l\,\log\left(u_l^{(g)}
ight)}
ight),$$

(4.3)
$$e^{-\nu tR} := \prod_{j=1}^g \prod_{l=1}^{g-1} e^{-\nu_j t_l \log\left(u_l^{(j)}\right)} = \prod_{l=1}^{g-1} e^{-2\pi i (N_l + (1/2)\delta_l)t_l},$$

where N_l and δ_l appeared in (3.2). Applying (4.1) and making the substitution $s \to g(k-1/2-s)$ gives that the righthand side of (4.2) equals

$$\frac{1}{\sqrt{D_K}} i^{-kg} \mathbf{N} (2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m} (-\mu r) y_0^{-g(k-1/2)} \\
\times \frac{1}{2gR_m \pi i} \int_{g(k-1/2)-\sigma-i\infty}^{g(k-1/2)-\sigma+i\infty} \mathcal{L}(s/g, \phi, \mu, \chi_{m,\nu}) y_0^s ds.$$

If Re (s) > M+1, the series $L(s,\phi,r,\chi_{m,\nu})$ is absolutely convergent, and the series $\mathcal{L}(s,\phi,r,\chi_{m,\nu})$ is of rapid decay for $|\mathrm{Im}\,(s)| \to \infty$. Also, $\mathcal{L}(s,\phi,r,\chi_{m,-\nu})$ is bounded in every vertical strip and has a functional equation. By using the Phragmén-Lindelöf principle, we can conclude that $\mathcal{L}(s,\phi,r,\chi_{m,-\nu})$ is of uniformly rapid decay for $|\mathrm{Im}\,(s)| \to \infty$ in every vertical strip. Hence, we use Cauchy's theorem and shift the path of integration to the line Re $(s)=\sigma$. Thus, the lefthand side of (4.2) equals

$$\frac{1}{\sqrt{D_K}} i^{-kg} \mathbf{N} (2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m} (-\mu r) y_0^{-g(k-1/2)} \\
\times \frac{1}{2gR_m \pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \mathcal{L}(s/g, \phi, \mu, \chi_{m, -\nu}) y_0^s ds.$$

But the latter integral equals

$$2gR_m\pi i \int_{[0,1]^{g-1}} f_{\mu}(iy_0^{-1} \cdot e^{-tR})e^{-\nu tR} dt.$$

Thus,

$$(4.4) \int_{[0,1]^{g-1}} f_r(iy_0 \cdot e^{tR}) e^{-\nu tR} dt$$

$$= \frac{1}{\sqrt{D_K}} i^{-kg} \mathbf{N} (2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m} (-\mu r) y_0^{-g(k-1/2)}$$

$$\times \int_{[0,1]^{g-1}} f_{\mu} (iy_0^{-1} \cdot e^{-tR}) e^{-\nu tR} dt.$$

We now let

$$\begin{split} g_r(t) &:= f_r(iy_0 \cdot e^{tR}) - \frac{1}{\sqrt{D_K}} \, i^{-kg} \, \mathbf{N}(2m)^{-1/2} \\ &\times \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) y_0^{-g(k-1/2)} f_\mu(iy_0^{-1} \cdot e^{-tR}). \end{split}$$

To prove the lemma, it suffices to show that $g_r(t)$ is identically zero. But this follows since the function

$$\hat{g}_r(t) := g_r(t) \prod_{l=1}^{g-1} e^{-\pi i \, \delta_l \, t_l}$$

has period 1 in every component of t and all (N_1, \ldots, N_{g-1}) th Fourier coefficients of $\hat{g}_r(t)$ are 0 due to (4.3) and (4.4).

Acknowledgments. The authors thank N. Skoruppa and O. Richter for their helpful comments.

REFERENCES

- 1. T. Arakawa, Jacobi Eisenstein series and a basis problem for Jacobi forms, Comment. Math. Univ. St. Pauli 43 (1994), 181–216.
- 2. T. Arakawa, I. Makino and F. Sato, Converse theorems for not necessarily cuspidal Siegel modular forms of degree 2 and Saito-Kurokawa liftings, Comment. Math. Univ. St. Pauli 50 (2001), 197–234.
- ${\bf 3.}$ D. Bump, $Automorphic\ forms\ and\ representations, Cambridge University Press, Cambridge, 1998.$
- 4. J. Choie, A short note on the full Jacobi group, Proc. Amer. Math. Soc. 123 (1995), 2625-2628.

- **5.** J. Cogdell and I. Piatetski-Shapiro, Converse theorems for GL(n), Pub. Math. Inst. Hautes Étud. Sci. **79** (1994), 157–214.
- 6. K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969), 1-14.
- 7. M. Eichler and D. Zagier, The theory of Jacobi forms, Progress Math. 55, Birkhauser, 1985.
 - 8. E. Freitag, Hilbert modular forms, Springer Verlag, New York, 1990.
- 9. E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktional-gleichung, Math. Ann. 112 (1936), 664–699.
- 10. K. Imai, Generalisation of Hecke's correspondence to Siegel modular forms, Amer. J. Math. 102 (1980), 903–936.
- $\bf 11.$ H. Jacquet and R. Langlands, $Automorphic\ forms\ on\ GL\ (2)$, Springer Lecture Notes $\bf 114$, Springer, 1970.
- 12. H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Automorphic forms on GL (3) I and II, Ann. Math. 109 (1979), 169–212 and 213–258.
- 13. H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math Ann. 121 (1949), 141–183.
- ${\bf 14.}$ Y. Martin, A converse theorem for Jacobi forms, J. Number Theory ${\bf 61}$ (1996), 181–193.
- 15. ——, L-functions for Jacobi forms of arbitrary degree, Abh. Math. Sem. Univ. Hamburg 68 (1998), 45–63.
- 16. H. Skogman, Jacobi forms over totally real number fields, Results Math. 39 (2001), 169–182.
- 17. L. Vaserstein, The group $SL_2(\mathbf{Z})$ over Dedekind rings of arithmetic type, Mat. USSR Sbornik 18 (1972), 321–332.
- 18. A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Annal. 168 (1967), 149–156.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Email address: bringman@math.wisc.edu

FACHBEREICH 6, MATHEMATIK, UNIVERSITÄT SIEGEN, 57068 SIEGEN, GERMANY Email address: hayashida@math.uni-siegen.de