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EXPLICIT CHEVALLEY-WEIL THEOREM
FOR AFFINE PLANE CURVES

KONSTANTINOS DRAZIOTIS AND DIMITRIOS POULAKIS

ABSTRACT. Let ¢ : C — C be an unramified morphism
of plane affine curves defined over a number field K. In
this paper we obtain a quantitative version of the classical
Chevalley-Weil theorem for curves giving an effective upper
bound for the norm of the relative discriminant of the field
K(lQ) over K for any integral point P € C(K) and Q €
o-1(P).

1. Introduction. In this paper we revisit the classical theorem of
Chevalley-Weil for unramified maps [2, 18], [7, Theorem 8.1, page 45],
[4, page 292], [14, pages 50, 109]. This theorem has quite interesting
applications to the study of integral points of algebraic curves [1], [14,
Section 8.4], [6, Chapter VI| and [5, Section 1]. Partial quantitative
versions on it have been used for the effective analysis of integral
points on some families of algebraic curves [10, 12]. Note also that
an interesting alternative application of the unramified maps in the
study of Diophantine equations is given in [3].

Let K be an algebraic number field and Ok its ring of integers.
In this paper we deal with the following version derived from [14,
page 109]: If ¢ : C — C is an unramified morphism of affine plane
curves defined over K, then there exists a finite extension L/K such
that ¢~1(C(Ok)) € C(L). More precisely, if Q € ¢~1(P), where
P € C(Ok), and K (Q) is the field generated over K by the coordinates
of @, then we calculate, following a new approach, an effective upper
bound for the norm of the relative discriminant of K(Q) over K,
depending only on C, C, and .

We consider the set of standard absolute values on Q containing the
ordinary absolute value | - | and for every prime p the p-adic absolute
value | - |, with |p|, = p~!. By an absolute value of K we will always
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understand an absolute value that is an extension to K of one of the
above absolute values of Q. We denote by M(K) a set of symbols
v such that with every v € M(K) there is precisely one associated
absolute value | - |, on K. For v € Mg, we denote by K, and Q, the
completion of the indicated field with respect to the absolute value |-|,.
The local degree at v is given by d, = [K, : Q,]. Let x = (zg : - -+ : @)
be a point of the projective space P"(K) over K. We define the field
height Hg (x) of x by

Hg(x) = H max{|zolv, - .. , |[Tn|o} 2.
vEM(K)

Let d be the degree of K. Then we define the absolute height H(x) by
H(x) = Hg(x)"?. Furthermore, for z € K we put Hy (z) = Hg (1 : z)
and H(z) = H(l: z). If G € K[X3,..., Xy, then we define the field
height Hg (G) and the absolute height H(G) of G as the field height and
the absolute height of the point whose coordinates are the coefficients
of G (in any order). Given v € M(K), we denote by |G|, the maximum
of |c|, over all the coefficients ¢ of G. For an account of the properties
of heights, see [17, Chapter VIII] or [7, Chapter 3].

Let K be an algebraic closure of K. Recall that a morphism
¢ : C — C of algebraic curves is said to be unramified, if it is finite,
C is nonsingular and for every P € C(K) the number of elements of
¢ 1(P) is equal to the degree of ¢ [15, page 117]. If M is a finite
extension of K, then we denote by Ny and Dy /x the norm and the
relative discriminant of M over K, respectively. For any subfield L of
K, we denote by L[C] and L(C) the ring of regular functions and the
function field of an affine curve C over L, respectively.

Let F(X,Y) and F(X,Y) be absolutely irreducible polynomials of
K[X,Y] with degrees deg F = N > 2 and deg F = N > 2, respectively.
We denote by C and C the affine curves defined by the equations
F(X,Y) = 0 and F(X,Y) = 0, respectively. Let ¢ : C — C be
a morphism of affine curves defined over K of degree m > 1, and
let $1(X,Y), ¢2(X,Y) be polynomials of K[X,Y] such that ¢(P) =
(¢1(P), ¢2(P)) for every P € C(K). We set M = max{deg ¢,,deg @2},
and we denote by ® a point of the projective space having as coordinates
1 and the coefficients of ¢;(X,Y), i =1, 2.
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Theorem 1.1. Assume that C' is nonsingular and the morphism
¢ : C — C unramified. Then, for any P € C(Ok) and Q € ¢ 1(P),

we have
NK(DK(Q)/K) <Q (H(F)GNNsH((I))NH(F)M)demSNBN”’

where ) is an effectively computable constant in terms of N, N, M,m
and d, and w is an effectively computable numerical constant.

Remarks. 1) By [15, Corollary 3, page 120], the curve C is nonsin-
gular.

2) Since m > 1, the quantity M is > 1.

