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CURVATURE PROPERTIES OF
THE CHERN CONNECTION OF TWISTOR SPACES

JOHANN DAVIDOV, GUEO GRANTCHAROV AND OLEG MUSKAROV

ABSTRACT. The twistor space Z of an oriented Rieman-
nian 4-manifold M admits a natural 1-parameter family of
Riemannian metrics h; compatible with the almost complex
structures Ji1 and J2 introduced, respectively, by Atiyah,
Hitchin and Singer, and Eells and Salamon. In this paper we
compute the first Chern form of the almost Hermitian mani-
fold (Z, ht, Jn), n = 1,2 and find the geometric conditions on
M under which the curvature of its Chern connection D™ is
of type (1,1). We also describe the twistor spaces of constant
holomorphic sectional curvature with respect to D™ and show
that the Nijenhuis tensor of Jz is D2-parallel provided the
base manifold M is Einstein and self-dual.

1. Introduction. It is well known [14, 17| that every almost
Hermitian manifold admits a unique connection for which the almost
complex structure and the metric are parallel and the (1,1)-part of the
torsion vanishes. It is usually called the Chern connection because, in
the integrable case, it coincides with the Chern connection [7] of the
tangent bundle considered as a Hermitian holomorphic bundle. This
connection plays an important role in (almost) complex geometry since,
by the Chern-Weil theory, the Chern classes of the manifold are directly
related to its curvature.

Motivated by the recent works of Donaldson [11] and LeBrun [16],
Apostolov and Dragichi [2] proposed to study the problem of existence
of almost-Kahler structures of constant Hermitian scalar curvature
and/or type (1,1) Ricci form of its Chern connection (from now on, we
refer to it as the first Chern form). Our main purpose here is to show
that the twistor spaces of self-dual Einstein 4-manifolds of negative
scalar curvature admit such almost-K&hler structures.
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Recall that the twistor space of an oriented Riemannian 4-manifold M
is the 2-sphere bundle Z on M consisting of the unit (—1)-eigenvectors
of the Hodge star operator acting on A2I’M. The 6-manifold Z admits
a natural 1-parameter family of Riemannian metrics h; such that the
natural projection 7 : Z — M is a Riemannian submersion with totally
geodesic fibres. These metrics are compatible with the almost-complex
structures J; and Jz on Z introduced, respectively, by Atiyah, Hitchin
and Singer [3] and Eells and Salamon [12].

In Section 3, we show that the first Chern form of the almost
Hermitian manifold (Z,hy,J2) always vanishes, which generalizes a
result of Eells and Salamon [12] stating that the almost-complex
structure J; has vanishing first Chern class. We obtain also an explicit
formula for the first Chern form of (£, hy, J1) in terms of the curvature
of the base manifold M. In the case when M is self-dual, the latter
formula has been actually given by Gauduchon [13].

In Section 4, we obtain the precise geometric conditions on M
ensuring that the curvature of the Chern connection D" of (Z, hy, J,,),
n = 1,2, is of type (1,1). Note that, in many cases, this property of
the curvature simplifies the computation of the Chern numbers, cf. e.g.,
[15]. We also study the problem when the connection D™, n = 1,2, has
a constant holomorphic sectional curvature. The motivation behind
this is the open question whether there are examples of non Kahler
Hermitian manifolds whose Chern connection is of nonzero constant
holomorphic sectional curvature, cf. [4, 5]. Proposition 3 shows that
there are no twistorial examples of such manifolds.

In the last section, we prove that the Nijenhuis tensor of the almost-
complex structure .J, is D?-parallel, provided that the base manifold M
is Einstein and self-dual. Since in (real) dimension six, the Nijenhuis
tensor can be identified via the metric with a section of the canonical
bundle, the result strengthens the fact that ¢;(Z,J2) = 0. If, in
addition, M is of negative scalar curvature s, then the twistor space
(Z, ht, J2), t = —(12) /s, is an almost- Kahler manifold with vanishing
first Chern form, the curvature of its Chern connection is of type
(1,1) and the Nijenhuis tensor of J is parallel with respect to it.
Finally, we note that the analogous statements for the twistor spaces
of quaternionic-Kahler manifolds are also valid.
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2. Preliminaries. Let M be a (connected) oriented Riemannian 4-
manifold with metric g. Then ¢ induces a metric on the bundle A2T M
of 2-vectors by the formula

1
g( X1 N Xy, X3 N Xy) = §[g(X1,X3)g(X2,X4) —9(X1,X4)9(X2, X3)].

