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AN EXISTENCE RESULT FOR
SOLUTIONS OF NONLINEAR STURM-LIOUVILLE
BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER
p-LAPLACIAN DIFFERENTIAL EQUATIONS

YUJI LIU

ABSTRACT. An existence result for solutions of nonlinear
two-point boundary value problems of p-Laplacian differential
equations is proved. The theorem obtained is different from
those known since we don’t apply Green’s functions of the
corresponding problem, and the methods to obtain the a priori
bounds of solutions are different enough from those known.
An example that cannot be solved by known results is given
to illustrate our theorem.

1. Introduction. In [10], Erbe and Tang studied the existence
of positive solutions of the following Sturm-Liouville boundary value
problem consisting of the second order differential equation and the so
called Sturm-Liouville boundary conditions

(1) {w"(t) = f(t,z(t)) O0<t<l,
az(0) - Bz'(0) =0 ya(1) + 6a'(1) =0,

where f is continuous and nonnegative, « > 0, >0,y >0and 6 >0
with ad++vyd+aB > 0. This problem comes from the situation involving
nonlinear elliptic problems in annular regions, see [10]. The authors
in [10, 11] proved that the above problem has at least one positive
solution under the following assumptions:

(B) The function f is continuous and positive on [0, 1] x [0, +00) and
f(t,y)

fo= lim max =0, foo = lim min
y—0t t€[0,1] Y y—ootefo,l] Y

i.e., f is super-linear at both endpoints x = 0 and = = oo; or
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fo= lim min = 00, foo = lim max =0,
y—0t t€[0,1] Y y—oote[0,1] Y

i.e., f is sub-linear at both endpoints £ = 0 and z = oo.

In textbook [2], the problem with nonlinear boundary conditions

{x”(t) = f(t,z(t)) 0<t<1,
2(0) = 0 2'(1) + ¥(z(1)) = 0

is considered. Using upper and lower solution methods, the authors
established an existence result for solutions of the above-mentioned
problem.

There are many papers concerned with the problem for p-Laplacian
differential equations with linear boundary conditions

(2) { b (1) = f(t,2(t)) 0<t<1,
az(0) = f'(0) =0 y(1)+d2'(1) =0

or with nonlinear boundary conditions

3) { [¢(z'(t)] = f(t,x(t) 0<t<l,

az(0) — BBy(2'(0)) =0 ~az(1) +§B1(2'(1)) =0,
for example [4-8, 13-16, 18, 19, 22-24]; the authors in these papers
established existence results for positive solutions or solutions of the
above-mentioned problems by using fixed point theorems in cones of
Banach spaces or upper and lower solution methods and the monotone
iterative technique. However, the following assumptions were supposed:

(A) There is a constant M > 0 so that

0<Bi(z) <Mz forallz >0, i=0,1.

For the higher order case, BVPs for nonlinear differential equations
have received much attention in obtaining conditions on nonlinearities
for which there are either at least one, at least two or at least three
positive solutions since they can arise in many applications; one may
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see Chyan and Henderson [9]. The right focal boundary value problem
for higher order differential equations

{ ()P (t) = f(t,2(t), .. 2 D(E) 0<t<1,

z®(0)=0fori=0,1,...,p, zD(1) =0, i=p+1,...,n—1

and its special cases have been studied by many authors [4, 11, 16] by
using Krasnoselski’s fixed point theorem in cones. In [1], the authors
proved that the above problem has solutions if the nonlinear function
f is at most linear growth:

(C) There are nonnegative numbers a; and L so that

n—1

|f(t,$0,... 7-’En71)| S L+ Zal|wl|
=0

Recently, Qi, in [20], investigated the following Stourm-Liouville
boundary value problem for higher-order differential equations in Ba-
nach spaces
e (t) + f(t,z(t), 2/ (t),..., 2" D) =0 0<t<l,

@ (0)=0fori=0,1,...,n—3,

az(™=2)(0) — (=1 (0) = 0,

(=2 (1) + sz(*~V(1) = 9,

where a, 3, §, v > 0. He proved the existence of positive solutions
under the assumption A = 6 + da + ay > 0 and the assumptions
imposed on f as follows:

(D) either

£ L0, s Ty =2
||f( 717(::_2 y Tn 2)|| —0, ZHIZH — 0;
> ico | i=0

O T w2
Wtz otodll o 3 sl — oo
Zi:o ||f”z|| i=0

(4)

or

t, @0y e s T =3
||f(7x0a s Ln 2)|| — 400, Z”le—)O’
1=0

2
Z?:o |||

£, 20y .+ T =2
W20 ot Dl g S ] — oo
>izo @il i=0
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In [3, 17, 25|, Agawarl, Lian and Wong studied BVP

[p(z V@) + f(t,z(t),2'(t),...,z""D() =0 0<t<]1,
2®(0)=0fori=0,1,...,n—3,

(*=2(0) = Bo(a"~1(0)) =0,

2" D(1) + B1(z" V(1)) =0

and BVP

M () + f(t,x(t), 2/ (t),..., 2" D) =0 0<t<1,
@ (0)=0fori=0,1,...,n— 3,

az™=2(0) — Bz~ (0) = 0,

y&™=2) (1) + sz(»=Y(1) = 0.

In the results, in which sufficient conditions that guarantee the exis-
tence of at least one positive solution are established, in paper [17],
it is also supposed that By and Bj in (5) satisfy condition (A). For

(6), the following existence result is established by using the upper and
lower solution method.

(5)

(6)

Theorem [25]. Suppose that

(H) there ezists a function g € ([0,1] x [0,00)"71;]0,00)) which
satisfies

f(£,0,0,...,0) >0 on [0,1] (f maybe has a negative value for u; # 0),
g(t, Jual, |ual, ... |un—1]) > f(t,u,ug, ... sup_1) on [0,1] x R* !
and one of the following:
(i) max gy = Ay € [0, D1) and min go, = As € ((D2)/M, ],
(ii) min go = Az € ((D2)/M, 0] and max goo = A4 € [0,D1),

(iii) there exist two monnegative functions h € C([0,00)"~1;[0,00)),
increasing with respect to u,—_1 € [0,00), and g € C([0,1];[0,00)) such
that

g(t,ut,ug, ... yup—1) = q(t)h(ur,uz,... ,up-1)
on [0,1] x [0,00)"~ 1,

sup min Yn—1
Up—1€(0,00) (w1,yeee yun—2)€[0,00) Qh(ula cee 7un71)

> 1,

where
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_ . g(t7u17u27"' 7un—1)
maxgo 1= lim max ,
UL,U2,..- ,Up—1—0F ¢€[0,1] Un—1
. _ . . g(t,ur,ug,y ... yupy_1)
min gg := lim min ,
ul,uz,...,un_1~>0+ t€[1/2,3/4] Up—1
. g(t,U]_,’LLQ,... 7un71)
max goo = lim max ,
UL, U2, ,Un—1—00 t€[0,1] Up—_1
. . . g(t7u17u27'-' 7un71)
min g, := lim min ,
UL, U2, ,Un—1—>00 tE[1/2,3/4] Unp—1

1 -1
6p
k(s,s)d =Dy = ,
(/0 () s) '~ 608+ 3vB + ay + 300

/3/4k L Yas) =Dy 04
e \27%) %) T2 T 1685 + 6By + 3y + 8as

1
Q= Inax/0 k(t, s)q(s) ds.

te[0,1]

and

Then BVP (6) has at least one nonnegative solution.

We note that the nonlinearity f of the equation in the above-
mentioned papers only depends on t,z,a/,... ,2(""? and the growth
conditions imposed on f are at most linear growth. In Lian and Wong’s
theorem mentioned above, it is not easy to check the existence of
max go, min gp, Max goo, and min g..; on the other hand, if one of them
does not exist, problem (6) cannot be solved, and problem (5) cannot
be solved if By, By don’t satisfy condition (A).

Motivated and inspired by the above papers, in this paper, we are
concerned with the following higher-order differential equation with p-
Laplacian operator

(1) (oD@ = f(t,(t), 2 (t),...,z""D(t), 0<t<1,
subject to the nonlinear two-point boundary value conditions

¢ (0) =0 fori=0,1,...,n— 3,
(8) z=2(0) — Bo(«"~1(0)) = 0,

By(z"=2)(1)) + 2"~V (1) = 0,
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where ¢(z) = |z|P72z for  # 0 and ¢#(0) = 0 with p > 1 and the
inverse function of ¢ is denoted by .