3) Since F(X,Y) divides F(¢1(X,Y), $2(X,Y)), the quantities H(F)
and N are bounded by constants depending only on F' and ¢. Thus,
our bound can be made independent of F'.

4) Theorem 1.1 can be easily generalized for S-integral points. For
simplicity we have chosen to present it only for integral points.

The idea of the proof of Theorem 1.1 is as follows. For every
(a,b) € C(Ok) and Q € ¢ (P) we construct two primitive elements wu;
and u; for the field extension K (C)/K (C) and polynomials P;(X,Y,U),
i = 1,2, of K[X,Y,U] which represent the irreducible polynomials of
u; over K(C) such that we have K(u;(Q)) = K(Q), ¢ = 1,2, and
the algebraic set defined by F(X,Y) and the discriminants D;(X,Y)
of P(X,Y,U), i = 1,2, (considered as a polynomial with coefficients
in K[X,Y]) is empty. Then we obtain a Bézout identity involving
D;(X,Y), i = 1,2, and F(X,Y) which implies that the prime ideals
of O with quite large norm cannot divide both the discriminants
D;(a,b), i = 1,2, and hence cannot divide the discriminant of K(Q).

Thus, we determine the prime ideals of K which are ramified in K (Q)
and so we calculate a bound for the norm of the relative discriminant
of K(Q) over K. Note that the primes that potentially ramify in the
various K (Q) are the primes of bad reduction [4, Section A.9.1]. In
specific instances, one can have better results; the goal was to show
that some bound existed and to give its shape.

The present paper is organized as follows. In Sections 2, 3, and 4
we obtain some results which are needed for the proof of Theorem 1.1.
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More precisely, in Section 3, we determine the irreducible polynomial
of an integral element over the ring of regular functions of an affine irre-
ducible plane curve, in Section 3 we obtain some results on polynomials
without common zero, and in Section 4 we give some auxiliary lemmata.
Finally, the proof of Theorem 1.1 is obtained in Section 5. Throughout
this paper, we denote by Aj(ay,...,as), As(ay,...,as),... effectively
computable positive numbers in terms of indicated parameters.

2. Determination of an irreducible polynomial. Let F(X,Y)
be an absolutely irreducible polynomial in K[X,Y] of degree N > 2,
and let C be the affine curve defined by the equation F(X,Y) = 0. Let
m > 1and n > 1 be the degrees of F'in X and Y, respectively. Further,
we denote by z and y the coordinate functions on C. In this section we
prove the following proposition which will be play an important role in
the proof of Theorem 1.1:

Proposition 2.1. Suppose that C is nonsingular. Let u be an
integral element over K[C| of degree p > 1, and let G(X,U) be a
polynomial of K[X,U] such that G(z,u) = 0. Put v = degxG,
v =degyG. Then there is a polynomial

P(X7 Y7 U) - U“ +p1(Xa Y)Uuil + et +pp(X7 Y)7

with coefficients in K such that P(x,y,U) is the irreducible polynomial
of u over K(C), and we have degp; < 5yN?3 and

H(P) < Ay(N,7,v, 1) (H(G)H(F)57N3>25H“/ N

Before proceeding to the proof of Proposition 2.1, we shall recall the
notion of height of a polynomial over the function field K (C). Let ¥ be
the set of discrete valuation rings V of K(C), and let X, be the set of
Ve with VNK(X) = Va, where V,, is the discrete valuation ring of
K(X) having as elements the fractions b(X)/c(X) with degb < degec.
If V € ¥ and h€K(C), then we denote by ordy (h) the order of h at V
and by (h)o the divisor of poles of the function h. We set

|hlv = exp{—ordy (h)}.
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Thus, we define an ultrametric absolute value on K (C). Furthermore,
if

AX)=ao X+ 4 a
is a polynomial with coefficients in K(C), then we set

‘A|V = max{|a0|V, ceey ‘ak‘v}.

We define the height of A(X) over K(C) by

Hc(A) = [] max{|aolv, ..., |aklv}-
Vex

If ap = 1, then [7, Proposition 3.1, page 62] gives
Hc(A) = exp{deg (sup;(a;) o)}

For the proof of Proposition 2.1, we shall need the following lemmas.