The Riemannian connection of M determines a connection on the vec-
tor bundle A2T'M (both denoted by V), and the respective curvatures
are related by

R(X,Y)(ZAT)=R(X,Y)ZAT + X AR(Y, Z)T

for X,Y,Z, T € X(M); X(M) stands for the Lie algebra of smooth
vector fields on M. (For the curvature tensor R, we adopt the following
definition R(X,Y) = V[xy] — [Vx, Vy]). The curvature operator R
is the self-adjoint endomorphism of A2T'M defined by

gR(XANY),ZANT)=g(R(X,Y)Z,T)

for all X,Y,Z, T € x(M). The Hodge star operator defines an endo-
morphism * of A2T'M with %2 = Id. Hence,

A*TM = A2TM & A TM,

where A2T M are the subbundles of A2T'M corresponding to the (£1)-
eigenvectors of x. Let (E, Eq, E3, E4) be a local oriented orthonormal
frame of TM. Set

81:E1/\E2—E3/\E4 §1:E1/\E2+E3/\E4
(1) 82:E1/\E3—E4/\E2 §2:E1/\E3+E4/\E2
53:E1/\E47E2/\E3 §3ZE1/\E4+E2/\E3.

Then (s1, s2, s3), respectively (31, §2,353), is a local oriented orthonor-
mal frame of A2TM, respectively A?,_TM. The matrix of R with re-
spect to the frame (5;, s;) of A2T'M has the form

A B
Re | o]
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where the 3 x 3-matrices A and C are symmetric and have equal traces.
Let B, W, and W_ be the endomorphisms of A27’M with matrices:

2= [ 2w [ o= [8 2]

where s is the scalar curvature and I is the unit 3 x 3-matrix. Then

R:%Id+B+W++W_

is the irreducible decomposition of R under the action of SO(4) found
by Singer and Thorpe [20]. Note that B and W = W, +W_ represent
the traceless Ricci tensor and the Weyl conformal tensor, respectively.
The manifold M is called self-dual (anti-self-dual) if W_ =0 (W4 = 0).
It is Einstein exactly when B = 0.

The twistor space of M is the subbundle Z of A2TM consisting of
all unit vectors. The Riemannian connection V of M gives rise to
a splitting TZ = H & V of the tangent bundle of Z into horizontal
and vertical components. More precisely, let 7 : A2TM — M be
the natural projection. By definition, the vertical space at o € Z
is V, = Kermy, (I,Z is always considered to be a subspace of
T,(A2TM)). Note that V, consists of those vectors of T,Z which
are tangent to the fiber Z, = 7=*(p) N Z, p = 7(0), of Z through the
point o. Since Z, is the unit sphere in the vector space A2T,M, V, is
the orthogonal complement of o in A2T,M. Let £ be a local section
of Z such that £(p) = o. Since £ has a constant length, Vx¢& € V, for
all X € T,M. Given X € T,M, the vector Xt =¢6,X -VxteT,Z
depends only on p and o. By definition, the horizontal space at o
is H, = {X! : X € T,M}. Note that the map X — X! is an
isomorphism between T, M and #, with inverse map 7, | H,.

Let (U,z1,22,%3,24) be a local coordinate system of M, and let
(E1, E2, E3, E4) be an oriented orthonormal frame of TM on U. If
(s1, 82, 83) is the local frame of A2 T M, defined by (1), then #; = z; o,
yj(o) = g(o,(sjom)(0)), 1 <i<4,1<j <3, are local coordinates of
A2TM on n~1(U). For each vector field

i 0
X:;Xlaxi
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on U, the horizontal lift X" of X on 7 1(U) is given by

4 3
, 0
2 Xt =3 (X —— Y y;9(Vxsj, Sy
) i:l( Oﬂ-)ami jvk:lng( X Sk)owayk

Let 0 € Z and n(0) = p. Using (2) and the standard identification
T,(A2T,M) = A2 T, M, one gets that

(3) (X" Y e — [X,Y]; = Ry(X AY)o

for all X,Y € x(U).
Each point o € Z defines a complex structure K, on T, M by

(4) (K, X,Y)=2g(0, X \Y), X,Y €T,M.

