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A CONVERSE THEOREM FOR
HILBERT-JACOBI FORMS

KATHRIN BRINGMANN AND SHUICHI HAYASHIDA

1. Introduction and statement of results. Doi and Naganuma,
see [6], constructed a lifting map from elliptic modular forms to Hilbert
modular forms in the case of a real quadratic field with narrow class
number one. A converse theorem for Hilbert modular forms was one
of their basic tools. This gives rise to the question of constructing a
lifting map in the case of Jacobi forms. Here we do the first step in
that direction and prove a converse theorem for Hilbert-Jacobi forms.

Studying the connection between functions that satisfy certain trans-
formation laws and the functional equation of their associated L-
functions has value on its own and a long history. In a celebrated
paper, see [9], Hecke showed that the automorphy of a cusp form with
respect to SLa(Z) is equivalent to the functional equation of its associ-
ated L-functions. That only one functional equation is needed is in a
way atypical and highly depends on the fact that SLy(Z) is generated

by the matrices ((1) i) and ((1) _01 ) This situation already changes if

one considers cusp forms with respect to a subgroup of SLy(Z) which
have a character. In this case the functional equation of twists is re-
quired, see [18].

Hecke’s work has inspired an astonishing number of people and a
lot of generalizations of his “converse theorem” have been made, e.g.,
generalizations to Hilbert modular forms as mentioned above, see [6],
Siegel modular forms, see [2, 10], or Jacobi forms, see [14, 15]. Maass
showed an analogue of Hecke’s result for nonholomorphic modular
forms, see [13]. He proved that these correspond to certain L-functions
in quadratic fields. An outstanding generalization of a converse theorem
for GL (n) was done by Jacquet and Langlands for n = 2, see [11],
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Jacquet, Piatetski-Shapiro and Shalika for n = 3, see [12], and Cogdell
and Piatetski-Shapiro for general n, see [5].

In this paper, we prove a converse theorem for Hilbert-Jacobi cusp
forms over a totally real number field K of degree g := [K : Q] with
discriminant Dg and narrow class number 1. The case g = 1, i.e.,
Jacobi forms over Q as considered by Eichler and Zagier, see [7], is
treated in two interesting papers by Martin, see [14, 15]. To describe
our result, we consider functions ¢(7, z) from HY x C? into C that have
a Fourier expansion with certain conditions on the Fourier coefficients,
see (3.4), (3.5) and (3.6). We show that ¢ is a Hilbert-Jacobi cusp form
(for the definition see Section 2) if and only if certain Dirichlet series
L(s, 0,7, Xm,), see (3.9), satisfy functional equations. More precisely,
we show the following,.

Theorem 1.1. Let k be an integer, and let m € 0k ! be the inverse
different from K. A function ¢ satisfying (3.3), (3.4), (3.5) and (3.6) is
a Hilbert-Jacobi cusp form of weight k and index m if and only if for all
v satisfying (3.1) and (3.2) and for allr € 0 ' /(2mOk) the functions
L(8,$,7,Xm,), see Definition 3.2, have analytic continuations to the
whole complex plane, are bounded in every vertical strip and satisfy the
functional equations

L(8, 0,7 Xm ) = iR N(2m) /2

1
vDg
X Z €2m(7,ufr)£(k -8 l/2a ¢a 1223 Xm,—u)v

ne(@x—1/2m0Ok)

see Section 2 for the definition of N and eap,(+).

We proceed as follows. In Section 2 we recall basic facts about
Hilbert-Jacobi cusp forms. In particular, we show that these have a
theta decomposition, see (2.3), where the involved theta series satisfy
some transformation law, see Lemma 2.1. Section 3 deals with certain
characters of Hecke type and the Dirichlet series needed for the converse
theorem. In Section 4, we prove Theorem 1.1.

2. Basic facts about Hilbert-Jacobi cusp forms. We let K be
a totally real number field of degree g := [K : Q] and denote by Ok,
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Oj, 0k, and Dy its ring of integers, units, different, and discriminant,
respectively. We denote the jth embedding, 1 < j < g, of an element
1€ K by 1), An element | € K is said to be totally positive, [ > 0, if
all its embeddings into R are positive.