Lemma 2.1. Suppose that C is nonsingular. Let u be an integral
element over K[C] of degree p > 1 and G(X,U) a polynomial of
K[X,U] such that G(z,u) = 0. Let v = degxG. Then the irreducible
polynomial of u over K(C) has the form

P(U) = U" +pi(z,y)Ur" + -+ pu(z,y),
where p;(z,y) € K[C],i=1,...,u, with

Proof. Since C is nonsingular, it follows that the ring K[C] is
integrally closed. Thus, the irreducible polynomial of u over K(C)
has the form

P(U) = U" + p1(z,y)U* ™ + -+ + pu(z, ),
where p;(z,y) € K[C],i=1,...,u. Write

G(X,U) = go(X)U" +--- + g,(X)
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where g;(X) € K[X], j =0,...,v, and go(X) # 0. Without loss of
generality, we may consider that the polynomials g;(X) are relatively
prime. Since G(z,u) = 0, it follows that P(z,y,U) divides G(z,U).
Thus, [7, Proposition 2.4, page 57] yields

Ho(P(z,y,U)) < Ho(G(x,U)),
whence it follows
deg (pi(,y))oo < deg (sup;<;<, (9;(2)/90(2))o0)-

Let go(X) = bo(X —b1)---(X —by)% and V; 5, j = 1,...,7(i), be
the rings of X lying above the discrete valuation ring of K (X) defined
by X —b;, and let e; ; be the ramification index of V; ;. The divisor of
poles of g;/go satisfies

deg (910 /o0(0)) ) <de( 3 (deganlordy (/)W + Y e V).

Thus,
deg (pi(2,9)) o < 29n.

Lemma 2.2. Let a(z,y) € K[C] with deg(a(z,y))e <
where v s a positive integer. Then there is A(X,Y) € K[X,Y] with
deg A < 5yN? such that a(z,y) = A(x,y).

Proof. Consider the divisor

D =2vyn Z Vv
VESw

and denote by {(D) the dimension of the Riemann-Roch space L(D).
By [13, Theorems A2 and B2], it follows that there are polynomials
bi(X,Y),...,bypy(X,Y), ¢(X) with coefficients in K and

degg <m(n—1), degyb <n—1, degxb;<6yn’+ 2mn,

such that the functions 1, ... , ¢;p) defined by the fractions b;(X,Y")/
q(X),...,byp)(X,Y)/q(X), respectively, on C, form a basis of L(D).
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The leading coefficient of ¢(X) is 1 and if ¢(X) # 1, then its roots
are among the roots of the discriminant of F(X,Y) (considered as
polynomial in Y).

Since a(z,y) € KJ[C] there is A(X,Y) € K[X,Y] with a(z,y) =
A(z,y). Further, a(x,y) is an element of L(D) defined over K. Thus,

a(z,y) = f(z,y)/q(x), i=1,...,u,

where f(X,Y) is a linear combination of b (X,Y),... ,byp)(X,Y) with
coefficients in K. It follows that there are polynomials B;(X,Y),
t=1,...,pu, with coefficients in K such that

FIX,Y) = q(X)A(X,Y) + Bi(X,Y)F(X,Y), i=1,...,l(D).

Let gn(X,Z) and Fp(X,Y,Z) be the homogenizations of ¢(X) and
F(X,Y), respectively. Since F(X,Y) is absolutely irreducible, {F}, g5}
is a regular sequence. So, by [16, Proposition 2], it follows that we can
take

deg A;,deg B; < 5yN3.

Lemma 2.3. Leta; €K, j=1,...,q, s=1,...,p. Suppose that
the homogeneous linear system

aj,1X1+---+aj,po:0, j=1...,q,

has rank r. If the system has a solution xi,...,x,€K with xy # 0,
then there is a solution y1,... ,yp, € K with y, # 0, such that for every
absolute value | - |, of K we have

T
e < max{, 8} (maxflasl}) o i= Lo

Ifajs € Ok, 5 = 1,...,q9, s = 1,...,p, then there is a solution
Y1,---,Yp € O with y, # 0 such that for every absolute value of K
the above inequality holds.

Proof. We may suppose, without loss of generality, that the matrix
M = (a;)1<i,j<r has rank r. Thus, the above system is equivalent to
the system

AXi =Qip1 X1+ +D8ipXy, i=1,..0,7,
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where A =det M and A; j,i=1,...,r,j=r+1,...,p are minors of
order 7 of the matrix (a; ;). Hence, A; ; € K and

T
Auly < max{ 11} (masllassl )
1=1,...,r, j=r+1,...,p.

Furthermore, if a; s € Ok, j=1,...,¢,s=1,...,p, then A; ; € Ok,
1=1,...,7r,5=r+1,...,p.

If 1 <t < r, since there is a solution zi,...,2, with z; # 0, we
obtain that there is s € {r 4+ 1,...,p} such that A;, # 0. Thus, a
solution of the system with the required properties is given by

XS:A, Xj:[], j=r+1,...,p, j7é87
Xi:Ai,sa ’izl,...,T.

If r+1 <t <p, then the required solution is given by
Xt:Av X]:07 j:T+17"'7p7 J;étv
X,':Ai’t, izl,...,T.

Proof of Proposition 2.1. By Lemmata 2.1 and 2.2, there is a
polynomial

P(X,Y,U)=U"+p (X, Y)U* +. . +pu(X,Y),

where p1(X,Y),...,pu(X,Y) € K[X,Y] such that P(z,y,U) is the
irreducible polynomial of u over K (C) and

degp; < 5yN>.