Note that K, is compatible with the metric g and the opposite orien-
tation of M at p. The 2-vector 20 is dual to the fundamental 2-form
of K,.

Denote by x the usual vector product in the oriented 3-dimensional
vector space A2T,M, p € M. Then it is easily checked that

(5) g(R(a)bv C) = _g(R(a)ab X C))
for a € A>°T,M, b,c € A2T,M and
6) gloxV,X ANK,Y)=g(ox V,K,XA\Y) = —g(V, X AY)

for Ve V,, X,Y € T,M.

It is also easy to check that, for any o, 7 € Z with 7(o) = 7(7), we
have

(7) K,oK; =—g(o,7)Id — Kyx-.

Following [3] and [12], define two almost-complex structures J; and
Jo on Z by

JnV=(-1)"cxVior Ve,
J XM = (K, X)" for X € T,M,p = 7(0).
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It is well-known [3] that J; is integrable, i.e., comes from a complex
structure, if and only if M is self-dual. Unlike J;, the almost-complex
structure J3 is never integrable [12].

Let h; be the Riemannian metric on Z given by
he =g + g,

where t > 0, g is the metric of M and ¢" is the restriction of the metric
of A2TM to the vertical distribution V. Then 7 : (Z,h;) — (M, g) is
a Riemannian submersion with totally geodesic fibers, and the almost-
complex structures J; and J, are compatible with the metrics h;.
Denote by D (= D;) the Levi-Civita connection of (Z,h:). Let ¢
be a point of Z, X,Y vector fields on M near the point 7(c) and A a
vertical vector field near o. It is not hard to see, cf. e.g., [8], that

[y

(8) (DxY")y = (VxY)h + SR(X AY)o

(9) (DaX")y = H(DxnA)y = %(R(a x )X,

3. The first Chern forms of twistor spaces. Given an almost-
Hermitian manifold (N, g, J), denote by V the Levi-Civita connection
of g. Then the Chern connection V of (N, g, J) is defined by, cf. e.g.,
[15, Theorem 6.1]:

- 1
9(VxY,2) = g(VxY, Z) + 59((Vx J)(JY), Z)

(10) + 100V 2)IY) — (Vv I)(J2)

= (VizJ)Y) + (VayJ)(Z), X).

It is one of the distinguished 1-parameter family of Hermitian con-
nections defined by Gauduchon [14]:

9(V4Y, 2) = 9(VxY, 2) + Lo((VxI)(IY), 2)
(1D +39(V2)(TY) ~ (V¥ J)(J2)
= (Vuz)(Y) + (Vuy J)(2), X).
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The Chern connection corresponds to v = 1. Let Q(X,Y) =
9(JX,Y) be the Kahler form of (N,g,J) and 6Q the codifferential
of Q with respect to V. Denote by ¢ and v the 2-forms on N defined
by

(12) ¢(X,Y) = Trace (Z — g(VxJ)(J2), (V¥ J)(2))),
(13) w(va) :p*(Xa JY):

where p* is the #-Ricci tensor of (N, g, J). Recall that p* is given by
p*(X,Y) = Trace (Z — R(JZ, X)JY),

where R is the curvature tensor of V.

Lemma 1. The first Chern form ~" of the connection V" on an
almost Hermitian manifold (N, g,J) is given by

8y = —p — 49p + 2u diSQ.

Proof. Denote by V the connection on N defined by
~ 1
VxY =VxY + E(VXJ)(JY), X,Y € x(N).

Note that Vg = 0 and VJ = 0. Let S be the (1,2)-tensor field on N
defined by
(14)

9(8(X,Y),Z) = %g((VzJ)(JY) = (Vv J)(J2) = (VszJ)(Y)
+ (VJYJ)(Z)v X)

Then _ R
Y =VxY +uS(X,Y).