Let us now briefly recall some basic facts about Hilbert-Jacobi cusp
forms, see also [16]. We put 'k := SL2(Ok). Let the Hilbert-Jacobi
group be defined as the set I'Y; := I'x x (Og x Ok), with the group
multiplication

L a; by az by az by
Y12 = ((Cl d1> <02 d2> (A, ) <Cz d2> +()\2,N2)> )

where we put

o a; b o J a; b;
Yi = <<Cl di>7()\17:u'l)>€1—‘[{7 <Ci di>€FK7

and (A, pi) € Ok x Og. The Hilbert-Jacobi group is generated by the
following three types of elements

((5 ) .0o0).
(¢

(2.1)

and

(G

(1)> 7(%#)) ;

where A\, u € Ok and ¢ € O, see [1, 4, 17].
The Hilbert-Jacobi group acts on H9 x C9 (H is the usual upper

half-plane) by

((¢ %) m)ema

a/(l)Tl + b(l)

a(g)Tg + b(g)>

= ((cmﬁ T @), + d@)

21 + )\(1)7—1 + u(l)
0(1)7_1 + d(l) yeee

zg + )\(Q)Tg + plo)
C(g)Tg + d(g) ’
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(¢ 5)-om)ert,

T = (11,...,7) € HY and z = (21,...,24) € C9. Throughout this
paper, we write 7 = u+1v, 2 = £ + 1y, 7; = u; +v; and z; = x; +iy;,
I<j=<yg

where

Let k € N, m € 0 ! totally positive,

(5 ) ent

and a function ¢ : H9 x C9 — C. Then we define

Olke,m(1, 2) := N(cT + d)_k
‘e <— cm(zc—i—— j—Td+ M)Z +mrA? + 2m)\z>>
: ¢(’7 © (Tv Z))v

where for a € K and for z € CY, we define N(az) := H?Zl(a(j)zj),
tr(az) :=9_, a9z and e(az) = e*mitr(@2),
A holomorphic function ¢ : H9 x C9 — C is called a Hilbert-Jacobi

cusp form of weight k and index m if ¢|p m7y(T,2) = ¢(7,2) for all
v € T'); and if it has a Fourier expansion of the form

Z c(n,r)e(nr+rz).

n,r€og *

4nm—rz>0

In [16], m is chosen to be in Ok, but our choice m € dx ' seems

more natural since in this way the coeflicients of Hilbert-Siegel modular
forms are examples for Jacobi forms as in the classical case.

If ¢ is a Hilbert-Jacobi cusp form, then the transformation (7,z2) —
(1,2 + A1 + ) leads to

(2.2) c(n,r) = c(n+ A+ Mm,r + 2 m), forall )€ Ok.

From this, we can deduce that

(2.3) o(r,2) = Z Ir(7) O (7, 2),

TE(DK71/2THOK)
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where, for r € (0x ™' /2mOf), we define

(2.4) ()= Y e(n,r) eam ((4nm —12) 1)
4:71610—};‘;>0

(2.5)
Omr(T,2) := Y €am ((r +2xm)? 7 + 4m. (r + 2Am) z) ,
A€OK

and where, for o, € K, f # 0 and z € C9, we define eg(az) :=
e(ftaz).

The theta series ¥, satisfy the following transformation law.

Lemma 2.1. If m € 0x ! is totally positive and p € (05 ~1/2mOk),
then we have

N e

(M) Y anwndna)

re(d0x —1/2m0Ok)

where we put (7/i)Y? = ((r1/i)Y?,...,(1,/1)"/?), and we take the
principal value of the square root, namely, —7/2 < arg(w) < 7/2 for
w e C.

From Lemma 2.1, we obtain

Corollary 2.2. A function ¢ : H9 x CY9 having a decomposition of
the form (2.3) satisfies

o 22) w2

(2.6) () = ——i FIN ((T/i)lﬂ—’“) N(2m) /2

VDk
Cy ()

ne(@x ~1/2mOk)

if and only if
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for all r € (0x™1/2mOk). In particular, if ¢ is a Hilbert-Jacobi cusp
form, then ¢ satisfies (2.6).

Exactly as in the case of elliptic modular forms, one can show:

Lemma 2.3. Assume that ¢ is a Hilbert-Jacobi cusp form, with f,.
defined as in (2.4). Let ¢ be a positive real number, and let S be the
subset of HY such that for all T € S the components v;, 1 < j < g, are
larger than c¢1. Then we have

(2.7) ()] gy €2 (E0maw),

where c3 is a positive constant, and where the constant implied in <4 ¢,
depends on ¢ and on c1.

Lemma 2.4. If ¢ is a Hilbert-Jacobi cusp form of weight k and
index m, then the function

2

g(7, 2) := N(v)*/% exp (27rtr (%>> (7, 2)
v
s bounded on HY x C9.

By using Lemma 2.4, we have the following.

Lemma 2.5. If ¢ is a Hilbert-Jacobi cusp form of weight k and

index m with Fourier coefficients c(n,r), then |c(n,r)| <4 N(4dmn —
Tz)k/Z_

3. Hecke-type characters and Dirichlet series. For the
remainder we assume that k is an integer. For m € 0!, we let
T, be the subgroup of O defined by

Tm:={€€0§|€—162mDK}.