Let § = 5yN®. Consider N distinct points (z;,v;), i = 1,...,0N,
on C with z; € Z and |z;| < §N. Since P(xz;,y;,U) divides G(z;,U),
[4, Proposition B.7.3, page 228] gives

H(]-apl(xivyi)v s 7pu(xiayi)) S eVH(.gO(l‘i)a e 7gu(xi))-
Thus,

H(lvpl(xiayi)a tee aplt(l‘iayi)) S eVH(G)‘xl"Y(’V—’_ 1)) 1= la tee 79N
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Write
pr(X,Y) = E ﬂ'r,k,leYl, r=1,...,u
k+1<0

We set b, ; = pr(2,y;) and consider the homogeneous linear system

> Xpgaafyh = bniZ2=0, r=1,...,p, i=1,...,0N.
k+1<6
A solution is given by X, p; =mr i, r=1,...,4, 0 < k+1 < degp,,
Xegy =0, r=1,...,u, degp, < k+1 < 6N and Z = 1. The
number of equations is uf N and the number of unknowns is at most
p(0+1)0/2+4 1. By Lemma 2.3, there is a solution of the system in K,
Xr ki = prig and Z = ¢ # 0, such that the point R of the projective
space having as coordinates the elements p, ;; and ( satisfies

H(R) < (pfN)\(H(A)H(B))**™,

where A, B are the points in the projective space defined as follows:
the coordinates of A are 1 and the elements :vfyé and the coordinates
of B are 1 and the elements b, ;.

We have
H(A) H(laxla"'7$0N)6H(17y1a"'7y9N)0

<
< (ONH(y1)--- H(yon))",

and using [11, Lemma 7] we obtain

H(A) < Ao (N, ) H(EPTN.
Further, we have

H(B) < As(N, 7, v)H(G)VN".
Therefore,

H(R) < Ay(N, v, v, 1) (H(G)H(F)Swvs)%m N

Write
QX Y) = > (pria/Q)X*Y",

k+1<6
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Then b,; = Qr(z;,y;). Hence the 0N distinct points (z;,y;), 1 =
1,...,0N, of C are zeros of the polynomial ¢(X,Y) = p.(X,Y) —
¢-(X,Y). Since fdegF > (deg¢)(deg F'), Bézout’s theorem implies
that F(X,Y) divides ¢(X,Y) and therefore p,.(z,y) = ¢-(z,y). Thus,
we can take p;(X,Y) = ¢;(X,Y) and if Q is a point of the projective
space having as coordinates 1 and the coefficients of ¢,.(X,Y), then
H(Q) = H(R). The lemma follows. O

3. Polynomials with no common zero. Let ¢ : C — C be an
unramified morphism of affine plane (irreducible) curves defined over
K of degree m > 1. Since the morphism ¢ is finite, the homomorphism
¢* : K[C] — KJ[C], defined by ¢*(f) = ¢ o f for every f € K[C], is
injective and is extended to a field homomorphism ¢* : K(C) — K(C).
We also identify K(C) with its image into K(C). Let z and y be
the coordinate functions on C, and let £ and § be the coordinate
functions on C. Suppose that the curve C is defined by the polynomial
F(X,Y) € K[X,Y]. Let u, = § + pZ, where p € K, and

Py(X,Y,U) = uHe) +Pp1 (X, Y)U”(p)_l ot Do) (X Y)

is a polynomial of K[X,Y,U] such that P,(x,y,U) is the irreducible
polynomial of u, over K(p)(C). We have u(p) < m. We denote by II
the maximum of the degrees of the polynomials p, ;, j = 1,...,u(p),
and by R the degree of P,(x,y,U), considered as a polynomial in p.

Lemma 3.1. Let D,(X,Y) be the discriminant of P,(X,Y,U),
considered as a polynomial with coefficients in K[X,Y]. Letr € K
such that D,.(X,Y) is not a constant. Then there is a set A C K with
|A] < (2m — 1)R((2m — 1)NIIL + 1) such that for every t € K \ A,
with t #r, Di(X,Y) is not a constant and the polynomials D,(X,Y),
Dy(X,Y) and F(X,Y) have no common zero.

Proof. Let V, be the set defined by the equations
D,(X,Y)=F(X,Y)=0.