Below we consider only the case u = 1 since the general case follows in
the same way. It is easy to check that S has the following properties:

(15) g(S(X,Y),Z)Z—g(S(X,Z),Y),
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(16) S(X,JY) = JS(X,Y),

(17)  S(X,JX) = -S(JX,X) = ~((VxJ)(X) + (VyxJ)(JX)),

N

(18) 9((VyS)(JX,JX),X) =0.

A straightforward computation shows that the curvature tensors R, R
and R of V, V and V are related by

(19)

AR(X,Y,Z,W) = 2R(X,Y, Z,W) + 2R(X,Y, JZ, JW)
+9((VxJ)(2), (VyJ)(W))
—9((VxJ)(W),(VyJ)(Z)),

(20)

R(X,Y,Z,W) = R(X,Y,Z,W) — g(VxS)(Y, Z), W)
+9((VyS)(X, Z),W) + g(S(X, W), 8(Y, Z))
- Q(S(K W),S(X, Z)) - g(S(T(X,Y),Z),W),

where T is the torsion of V.

Now fix a point p € N, and choose an orthonormal frame E1, ... , En,
JEs,...,JE, near p such that VE; |,= 0, i = 1,... ,n. Then, using
(15), (16) and (20), one gets:

2n
4my(X,Y) = > R(X,Y, Ex, JEy)

=Y [R(X,Y, Ey, JEy)

+9(S([X,Y,], Ex), J Ex)],

at the point p.
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Formula (19) together with the first Bianchi identity gives:

2n

~ 1
> R(X,Y, Ey, JE) = —2(X,Y) — S9(X.Y).
k=1

Moreover, by (14), one has:

2n

ZQ(S(Xa Ek)aJEk) = _5Q(X)a

k=1

and the lemma follows from the above identities.

Now let M be an oriented Riemannian 4-manifold with twistor space
Z. Let D(= D;) be the Levi-Civita connection of (Z, ;). Denote by
D™ (= D7) the Chern connection of the almost-Hermitian manifold (Z,
hey, Jn), n = 1,2, and by 7, its first Chern form. In the case when
the base manifold M is self-dual an explicit formula for the first Chern
form of D! has been given by Gauduchon [13]. Here we compute the
first Chern forms v¢,, n = 1,2, of the twistor space of an arbitrary
oriented 4-manifold M. To do this, we shall use the following formulas
for the covariant derivative of the almost-complex structure J, with
respect to the Levi-Civita connection D ([18]):

Lemma 2. Foranyo € Z, A€V, and X,Y € T,M, p =n(0), one
has

he((Dxndn)(Y"), 4)

= 21(-1)"g(R(4), X AY) ~ g(R(o x A), X AK,Y)]

he(DalJn)(X"),Y")
_ %g('R(a X A), X NK,Y + K, X AY) + 29(A, X A Y),

where K, is the complex structure on T,M defined via (4). Moreover,

hi(DgJn)(F), G) =0,
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whenever E,F,G are horizontal vectors or at least two of them are
vertical vectors.

We shall also need the following formula for the *-Ricci tensor pj ,, of
(2, by, Jn) [10]:

Lemma 3. Let E,F € T,Z and X = m,E, Y = mn,F, A = VE,
B =VF. Then

pin(B, )
= [1+ (- )" g(R(0), X A K,Y) — L g(R(X A K,Y)o, R(o)o)

+ Lvace (Z = g(R(X A 2)0, R(K,Z N K,Y)o)

4
+ 3 (1) Trace (V, 3 € g(R(C)X, Rlo x O)K,Y)
+ 5 (-1"9((VxR)(0), B) + 19((Vic,yR)(0), 0 x 4)

+[1+ (=)™ tg(R(0), 0)lg(4, B)

+ (—1)”+1§Trace (Z — g(R(c x A)K,Z,R(B)Z)).

Now we are ready to prove the following

Proposition 1. The first Chern form v, of the twistor space
(Z,hy, Jn), n = 1,2, is given by

2% (E, F) = [1+ (=1)""[g(R(0), X NY) + g(A,0 x B)],

where E,F € T,Z and X =, E,Y =n.F, A=VE, B=VF.