We have that € € O is in T}, if and only if er — r € 2mOk for every
r€0x 1/(2mOk).
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We let ug,...,ug—1 be a basis of T2, where T7, := {? | ¢ € T} }.
We take €1, ...,64_1 € T,,, which satisfy e? =, forl=1,...,9—1. If
m is not a generator of the different inverse, then T, does not contain
—1; hence, the ¢; are uniquely determined. If m is a generator of the
different inverse, then T,, contains —1, and we choose £ > 0 as a

solution of the above equation.

For integers N;, 1 <1 < g — 1, we choose pure imaginary solutions
v1,...,vy which satisfy the following equations

g
(3.1) > vi=0,
j=1

g
. ] 1
(3.2) Jz:;yj log (ul(])) = 2mi (Nl + 5(51),

where we put §; = 0 or 1 if N(g;)¥ = 1 or —1, respectively. For any
integers N;, I = 1,...,9 — 1, we have a solution to (3.1) and (3.2),
because

1 1
log(u{) - log(ul?”)

det . .
log(ulV)) -+ log(ul?))

= (~1)9*1g - det((log(w”))1,j1,.. g—1) #0,

where the last inequality can be obtained from the fact that basis
elements u; are multiplicatively independent.

For x € K and v := (v1,...,V,) satisfying (3.1) and (3.2), we set

Vi

)
X (@) = [ | \xm
j=1

To define the Dirichlet series needed, we consider functions ¢(7, z) from
HY x CY into C that have a Fourier expansion of the form

(3.3) o(r,2) = Z e(n,r)e(nt +rz)
e
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that is absolutely and locally uniformly convergent. We regard c¢(n,r) =
0 unless 4nm — 72 > 0 or unless n,r € 0 1. Moreover, we demand

that its Fourier coefficients satisfy

(3.4) c(n,r) = c(n+ M+ X2m,r + 2xm) for all A € Ok,
(3.5) c(e?n,er) = N(e)ke(n,r), forall e € OF),
(3.6) c(n,r) <4 N(4nm — r*)M

for an integer M.

Lemma 3.1. (1) Condition (3.4) implies that we can decompose
é(7,2) as in (2.3).

(2) Conditions (3.4) and (3.5) imply by the definition of T, that
<N +7r?
c

cr(N) = im

7T>7 NEDK_27

is well defined on v € 0~ /(2mOk), where we put 0x =2 = g~ ' -
DK_I.

(3) ¢ is a Hilbert-Jacobi cusp form if and only if (3.3), (3.4), (3.5)
and (3.6) hold, and if ¢ satisfies the transformation law

(3.7) ¢( 1 f) = N(T)ke<m:2>¢(7', 2).

’
T T

(4) From Corollary 2.2, we see that a function ¢ satisfying (3.3),
(3.4), (3.5) and (3.6) is a Hilbert-Jacobi cusp form if and only if (2.6)
is satisfied for all r € (0x =1 /2mOk).

Proof. These are straightforward. We omit the proof of this
Lemma. O

Let us now define the Dirichlet series needed for Theorem 1.1.
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Definition 3.2. For a function ¢ satisfying (3.3), (3.4), (3.5) and
(3.6), 7 € 0x~1/(2mOk), and v satisfying (3.1) and (3.2), we define

(3.8) L(s, 0,7 Xmw) = Z Xmp(a) - cr(a) - N(a)~%,

a0 ~2/T2

g
(3.9) L(s,¢,7, Xom,p) :=29179° H (s —v;)N(m)®
Jj=1

x (m<j>>_”jL(s,¢,r,xm,y).

1

g9
Jj=

Due to (3.6), the series L(s, ®,T,Xm, ) is absolutely convergent for
oc=Re(s)>M+1.

We have the following lemma.

Lemma 3.3. For o > M + 1, we have the identity
3.10 L(8,0,7, Xm,v :/ Fry) N ™)
(3.10) ( ) - (2y)N( )N(y)

where f,.(T) is the form defined in (2.4) with Fourier coefficients c(n,r).