Since the polynomial P,(z,y,U) is irreducible, it follows that F'(X,Y")
does not divide D,(X,Y) and so the set V, is finite. ~We have
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deg D,(X,Y) < (2m — 1)II, and so Bézout’s theorem implies that
|V,| < (2m —1)NIIL

Suppose that V, is not empty, and let (o, j,0Br;), 7 = 1,...,s(r),
be all its points. Then, for every j = 1,...,s(r), there are m
distinct points (a, i, brji), i = 1,... ,m, of C with ¢(a, i, brji) =
(ar,jaﬁr,j) and Cr,j € Z such that ar,j,k(r,j + br,j,k 7é ar,j,l(r,j + br,j,la
for k& # 1. Hence, P, ;(arj,Br;,U) has exactly m distinct roots and
so De, .(arj,Brj) # 0. It follows that the degree in p of D,(a.j, By ;)
is > 1 and so we obtain that D,(z,y) is not independent from p.

If D,(z,y) is independent from z and y, then there is an e € K
such that D.(z,y) = 0 and hence P.(z,y,U) divides its derivative with
respect to U which is a contradiction. So D,(z,y) is not independent
from x and y.

The degree in p of D,(z,y) is < (2m — 1)R. So, for every
j = 1,...,s(r), there are at most (2m — 1)R integers p with
D,(ay j,Br;) = 0. Also, there are at most (2m — 1)R integers p such
that D,(z,y) is independent from z and y.

Thus, there is a set A C K with |A] < (2m —1)R((2m — 1)NII + 1)
such that for every t € K \ A with ¢ # r we have D(a, ;,08,,;) # 0,

j=1,...,s(r)), and Di(X,Y) is not a constant. So, the polynomials
D,.(X,Y), Di(X,Y) and F(X,Y) have no common zero. o

Lemma 3.2. Let F;, j = 1,2,3, be polynomials in Ox[X1,Xo],
with degF; = d; and dy > dy > d3 > 1, having no common
zero in K°. We denote by ® a point in the projective space having
as coordinates the coefficients of Fj, in any order, and we set § =
max{dids,dy +ds+d3z —2}. Then there are polynomials A;, j =1,2,3,
in Ok [X1,X2] and c € Ok \ {0} such that

A1F1 + A2F2 + A3F3 = C.

Furthermore, deg A;F; < 6 and for every Archimedean absolute value
|'|o of K we have

|4jlo, lclo < ((§+2)(8+1)/2)1 [@FFDCO+D/2,
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Proof. By [16, Corollary 3], there are polynomials A; of K[X;, X5],
Jj=1,2,3, with deg A; = e;, such that
A1F1 + A2F2 + A3F3 =1

and deg A;F; < 4. We set

Fi= > finaXi'X2, j=1,2,3,

i1+’i2gdj
and
_ 11 yi2 S
Aj - E : aj7i17i2X1 X2 , J=12,3.
i1+i2§ej
Hence,

3

Z <Z Z fjvklvkzaj,pl,p2>X1legs2=1.

s1+s2<6 N j=1 kj+pj=s;

Thus, the numbers a;p, p,, and 1 is a solution of the homogeneous
linear system

3
E fj7k17k,2Xj7p17p2 =0 S1 + S2 :].,... ,5,
J=1 kj+pj=s;

3
Z fi0,0Xj00— 2 =0.
i=1

The number of the equations of the above system is at most equal to
(0 +2)(6+1)/2. Lemma 2.3 implies that there is a nontrivial solution
bjpi,p. and ¢ in Og with ¢ # 0 such that for every Archimedean
absolute |-, of K we have

1Bjpr iz o elo < ((6+2)(8+1)/2)1 |@|PFO+D/2,

where ® is a point in the projective space having as coordinates the
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coefficients of Fj;, in any order. Furthermore, the polynomials

Bj = Z bj,iuizXle;Zv J=12,3,

i1+i2<e;
satisfy the equality

BlFl + BQFZ + B3F3 = C.

4. Some auxiliary lemmata. In this section we give some lemmata
useful for the proof of Theorem 1.1.

Lemma 4.1. Let a € K. Then there is an integer § > 0 with
0 < Hk(a) such that éa € Ok.

Proof. Put e = [Q(a) : Q]. Then a is a root of an irreducible
polynomial P(X) = ¢yX® 4 --- + ¢, with integer pairwise prime
coefficients and ¢y > 0. So, cpa is an algebraic integer. By [7, page 54],
we have

Hqa)(a) = co Hmax{l, lai|},
i=1
where a1, ... , a4 are the distinct conjugates of a. Thus, ¢yp < Hi(a). O

The next lemma deals with the resultant of two polynomials. For a
formal definition of the resultant, see [8, Chapter V, Section 10].

Lemma 4.2. Let P and S be polynomials of Ox[X1,... ,Xn] \ K,
and let R be its resultant with respect to X,,. Put p; = deg x,P and
s; = degx,S,i=1,...,n. Suppose that R # 0. Then degx,R <
SnPi + Pnsi, t=1,... ,n—1, and

H(R) < (pn + Sn)!<ﬁ(pi + 1)> " (nnl(si + 1)>an(p)an(5)pn.

i=1 i=1

If R, P and S are points in the projective space having as coordinates
1 and the coefficients of R, P and S, respectively, then the above
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inequality holds with the quantities R, P and S in the places of
P and S, respectively.