Proof. Denote by ¢; ,, and 1, the 2-forms on Z defined by (12) and
(13), respectively. Let €, ,, be the Kahler form of (Z, hy, Jp,), n = 1,2.
By Lemma 1, we have

87T’Yt,n = —Pt;n — 4:’(/),57” + 2d59t,n
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Let U be an h;-unit vertical vector at o. Then, using Lemma 2, (5)
and (6), one gets:

oin(E,F) =tTrace (Z — g(R(X N Z)o, R(K,Z NY)0o))
+ (=1)"" ¢ Trace (V, > C — g(R(C)X, R(o x C)Y))
+ t*Trace (Z — g(R(0 x A)K,Z,R(c x B)Z))
—2tg(R(o x A), B) + 2tg(R(o x B), A)
+4g(oc x A, B).

Since Y1 n(E, F) = pf ,(E, JoF), it follows from Lemma 3 that

4y (B, F) = 2[1 + (=1)""[g(R(0), X AY) + g(A, 0 x B)]
+t[g(R(o x A),B) — g(R(c x B), A)
+29(R(0),0)9(A,0 x B)
(21) —9((VxR)(o),0 x B)
+9((VyR)(o),0 x A)
—9(R(X AY)a, R(0)o)]
+déQy (B, F).

It is easy to check by means of Lemma 2 and the identity (5) that the
1-form w = —1/t6Qy , is given by w(E) = g(VE,R(0)o) for E € T, Z.
Next we shall compute the differential of the form w. Since ¢ — R(0)o
is a vertical vector field on Z, one has by (3):

(dw)e (X", Y") = —wo ([X",Y"]) = —g(R(X AY)o, R(0)0);

(22) X,Y € x(M).

Now let s be a local section of Z such that s(p) = o and Vs |,= 0. If B
is a vertical vector field on Z and X is a vector field on M, it follows
easily from (2) that

(X" Bl, =Vx,(Bos),
where B o s is considered as a section of A2 TM. Then

(dw)o (X", B) = 5.(Xp)(w(B)) — wo ([X", B))
= Xp(9(Bos, R(s)s)) — g(Vx, (B os), R(0)o)



38 J. DAVIDOV, G. GRANTCHAROV AND O. MUSKAROV

and, using (5), one gets:
(23) (dw), (X", B) = —g((Vx,R)(0),0 x By).
Finally, we will show that

(dw)o (4, B) = g(R(o x A), B) — g(R(o x B), A)

(24) +29(R(0),0)9(A,0 x B)

for any vertical vectors A and B at o.

Let (s1,s2,53) be a local frame of A27TM defined by (1) such that
si1(p) = o, and let y;(7) = g(r, (sjom) (7)), 7 € A2TM, 1 < j < 3. Set

0
TR
Then 9 9 9
JU = — — —(1—-y3)—
1 Y1Y3 o0 + Y2ys3 E ( y3) Dy

and (U, J1U) is a local frame of the vertical bundle V near the point
o such that [U, J1U], = 0. It is enough to check (24) for A = U, and
B = J,U,. Using (5), one gets:

w(U) = Z Yi[v1939(R(s5), 1) o m + y2u39(R(s;5), 82) o 7

— (1 —y3)9(R(s;),s3) o 7]

w(hU) = Z Yjlv29(R(s;), s1) o ™ — y19(R(s;), 52) © 7.

Then

(@010 = () @h)+ (5 @)

Y2
= —g(R(s3),83) — g(R(s2), s2) +29(R(s1), 51),

which proves (24).
Now the proposition follows from (21)—(24). o
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4. Curvature properties of the Chern connection of twistor
spaces. In this section we consider the problem when the curvature
tensor Ry, of the Chern connection D™ of (Z,h¢,J,), n = 1,2, is
of type (1,1), i.e., Ry n(JnE, Jo,F)G = R, ,,(E,F)G for all E,F,G €
TZ. We also study the problem when this connection has a constant
holomorphic sectional curvature.

Proposition 2. (i) The curvature tensor Ry 1 is of type (1,1) if and
only if the base manifold M is self-dual.

(ii) The curvature tensor Ry o is of type (1,1) if and only if the base
manifold M s Finstein and self-dual.