Proof. This can be directly calculated by using the Fourier expansion
of f.(iy) and by using the relation N(u}) = N(g)* forl =1,... ,g—1,
where u; and ¢; are defined in the beginning of this section. We leave
the details to the reader, see also [3, page 87]. o

4. Proof of Theorem 1.1. Theorem 1.1 follows directly from the
two lemmas proven in this section.

Lemma 4.1. If ¢ is a Hilbert-Jacobi cusp form, r € 0x~1/(2mOx)
and v satisfies (3.1) and (3.2), then the functions L(s, ¢,r, Xm ) have
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analytic continuations to the whole complex plane. They are of rapid
decay and satisfy the functional equations
(4.1)

1
E(Sa ¢7 T, Xm,l/) =

vDg
x Z ezm(_lu’r)‘c(k -5 1/27 45; M, Xm,fu)-

pe(dx —1/2m0Ok)

i kI N(2m) /2

Proof. To prove the analytic continuation of £(s, @, 7, Xm,. ), we show
that the righthand side of (3.10) is analytic for all s. For this, we
separate the integral into a part with N(y) > 1 and a part with
N(y) < 1. Using the transformation law of f,., one can see that it
is enough to consider the part with N(y) > 1. To estimate this, we use
the variables yo € Ry and t = (t1,... ,t,_1) € RY"!, where

Yii=yo-e L tulog(u”)
Then a fundamental domain of T2\RY is given by the inequalities
yo>0and 0<¢t; <1,l=1,...,9—1, and the part with N(y) > 1 is
given by yo > 1. The analyticity now follows if we use Lemma 2.3, since
for ¢ > 0 and o € R arbitrary the integral |, 100 e~ Yy dy is convergent.
The boundedness of L(s,®, 7, Xnm,) in every vertical strip also follows
from this convergence.

Moreover, by using the transformation law of f, and Lemma 3.3,
equation (4.1) follows since 1/y runs through 777 \ RY if y does. O

Lemma 4.2. Assume that ¢ is a function satisfying (3.3), (3.4), (3.5)
and (3.6), and that for all € 9 1 /(2mOf) and for all v satisfying
(3.1) and (3.2) the series L(s,¢,7,Xsm) have analytic continuations,
satisfy (4.1) and are of rapid decay. Then ¢ is a Hilbert-Jacobi cusp
form of weight k and of index m.

Proof. By analytic continuation it is enough to show (2.2) for 7 = dy.
We parametrize the integrals as before and use the Mellin inversion

formula to get, for o sufficiently large
(4.2)

) . 1 o+ioco .
/[ ] ) fr(lyo-etR)e tR dt = / £(3/97¢’ T, Xm,u)yo dS,
0,1]9—

QQRmﬂ"L o—ioo
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where

R,, = det((log(ul(j)))l,jzl,... ,gfl)

fr (iyo 'etR) = fr <iy0e it IOg(ugl)), -+, 1Y€ it IOg(ugg))> )

g 9-1 @y 2t
(4.3) o VIR H H o vittlog(u”) _ H o 2mi(Ni+(1/2)8) 1
. «— - )
j=1i=1 =1

where N; and §; appeared in (3.2). Applying (4.1) and making the
substitution s — g(k — 1/2 — s) gives that the righthand side of (4.2)
equals

1

— = i"kIN(2m) /2 o —g(k—1/2)
\/D—K,L (m) Z €2 ( w‘)yo

rE(PK ~1/2mOK)

1 /g(k1/2)a+ioo ( / )
X o0 L(s gv¢a,u'5Xm7V ys ds.
29Rm T J g(k—1/2)—0—ioo 0

If Re(s) > M + 1, the series L(s, ¢, r, Xom ) is absolutely convergent,
and the series £(s, @, 7, Xm,) is of rapid decay for [Im (s)| — oco. Also,
L(8,$,7,Xm,—v) is bounded in every vertical strip and has a functional
equation. By using the Phragmén-Lindel6f principle, we can conclude
that £(s, $, 7, Xyn,—.) is of uniformly rapid decay for [Im(s)| — oo in
every vertical strip. Hence, we use Cauchy’s theorem and shift the path
of integration to the line Re(s) = . Thus, the lefthand side of (4.2)
equals

| - (k-
Tl k9 N(2m) 1/2 Z eam(—1r)Yg g9(k—1/2)
VEK €@K ~1/2mOK)

1 o+i00
X —— L m.—v)Yg ds.
2ngﬂ'l /g_ioo (s/gv ¢7N7X 5 )yO S

But the latter integral equals

29R,, i / Fuliye - e e gt
[0,1]9—1
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Thus,
(4.4) / fr(iyo - ee " R qt
[0,1)9-1

1 ok
_ = i~ kg N(Zm)_1/2 Z €2m(_l“")y0 9(k—1/2)
VK pE(@K=1/2mOK)

X / fuliyyt - e e ViR 4t
[0,1]9~1
We now let
i~k N(2m) /2

X S eom(—pr)ye TV fuliygt et
he(@x—1/2mO)

To prove the lemma, it suffices to show that g,(¢) is identically zero.
But this follows since the function

g—1
gr(t) = gr(t) H e_ﬂ—i it
1=1
has period 1 in every component of ¢ and all (NVy, ..., Ng_1)th Fourier

coefficients of §,(t) are 0 due to (4.3) and (4.4). O
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