Our purpose for this paper is to establish existence results for solu-
tions of problems (7) and (8). Our results are new since

(i) we allow that f depends on t, z, «/,...,z(" 2 and that the
degree of variables of f are greater than 1 if f is a polynomial;

(i) the conditions imposed on By and Bj are weaker than known
ones since we allow that By and Bj are superlinear or sublinear and
even need not be increasing and satisfy condition (A);

(iii) the method of the proof, which is different from the known ones
since Green’s functions of the corresponding problems and assumptions
(A), (B), (C), (H) and (D) are not used, are considerably technical;

(iv) the results here are easy to check.

We will use the classical Banach space C*[0,1] with the norm
2| = max{[[e]|oo, - - - , |zM]|c},
and the Sobolev space W™~ 1:m=2((, 1) defined by
wnbn=2 — f2:00,1] — R, x,--- ,z(" 2 are absolutely
continuous on [0,1], ="~V e L'[0,1]}.

It is easy to transform BVPs (7) and (8) to the system

{w(””(t) =¥(y(t)),

) Y (t) = f(t,z(t), 2 (t),... .z D) 0<t<1,

t@(0)=0fori=0,1,...,n—3,
(10) z("=2(0) — Bo((y(0))) = 0,
y(1) + ¢ (B1(z""2(1))) = 0.

Let X = C"2[0,1] x C°[0,1] and Y = L'[0,1] x L'[0,1] x R%. X is
endowed with the norm

-2
]l = max {121 ooy - 125"l [72]loc }

for all x = (z1,23) € X and Y is endowed with the norm



SOLUTIONS OF NONLINEAR STURM-LIOUVILLE BVPS 153

1 1
ol = max{ [ ne)lds, [ (o)l ds, fa, aol
0 0

for y = (y1,y2,01,a2) €Y. Then X and Y are Banach spaces.
For BVPs (9) and (10), let

D(L) = {(z1,22) € X, (z\" V., a}) eV, 21?(0) =0, i=0,...,n—3}.

Define the linear operator L : XND(L) — Y and the nonlinear operator
N:X =Y by

(
z1(t)) xh(t) S
L<mm>‘ 2{"2(0) f (z1,22) € X N D(L),
)

1‘2(1
w(xz(t ( )
z1(t)\ _ | Ftz(t), 2y (1), ... 2" 7P ()
N <wz(t>> - Bo(u(z2(0) !

for x = (z1,22) € X, respectively. It is easy to know that (z,y) is a
solution of BVPs (9) and (10) if and only if (21, z2) is a solution of the
operator equation L(z1,x2) = N(z1,x2), and z; is a solution of BVPs
(7) and (8) if (z1, z2) is a solution of BVPs (9) and (10).

This paper is organized as follows. In Section 2, we present an
existence result for the solutions of problems (7) and (8). We also
give an example to illustrate the main result. In Section 3, the proof
of the main result is given.

2. Main result and an example. In this section, we first present
sufficient conditions for the existence of solutions of BVPs (7) and (8).
Then an example will be given to illustrate the main theorem.

We set the following assumptions that may be used in the main
results.

(A;) There exist continuous functions h : [0,1] x R*"! — R, and
continuous functions g; : [0,1]x R — R(i = 0,1,... ,n—2) and positive
numbers 8 and m such that f satisfies
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n—2
f(tamO;xla v 7$n72) = h(t,ﬂﬁo,l‘l, cee 7-Tn72) + Zgi(tami)a
=0

and also that h satisfies

:En_gh(t, To, L1y 71:71—2) > B|wn_2|m+1
for all t € [0,1] and (zg,Z1,... ,Zn_2) € R* ! and
[ ta 3
lim sup M =r; €[0,4+00) fori=0,1,...,n—2.

lz|—00 tefo,1) |z|™

(By) f(t,e,...,e) is continuous and f(e,xg,...,T,_2) € L*[0,1];

(B2) ¢(z) = |x[P~2x with its inverse function 9 (z) = |z|9~2x, where
1/p+1/¢=1;
(Bs) By and By are continuous and satisfy xB;(x) > 0 for all z € R.

Remark. Conditions (A;) are imposed on the nonlinearity f; they
are different from known ones imposed on the nonlinearity in BVPs.
The growth conditions imposed on f are allowed to be super-linear (the
degrees of phases variables are allowed to be greater than 1 if it is a
polynomial). For functions By and B, we don’t need assumption (A4),
which is a linear condition.