Proof. (i) If R;; is of type (1,1), then 71 is an (1,1)-form with
respect to J;. This, together with Proposition 1 gives:

gR(@), XANY —K,X NK,Y)=0

for all o € Z and X,Y € T,M, p = w(o). Since the 2-vectors of the
form X NY — K, X N K,Y span the vertical space at o, it is easy to
see that the latter identity implies the self-duality of M.

Conversely, if M is self-dual, the almost-complex structure Jj is
integrable [3] and, as it is well-known, cf. e.g., [15, Lemma 2.1], the
curvature of the Chern connection D! is of type (1,1).

(i) Given a point 0 € Z and X,Y € T,M, p = m(0), denote by
A(X,Y) and B(X,Y) the vertical vectors at o defined by

1
AX,Y) = JR(X AY + K, X ANE,Y)o
1
— KX AY + X NE,Y)
1
B(X,Y)= ;o x REXNY = X NE,Y)o

1
+ X AY + X AKY),

where K, is the complex structure on T, M corresponding to o via (4).
Using Lemma 2, formulas (5), (6), (8) and the identity o x (K, X AY +
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XNK,Y)=XANY — K, X NK,Y, one gets from (10) that
D%.Y" = (VxY)"+ A(X,Y) + B(X,Y)
DY Y"=D%,Y" —2B(X,Y)
Dy X" = D% x*"
for X, Y e x(M) and V € V.
Now one obtains easily that
Ry (XM YR Zzh T
= Rio(XM, Yh Z" Th)
+2t[g(A(X, 2), B(Y,T)) + g(A(Y,T), B(X, Z))
—g(A(Y, Z)aB(XaT) _g(A(XaT)aB(K Z))]a

and

9(A(X, Z2), B(Y,T)) — g(A(K,Y,T), B(K, X, Z))

1
= GIR(XNE,Z + K, X NZ), K;Y AT =Y NK,T)

—gR(XANZ+ KX NK,Z),Y NT — K,Y A K,T)].
These formulas, together with the first Bianchi identity, give:
(25) Ry (XM, Y™ Z" T") — Ry (S X", YY" 20 Th)
= Rio( XM, Yh, Z" Th) — R, o(Jo X", LY", Z" Th)
- %g(R(X NY —K,XNK,Y),ZNT+ K,Z NK,T).

A similar computation gives
(26) Rea(X", Y™, V,\V) = Rea(iX", hY", V, 1V)
= —Rya (X", YV, J2V) + R o (o X", JoY", V, J2V)
+9g(R(XANY — K, X NK,Y),0),
for any h;-unit vertical vector V at o.

Now assume that Ry o is of type (1,1) with respect to Jz. Then it
follows from (25) and (26) that

Ve (X" Y — 1 (X" Y =0,
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which implies, as we have seen in the proof of (i), that M is self-dual.
Hence, by (i), Ry, is of type (1,1) with respect to Ji, and the identity
(25) becomes

JR(XANY —K,XANK,Y,ZANT+ K,ZNK,T)=0

for X,Y,Z, T € x(M). Since M is self-dual, this implies B =0, i.e., M
is Einstein.

Conversely, let M be Einstein and self-dual. Then the almost-
Hermitian manifold (Z, h¢, Jo) is quasi-Kéhler [18]. On the other hand,
according to [9, Theorem, (i)], its Riemannian curvature tensor satisfies
the identity R(E,F,G,H) = R(JE,JF,JG,JH). Now it follows from
[15, Theorem 6.2 (ii)] that the curvature tensor R;o of the Chern
connection D? is of type (1,1).

Next, we study the problem when the Chern connections D! and D?
of a twistor space have constant holomorphic sectional curvatures.

Proposition 3. The Chern connection D' of the almost-Hermitian
manifold (2, hy, J1) has a constant holomorphic sectional curvature
if and only if kK > 0, the base manifold M 1is of constant sectional
curvature k and t = 1/k.

The holomorphic sectional curvature of the Chern connection D?* of
(Z, hy, J2) is never constant.

Proof. Let us note that, if (N, g, J) is an almost-Hermitian manifold,
then the holomorphic sectional curvatures H and H of the Levi-Civita
connection V and the Chern connection V are related by

(27)

This easily follows from (14)—(19).