Proof. Write

’ n

P = Ho(Xl, - ,Xn_l)Xgn + e+ Hpn(Xla ..

Xn-1)
S:EO(Xl,... 7Xn—1)XZn+"'+Esn(X17-- X

. - )
L] n—1)7
where Hl(Xl, ,Xn_l), 1= 0, s Pnsy and Zj(Xl,... aXn—l); ]
0,...,8,, are polynomials with coefficients in K. The resultant
is a homogeneous polynomial with integer coefficients of degree s,
I;(X1,...,Xn_1) and of degree p, in ¥;(X1,...,Xp_1). Let | -],

an absolute value of K. If | - |, is not Archimedean, then
Ry < |P"[S[5"

Now, suppose that | - |, is Archimedean. If M(Xy,...,X,-1)
a monomial of degree s, in II;(Xi,...,X,_1) and of degree p,
Ej(Xl, e ,anl), then

M), < ([[@ o) (1_1( +uisl.)
Thus,
[R], < (pn + sn)!<:if[11(pi + l)Pv>Sn <ﬁ(si + 1)|sv>p".

Hence, we have the inequalities

1) < o+ (Tl ) " (Tl e ) " meryemesy

i=1

and

R,

R
in
be

is
in
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Furthermore, from the definition of the resultant, we obtain that
degXiR < Supitpnsi,t=1,...,n—1.

Lemma 4.3. Let L be a finite extension of K of degree u and R the
set of prime ideals of Ok which are ramified in L. Then

Nk (Dp/k) < H Ni (p)"~ 'exp(2p°d).
peER

Proof. For every prime p and every prime ideal p of Ok dividing p
we denote by e, and f, the ramification index and the residual class
degree of g, respectively. Furthermore, if P is a prime ideal of Op,
dividing p, then we denote by e(P/p) and by f(P/p) the ramification
index and the residual class degree of P over g, respectively. Finally,
let ordp be the discrete valuation of L associated to P and ord, the
discrete valuation of Q associated to p.

By [9, Proposition 6.3], we get
Dk = H e,
peER

where

ap < Y (e(P/p) = 1+ ordp(e(P/)))f (P/p)-

Plp

If p > p, then ordp(e(P/p)) = 0 and hence a, < p—1. Suppose that
p < p. We have

Y ordp(e(P/p)f(P/p) = ey ) e(P/p)f(P/p)ordy(e(P/p))

Plp Plp
= (ey/logp) Y _e(P/p)f(P/p)loge(P/p)
Plp
< (ep/logp)plog .
Thus,

HNK(p)ZP\@Ordp(e(P/p))f(P/p) < p(ulogu/logp) Do foee

elp
= exp(dp log ).
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Hence, we obtain

Ni(Dpyi) < [] Nx(0)* exp(r(u) dplog ),
peER

where 7(u) is the number of primes < p. Since m(u) < 2u/log p, the
result follows.

Lemma 4.4. Let g;(X,Y), j =1,...,k, be polynomials of K[X,Y]
of degree < M and p,q,r,s,t,u € K. We set

G;(U,V)=g;pU+qV +7,sU+tV +u), j=1,...,k,

and we denote by I' and v the two points in the projective space having
as coordinates the coefficients of G;(X,Y) and g;(X,Y), respectively.
Then

H(D) < 2MO+29) (M 1)H(1,p,q,s, )M H(1, 7, u) H(v),

where e = 1 if (r,u) # (0,0) and e = 0 otherwise.

Proof. Put b;(X,Y) = g;(X +r,Y +u). By [4, Proposition B.7.4(e),
page 234], for every absolute value ||, of K, we have

[bilo < max{1,[2|,}** max{1,[r|,, [ulo}" |gilo-

Write
bi(X,Y) = Z a; j XY,
i+j<M

Since G;(U,V) = b;(pU + qV, sU 4 tV), we have

Gi(U, V) = Z g, (pU + qV)i(sU + tV)j
i+i<M

% J . i
_ o ? J
- > w3 (2)(2)
i+j<M =0 p=0
x p™ i=T G ppi =P TPy I TP
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The coefficient of USVT is

i J . .
cs,T = Z a; j i Z <7ZT> <‘;> p‘rrqz'f'/rspt]'*f’_

i+j=S+T =0 p=0

If | - |, is an Archimedean absolute value of K, then

|CS,T|v S Z ‘ai,j|v max{l, |p|v7 ‘Q|va |S|v7 ‘t|v}i+j

S(50)

< 257003 o (S + T + 1) max{L, |plo,|alo, [s]o, [t}

If | - |, is a non Archimedean absolute value of K, then |cs 1|y < |bilo.
Thus, for every absolute value | - |, of K we have

G|, < max{1, 2|, }M3+2¢0) max {1, |M + 1|, }
x max{1, |plv, [qlv, |8]os |t|v}M max{l, |r],, |u|v}M|gi|v'

The result follows.