Theorem L. Suppose that (A1), (B1), (Bz2) and (Bs) hold. Then
BVPs (7) and (8) have at least one solution provided

n—3

T _
¢ m +Tn—2 <ﬁ

- =i - 9"

I
=]

i

The proofs of theorems will be given in Section 3. Now, we present
an example to illustrate Theorem L.
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Example 2.1. Counsider the following problem

(12)

{[ S (1)) = (2 + 22(t) + 20’ (1)) [ (8)]* + 327 asla® () * 4+ (D),
z(0) = 2'(0) = 0, 2"(0) — 2[z""(0)* = 2'(1 )+8[ (D =0.

Corresponding to BVPs (7) and (8), f(t, zo, 21, T2) = (2+x3+22%)z3 +
Z?:o a;z? + r(t). Choose h(t,xo,z1,22) = (2 + x§ + 227)z3 and
gi(t,r;) = a;z? for i = 0,1,2. Choose 3 = 2 and m = 3. By
Theorem 2.1, it is easy to check that, for each r € L'[0,1], problem
(12) has at least one solution if Z?:o la;| < 2.

3. Proof of Theorem L. In this section, we prove Theorem L
presented in Section 2. This will be done by using the following fixed
point theorem.

Lemma GM [12, 21]. Let X and Y be Banach spaces. Suppose
L : D(L) ¢ X — Y is a Fredholm operator of index zero with
KerL = {0} and N : X — Y is L-compact on any open bounded
subset of X. If 0 € Q C X 1is an open bounded subset and Lz # ANz
for all x € D(L)NOQ and A € (0,1), then there is at least one x € Q
so that Lv = Nx.

Proof of Theorem L. From the definitions of X, Y, D(L) and the
operators L and N as defined in Section 1, it is easy to show that
L : DL) C X — Y is a Fredholm operator of index zero with
KerL = {0} and N : X — Y is L-compact on any open bounded
subset of X. Let

(12) 0 = {(-’L‘,y) € D(L) : L(.’B,y) = )\N(Qﬁ,y) for A € [07 1]}
We first prove that Q; is bounded. For (z,y) € Q1, we have

21 (t) = Mp(y(t)),

Y (t) = Mf(t,z(t), 2/ (t),..., 2 2D(t) 0<t<1,
(13) ¢ (0) =0 fori =0,1,...,n — 3,

z("=2)(0) = ABo (¢ (y(0))),

y(1) = =\p(By (z("=2)(1))).
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We get

So

a1) [ (" 00)] 22 00)
= pNAf(t2(t), 2/ (), ..., 272 ()"~ (2).
Integrating (14) from 0 to 1, we get from (Bz) and (Bs) that

/ f(s,z(s),..., 2D (s)z" "2 (s)ds
S D)t 2>< )~ 6= D) D (0)

/ Bz ()2 (s) ds

(M) (By (22 (1))z =2 (1)
/\)/\y() o(¢((0)))

/¢<”1 )2V (s) ds

(A7) implies that

1
[ b (o) 2D ) ) ds
0
n—2 1 '
+ Z/ gi(s,2 ()22 (s) ds < 0.
i=0 V0
Hence,

— 1 n—2 1 .
/3/ |m(n72)(8)|m+1 ds < _Z/ gi(s,m(’)(s))w(”’z)(s) ds
0
Z/ 91(5,20(5)] 1225, ds.
=0
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From (11), pick € > 0 so that

ri +¢€

M ]

+Tn 2+6
—~[(n—i-3 [(n—i=3)™

For such £ > 0, there is a § > 0 so that

lg:(t, )| < (r; +¢€)|z|™ for |z| > § and t € [0, 1],

(15) .
1=0,...,n—2.

Let, for i =0,... ,n — 2,

A ={t:te(0,1], |29 ()] <3},

(16) Agi={t:te0,1], |29(t)] > 6},
9o = te[onll]aﬁa(pK& |gi(t’ x)|

We note, for i =0,... ,n — 3, that

t _ \n—3—1t
FRIOIE ‘ / o j; — :1:("_2) (s)ds

Z

< ];(n—2) ds.
(n737i)!/0 | (s)] ds
Then we get

1
7 [ s
<Z/ 19:(5, 20 () [2"2)(s))
D TR
1/(m+1)
< ;g&i(/o ‘m(an)(s)|m+1 d8>

1
+(Tn72+5)/ |m(n—2)(s)‘m+1d8

ri+¢€ n— m
+Z © /I % (s)|"™ 1 d.