Denote by ﬁt,n the holomorphic sectional curvature of the Chern
connection D" of (Z, hy, Jp,), n = 1,2. Then, using the explicit formula
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for the sectional curvature of (Z,h:) given in [8, Proposition 3.5],
formula (27) and Lemma 2, we obtain:

~ t
Hy o (X") = R(X,K,X,X,K,X) — SR A K. X)oll2,
where K, is the complex structure on T, M, p = m(0), defined by (4).

Assume that ﬁm = k. Then, for every 0 € Z and X € T, M,
p=m(0o), || X|| = 1, one has:

t
(28) k= R(X, K, X, X, K, X) — S| R(X A K, X)o] .

Let s1, $2, s3 be local sections of Z defined by (1), and let

3 3
O':Z)\isi, Z)\Zz:].
i=1 i=1

Denote by K; the complex structure on T, M determined by s;(p), and
set

a5 = g(R(Si),X /\KjX), bi]' = g(R(X /\KiX),X /\KjX).
Then

|R(X A K, X)o|? = Zg (0 % 8:), X N Kz X)?

3 2
= Z <Z)\ a”> — (Z)\l)\Ja”> 5
i=1 = %7
and s
R(X, KX, X, K, X) = Y Aidjbij.
i,j=1

Varying (A1, A2, A3) over the unit sphere S%, one gets from (28) that

E :akz 2 m:’%

3
t t
bii +bij = 5 > (o +ai;) + 5 (@i +a5i)* +tasa;; = 2k
k=1
3
bij +bj; — tz Ok Qg + ta,-i(aij + aji) =0,
k=1
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for 1 <i # j < 3. These identities imply a;; = aj; and a;; = —aj; for
i# 7, ie.,

g(R(Sz),X A KzX) = g(R(Sj),X A KJX)

9(R(s;), X NK;X) =—9g(R(s;),X NK;X), i#].

Now, varying X over the unit sphere of T, M, gives:

9(R(s:), s5) = di59(R(s1),51)
9(R(s:),5;) =0, 1<i,j<3.

Hence, M is Einstein and self-dual. Since X A K, X € R.oc ® AiTpM
for any X € T,M, it follows that R(X A K,X)o = 0 and (28) shows
that M is of constant sectional curvature equal to k. In this case, one
obtains easily from [8, Proposition 3.5], Lemma 1 and Lemma 2 that
the holomorphic sectional curvature Hy , of D™ is given by

= 4 4, (=1
Fon(B) = X+ 1A+ T
where X = m.E, A=VE and ||E|]}, = || X 4 t||A||* = 1. Hence, for
n = 1, the identity fIt,n = k is equivalent to ¢ = 1/k, while for n = 2,
it is impossible. Thus, the proposition is proved.

(34 (=1)"" + 4st) | X[ A%,

Remark. Similar arguments show that the Levi-Civita connection of
the almost-Hermitian manifold (Z, h¢, J;,) has a constant holomorphic
sectional curvature k only in the case when n = 1, M is of constant
sectional curvature x and t = 1/k ([8]).

5. Examples of twistor spaces with parallel Nijenhuis tensor.
It is well known ([9, 18]) that the twistor space (Z,h¢, J2) of an
Einstein, self-dual manifold M is a quasi-Kahler manifold satisfying the
second Gray curvature condition. If s > 0 and ¢t = 6/s, respectively
s < 0andt = —(12)/s (s is the scalar curvature of M), then (Z, h, J2)
is nearly Kéhler, respectively almost Kahler and, by results of [6,
19], the Nijenhuis tensor of J is parallel with respect to the Chern
connection. In fact, this is true for any s and any ¢.

Proposition 4. Let M be an Einstein and self-dual 4-manifold with
twistor space Z. Then the Nijenhuis tensor of the almost-complex
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structure Jo s parallel with respect to the Chern connection of the
almost-Hermitian manifold (Z, hy, J2).

Proof. Denote by N the Nijenhuis tensor of the almost-complex
structure Jy. Let o be a point of Z , X,Y, Z vector fields on M near
the point p = 7(c), and A, B vertical vector fields near o.

The identity

N(E, F)
= —Jo(DEJ2)(F) + J2(DpJ2)(E) — (DyypJ2)(E) + (D pd2) (F)

and Lemma 2 imply the following formula:
(29)
N(Xh YM), = —%(X ANK,Y + K, XAY); N(X", A), = 2(KyaX).