Lemma 4.5. Let F(X,Y) and ¢(X,Y) be two polynomials of
K[X,Y]\ K with degFF = N > 2 and deg¢ = M. Then for every
p € K the polynomial E,(X,U,V) = F(X,¢(U — pV,V)) satisfies

H(E,) < (2(M + 1))MN 2N N2H (p) MV H(F)H(2)",

where ® is a point of the projective space having as coordinates 1 and
the coefficients of $(X,Y).

Proof. Let ¢,(U, V) = ¢(U — pV,V)). By [4, Lemma B.7.4, page
233], for every absolute value | - |, of K we have

< |2N? J
‘EP|U < 2NZ|o|Fy OgaéXN{Wp‘v}

and

@31y < max{1,[2M |30V }M|g, 5.
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Furthermore, the proof of the previous lemma gives

|6plv < max{1, |pl,}* max{1, |2, }* max{1, |M + 1],}[¢l..

Combining the above inequalities, the result follows.

5. Proof of Theorem 1.1. Since the morphism ¢ is finite, the
homomorphism ¢* : K[C] — K[C], defined by ¢*(f) = ¢ o f for every
f € K|[C], is injective and so the ring K[C] is an extension of ¢*(K[C]).
Let z and y be the coordinate functions on C and Z, g the coordinate
functions on C. Then ¢*(z) = ¢1(%,7) and ¢*(y) = ¢2(%,7) and
for every integer p the function u, = y + pz is an integral element
over ¢*(K|[C]). Furthermore, the morphism ¢* is extended to a field

homomorphism ¢* : K(C) — K(C).

Consider the polynomials
E(W,X,U,Y) = F(X,¢5(U~WY,Y)), Fy(W,U,Y) = F(U-WY,Y).

We have
E(pa ([51(3_3, g)a Up, ?j) = Fl(pa Up, ?j) =0.

Let G(W, X, U) be the resultant of E(W, X,U,Y) and F(W,U,Y) with
respect to Y. Then G(p, ¢1(2,y),u,) = 0. Suppose that G(W, X,U)
is zero. Then F1(X,Y1) divides F(X, ¢2(X1,Y1)). If F(X,Y) =
Ag(Y)X™+- -4 Ap(Y), then Fi(X1,Y1) divides Aj(¢2(X1,Y1)), j =
0,...,m, and so for (z1,y1) € C we have A;(¢2(z1,y1)) = 0. Hence,
the polynomials A;(Y), j = 0,... ,m, have a common factor which is
a contradiction. Therefore, G(W, X,U) is not zero. By Lemma 4.2,
deg xG < NN, degyG < 2NMN, and deg wG < 2NMN.

Let G,(X,U) = G(p,X,U), E,(X,U)Y) = E(p,X,U,Y) and
F,(U,Y)=Fi(p,U,Y). Then Lemma 4.2 implies

H(G,) < As(M,N,N)H(E,)NH(F,)"™.
Using Lemmata 4.4 and 4.5, we obtain

H(F,) <2V (N +1)(max{1, |o[) Y H(F)
and

H(E,) < (2(M + 1)) 2V N2 (max{1, |p|})" " H (F)H (®)",
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where @ is a point of the projective space having as coordinates 1 and
the coefficients of ¢;(X,Y), i = 1,2. Therefore,

H(G,) < A¢(p, M, N,N)H(F)NH(®)NN H(F)MN,

Next, we identify K (C) with its image ¢*(K(C)). It follows that
Klz,y] is identified with K[¢1(Z,7), ¢2(Z,7)]. Let I(T) = T° +
biT°~! + -+ + by, where b; € K[C], j = 1,...,s, the minimal
polynomial of u, over K(C’) For every o € Gal(K/K) we set
I°(T) =T° +o(b1)T* * + -+ o(bs). Since the function u, is defined
over K, we have I (u,) =0 for every o € Gal (K/K). Thus, o(b;) = bj,
for every o € Gal(K/K) and hence b; € K[C]. Therefore u, is
integral over K[C] and [K(C)(u,) : K(C)] = [K(C)(up) : K(C)] By
Proposition 2.1 and the bound for the quantity H(G,), we obtain that
there is a polynomial

PP(X,K U) = Urp) +pp,1(X, y)Uu(p)—l ot Do) (X,Y)
of K[X,Y,U] with u(p) = [K(C)(u,) : K(C)] < m, and
H(P,) < A+(N, N, M, m, p) (H(F)*"N° H ()N g (F)M)2»mN N

such that P,(z,y,U) is the irreducible polynomial of u, over K(C).
Moreover, we have degp,; < 5NN* i=1,...,pu.