—-3—1)

157
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One has
3

n— 1
( Z e (rnz+s)>/ |27 (s)|™ ! ds
im0 [(n =3 —=d)m 0
n—2 1 1/(m+1)
< Zga,i< /0 x<"2>(s)|m+1ds> .
1=0

It is easy to see from the definition of € that there is an M > 0 such
that

1
/ |z =2 (5)|™F ds < M.
0
Hence, for ¢ =0,... ,n — 3, we get

, 1 ! 1
@Oy <= (m=2)(g)| ds < ML/ (m+1)
e ”"°—(n—3—i)!/0 [ el ds <

Now, we consider ||z("?)||». It follows from the above inequality that
there is a ty € [0, 1] such that [z("2)(ty)] < MY/ (m+1),

For t < tg, we get from (14) that
)\/0 f(s,z(s),..., 2D (s)z" "2 (s)ds
= 6(a D (0)2 (1) - 6D ()2 2(0)
/ o(z (n— 1) (n— 1)(s)ds
< p(a" D (1)2 " 2)(t)-

Thus, we have

2D () (a2 (1)

> (600 [ £52(5) 20D 6))at 2 5) ).

It follows that

/ "D (5D (s)) ds

t

> /t “ (¢7()\))\ /0 " Hwa(w), . 5D (@)D () du> ds.
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Hence,

1
~[e" 2 (8]

q
Hat-2gge - " (¢<A>A | fwsto.....

("2 (u)) 22 (u) du) ds

éMq/("”” - /tto ¢<¢(>\),\/OS <h(u,m(u), o ™D ()

+ jg: gi(u, 2 (U))> 2" (u) du> ds

IN

IN

< Lapa/man
q

-/ ! o (o ([ Bla 2l au

+ g/@s i (u, 2D (w)) 22 (u) du>> ds

< Ly amin)
q

_ /t t°¢<¢(m /0 ) <n§ gi(u,x(i)(u))>x("2)(u) du> ds

1n—2

1
< Lagwom (| >l 2 ||:c<"-2><u>d“>
Mq/m+1 +¢<Z / |xn 2) |d8

i=0

n—

> W ([ eoratas) ™

1
+ (rp—2 + 6)/ |:/v("_2)(s)|erl ds)
0



160 YUJI LIU

1/(m+1)
St (S [ as)

=0
n—i—s n— m
+z - /| 2) ()| d

a2 te) / ")) " s
0

< Lppa/omen)

q
n—2 n—3 ro+e

+ ¢ ( Z 9671,M1/(m+1) + Z [(n—l?,——z)']mM + (Tn—2 + 5)M> .
i=0 i=0 ’

For t > tg, we have

A /t £(5,2(5), .. , 5™ ()22 (s) ds

1

Thus, we have

2D () (1)

( / Flu, 2(u ...,m<"—2>(u))m<"—2>(u)du>.
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Similar to the above argument, we can get

l|x( ()7 < M1/(m+1 i 295 gt/ (mtD)
q

=0

ri+¢€
+Z CEEEIR T M4 (rp_o+e)M.

It follows from the above discussion that there is a constant M; > 0 so
that ||z("=?)||o < M. Hence,

. 1
(4) < - -
2 HOO_(n—?;—i)!

Now, we consider ||y||co- It follows from (13) that |y(1)| < ¥(B1(My)).
So (13) implies that

1
) = o)~ [ (sl 2l 2 )

1
< $(By(ML)) + / s a(s),... 2" D(s)| ds

1
< (By (M t,0,. - T 2)| dt
<o)+ [ e S a)
1=0,... ,n—3
|In—2|§M1
:ZMQ.

It follows that

1

(@, y)ll < max{Mg,ﬁMl, i=0,... 7n_37M1} =: M3.

Let Q = {(z,y) € X : ||z|| < M3+ 1}. Then L(z,y) # AN(z,y) for
A € ]0,1] and (z,y) € D(L) N 0. It follows from Lemma GM that
L(z,y) = N(z,y) has at least one solution in Q. Then BVPs (7) and
(8) have at least one solution x + 2. The proof is complete. O
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