As to the Chern connection D? of (Z, hy, J2), formulas (8), (9), (10)
and Lemma 2 give:

1
D3Y" = (VY (DRX") = 5 (KonaX)"s

t
D%, A=DynA— i(KaxAX)ﬁ = VDA = [X", Al

(30)

Let & be a section of Z near p such that £(p) = o and V¢|, = 0. Then
it is easy to see that, at the point p, VK¢ = 0 and VDxn A = Vx(Aof)
for any vertical vector field A where A o £ is considered as a section of
A2 TM. Now the identities (29) and (30) imply that

(DZ.N)(X",Y™), = 0.

Let E4, E5, E3, E4 be an oriented orthonormal frame of T'M near p
such that VE;|, =0, 1 < i <4, and s1(p) = o where (s1, 52, s3) is the
local frame of A2 T'M defined by (1). Then, by (29), we have

4
N(X", A) = -4 " g(J2A, (X A E;) o m)E}.
i=1
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Let us also note that

Zrg(2A, (X NE;) o) = Zpg((J2A) 0 &, X N E)
= g(JZVZp (Ao &), X NE))
+ g(J2Ag—, VZPX A Ei).

Now it is clear that

(DZ.N)(X" A), = 0.

We have also
(D3.N)(A,B), =0,
in view of (30) and the fact that N vanishes for any two vertical vectors.

We shall further use the notations introduced at the end of the proof
of Proposition 1.

The fibers of Z are totally geodesic submanifolds, Kahlerian with
respect to Jo, so the Chern connection D? coincides with the Levi-
Civita connection D of h; for vertical vectors. Since Dy U and Dy J,U
are vertical vectors and [U, J1U], = 0, it follows from the standard
formula for the Levi-Civita connection that

(31) (DyU)y = (DyJ1U), = 0.
Hence,

Dy, N(X",Y")
= UU(g(N(Xha Yh)a U)UU + Ua(g(N(Xh,Yh), JIU))JIUU'

By (6) and (30), we have

2
N (X" YN, U) = Tg(hU, X AY)
2s
= 3(1 —y3) Y2 (y1ys9(s1, X ANY) o
+ y2y3g(s2, X NY)om

— (1= y3)g(s3, X AY) o),
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and

2s
gIN(X",Y"), hU) = = g(U, X AY)

2s
= E(l —y3) 2 (y2g(s1, X AY)om

—y19(s2, X ANY) o).

It follows that
2s
Dy, N(X", Y") = —gg(slaX ANY)pss(p).
Using (7), (29) and (30), we easily obtain

S S
N(DEX" Y, = Eg(Xa Y)psa(p) — 59(51,X NY)ps3(p),
S S
N(x", DEvh), = fgg(X, Y),s2(p) — gg(sl,X AY)ps3(p).

It follows that
(DEN)(X™, Y™, = 0.

Similarly,
(DF,uN)(X", Y, =0.

Therefore,
(DAN)(X",Y"), =0,

for any vertical vector A at o.
By (29) and (30), we obtain

D} N(X",U)=-X!and D} N(X" JiU)= (K, X)".
Taking also into account (7), we get

N(D} X" U)=-X!and N(D} X" J,U) = (K, X)".
Then, by (31), we have

(DEN)(X",U), = (DEN) (X", J1U), = 0.



THE CHERN CONNECTION OF TWISTOR SPACES 47

Similarly, we get
(D7,uN) (X", U)s = (D},y N)(X", 1U)s = 0.

Therefore,
(DAN)(X", B)y = 0.

Finally, let A, B, C be vertical vectors at . Since, for vertical vectors,
D! coincides with the Levi-Civita connection of the fiber through o,
we have

(D3N)(B,C), = 0.

Remark. Identity (30) shows that the Chern connection D? actually
does not depend on ¢ when the base manifold is Einstein and self-dual.
Then Proposition 4 for s # 0 follows also from the results in [6, 19]
mentioned in the beginning of this section. Propositions 1 and 4 can
be extended to the twistor spaces of quaternionic-K&hler manifolds by
means of the formulas in [1].
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