Let P = (a,b) be a point in C(Og) and Q € ¢~(P). We consider
the K(C)-embeddings o1, ... , 0y, of K(C) into an algebraic closure of
K(C). We denote by I the set of integers p with o;(u,) # o;(u,) for
i # j. Note that at most m(m —1)/2 integers do not lie in I'. It follows
that for every p € I' we have K(C) = K(C)(u,) and hence for every
p € I we have m = p(p). Further, we similarly deduce that there are at
most m(m — 1)/2 integers p € T' such that K(u,(Q)) # K(Q). Hence,
there is r € I' with |r| < m?/2, such that K (u,(Q)) = K(Q).

Since P,(z,y,U) divides G,(z,U) and deg wG < 2M NN, we deduce
that the degree of P,(z,y,U), considered as polynomial in p, is <
2MNN. Thus, the degree in p of D,(z,y) is < 2(2m — 1)MNN.

Suppose that the polynomials D,(X,Y) and F(X,Y) have common
zeros. Thus, Lemma 3.1 implies that there is a t € K with || <
21m2MNSN” such that D;(X,Y) is not a constant, the polynomials
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F(X,Y), D.(X,Y), D:(X,Y) have no common zero, and we have
K(ur(Q)) = K(Q) = K (u(Q))-

Let D, be a point of the projective space having as coordinates 1
and the coefficients of D,. By Lemma 4.2, we have

H(Dp,l) < m3m_1(6NN4)4m_2H(Pp)2m—1‘

We may suppose that one of the coefficients of F/(X,Y) is equal to 1.
By Lemma 4.1, there are positive integers a, and b with

a, < Hg(P,)®™ N and b < Hg(F)?
such that the polynomials a,P,(X,Y,U) and bF(X,Y) have all coef-
ficients in Og. Then the polynomial a2™ 2D,(X,Y) is in Og[X,Y].
Since F(X,Y), D,(X,Y) and D;(X,Y) have no common zero, Lemma
3.2 implies that there are polynomials A;, j =1,2,3, of Og[X,Y] and
¢ € Ok, ¢ # 0, such that
A1a®™ D, + Apa?™ D, + A3bF = c.
Further, for every Archimedean absolute value |-/, of K we have

lclo < (84 1)(6 + 2)/2)! | (F+1(E+2)/2

where § = (2m — 1)5N°N and ¥ is a point of the projective space with
coordinates 1 and the coefficients of a?™~'D,(X,Y), a?™ ' D,(X,Y),
and bF(X,Y). Thus,

Nk ()] < (100m2N° N (arar) ™ 0 H (D, ) H(Dy 1 ) H (F))1004m* N N*

Using the bounds for all the quantities involved in this estimate, we
obtain

INk(e)] < As(N, N, M,m,d) (H(F)*NN" H(@)N H(F)M)Am NN
where A is a computable numerical constant. Since D,(X,Y) and
D¢(X,Y) have no common zero on C, it follows that either D,.(a,b) # 0
or Dy(a,b) # 0. On the other hand, we have

A1 (a,b)a®™ D, (a,b) + Az(a,b)a?™ 1 Dy(a,b) = c.
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Let o be a prime ideal that does not divide ¢, Ok, the local ring
at p and = pOk,,. We put L = K(Q) and v = [L : K|. We
have L = K (u,(Q)) = K(u:(Q)). We denote by D,, the discriminant
of the integral closure of Ok, in L over Ok, . Since p does not
divide ¢, it follows that ¢ does not divide at least one of the elements
a?™ D, (a,b) and a;™ " D;(a,b) (in Og,,). We suppose that & does
not divide a?™~1D,.(a,b). Then ¢ does not divide the algebraic integers
a, and a?™ 2D, (a,b). Thus, the coefficients of a,P.(X,Y,U) lie in
Ok and the coeflicient of the highest power of U, a,, is a unit in Ok .
Therefore, u, (Q) is an integral element over Ok, and hence D,, divides
the discriminant D(1,u,.(Q),... ,u.(Q)" ) of 1,u,.(Q),...,u.(Q)" !
in Ok, Further, D(1,u.(Q),...,u,(Q)" ') divides D,(a,b). Thus,
D,, divides D,(a,b) in Ok . Since @ does not divide D, (a,b), in Ok g,
it follows that @ does not divide D, and hence g is not ramified in L.
Using Lemma 4.3, we deduce

Nk (Dry) < [[ Nk (9)™ 'exp(2m*d)

ple

< AQ(N, N, M, m, d) (H(F)GNN:}H((I))FH(F)M))\d2Tn6ﬁ6N29‘
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