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A STAGE STRUCTURED
PREDATOR-PREY MODEL WITH TIME DELAYS

YAN WANG, JIANHONG WU AND YANNI XIAO

ABSTRACT. In this paper, a stage structured predator-
prey system with two time delays (maturation delay and ges-
tation delay) is studied. Qualitative analysis of the model such
as the stability of equilibria and Hopf bifurcation is provided.
By using an iterative technique and comparison arguments,
sufficient conditions are derived for the global asymptotical
stability of the positive equilibrium and the boundary equi-
librium of the model. The special case where one of the delays
can be ignored is considered, and sufficient conditions are ob-
tained for the occurrence of a Hopf bifurcation of periodic
solutions when the gestation delay is varied. It is also shown
that varying the maturation delay does not affect the stability
of the positive equilibrium.

1. Introduction. This paper presents the model development
and analysis of predation involving species with stage structures and
gestation delays. This study is motivated by the distinct characteristics
at different stages of growth and development of the prey population.
Such differences induced by stage structures of the prey species should
not be ignored since, for example, the immature individuals cannot
reproduce, while the mature may have greater survival capability in
addition to their fecundity.

Stage-structured predator-prey models have received substantial in
the literature [1, 2, 4-14]. Aiello and Freedman [1] proposed and
studied the following now well-known single species model with struc-
tured delay

Zim () = aZp (t) — YTim (t) — ae” @y (t — 1),
T (t) = ae™ T, (t — 7) — B2 (1),

where x;,,,(t) and z,,(t) are densities of the immature and the mature
populations, respectively. This model has then been extended to cover
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situations involving multi-species interaction [6-14]. Especially, in
[13], Xu and Ma studied a delayed predator-prey system with stage-
structure for the prey and time delay due to the gestation of the
predator. However, they neglected maturation delay for the prey. In
[9], Song and Chen investigated a model of two species predator-prey
with stage structure and harvesting for prey and obtained sufficient
conditions for global asymptotic stability of the nonnegative equilibria.
In [7, 8], the authors examined a predator prey Lotka-Volterra system
with two time delays (maturation delays of prey and predator), and
obtained global asymptotic stability of the unique positive equilibrium.
However, in [7, 8, 9], they only considered maturation delays but not
gestation delay for the predator.

In this paper, we assume that the prey has two stages and that
only mature individuals can reproduce. The model does involve two
time delays: gestation and maturation delays. Using an iteration
technique and a comparison argument, we establish, in Section 3, global
asymptotical stability of the positive equilibrium under the assumption
that the product of intra-specific coefficients is greater than the product
of inter-specific coefficients and the boundary equilibrium. We also
discuss, in Section 4, special cases where one of the delays is ignored.
In particular, we obtain sufficient conditions for the occurrence of a
Hopf bifurcation of stable periodic solutions when the maturation delay
is zero, and we illustrate this result with some numerical simulations.
We also in this section show that varying the maturation delay does
not affect the stability of the positive equilibrium. Some concluding
remarks are given in the final section.

2. Model. We consider the case where the prey has two stages. The
model takes the form

iim(t) = bxm(t) - dlxim(t) - be_dlnxm(t — 7‘1)7
(1) B (t) = be™ Mg, (t — 11) — a122, () — pao (£)y(t),
§(t) = kpam(t — T2)y(t — 72) — day(t) — asy?(t),

where z;,,(t) and z,, (t) represent the densities of the immature and the
mature of prey at time ¢, respectively, while y(t) represents the density
of the predator at time ¢. The model is derived under the following
assumptions:
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(a) The prey population: the birth of the immature population is
proportional to the existing mature population with a proportionality
b > 0; the death of the immature population is proportional to the
existing immature population with a proportionality d; > 0; 71 > 0
denotes the length of time from the birth to the maturity of the prey.
The term be 4"z, (t— ;) stands for the number of the immature who
were born at time ¢ — 71 and still survive at time ¢ and are transferred
from the immature stage to the mature stage at time ¢. ay is the
intra-specific competition rate of the mature population.

(b) The predator population: the growth of the species is of a Lotka-
Volterra nature. The predator feed only on the mature prey. ds > 0 is
the death rate of the predator; as > 0 is the intra-specific competition
rate of the predator; p > 0 is the capture rate of the predator; k£ > 0 is
the conversion rate of nutrients into the reproduction of the predator;
T9 > 0 is a constant delay due to the gestation of the predator, that is,
mature adult predators.

The initial conditions for system (1) are

zim(0) = 01(0)  zm(0) = @2(0), y(0) =¥(0),
(2) ()01(0) > 07 802(9) > 05 1/1(0) > 07 S [77-5 0]7
<P1(0) >0, 902(0) >0, ¢(0 >0,

where 7 = max{r, 2}, Ri_ = {(z1,22,2z3) | z; > 0,5 = 1,2,3} and
¢ = (<P17‘p27¢) € C([_Tv O]vRi)

It is biologically realistic to require the following matching condition:

0
(3) Zim (0) = / be oy (s) ds.

—T1

Using (3) and the first equation of system (1), we get

t
(4) Bim(£) = / be =0z, (s) ds.
t—11

Theorem 2.1. If (2) and (3) hold, then the solutions of system (1)
with given initial conditions are positive for all t > 0.
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Proof. Let (xim(t),zm(t),y(t)) be a solution of system (1) with
initial conditions (2) and (3). First we show z,,(¢t) > 0 for all ¢ > 0.
Otherwise, at least a t; > 0 must exist such that z,,(t;) = 0. Denoting
to = inf{t > 0 | ,,(t) = 0}, then tp > 0 and from the second equation
of system (1), we get

be—d171<p2(t0_7-1)>0 0<ty <,
be hmig, (tg— 1) >0 to> T,

Em(to) = {

a contradiction to the definition of ty. Hence, =, (t) > 0 for all £ > 0.
Similarly, we get y(¢) > 0 for all ¢ > 0.
It follows from (4) and x,,(¢t) > 0 for all ¢ > 0 that

t
ZTim(t) = / betr Vg, (s)ds > 0,
t—11

for allt > 0. O

3. Global asymptotic stability. In this section, we discuss
global asymptotic stability of the positive equilibrium and the boundary
equilibrium of system (1).

By setting &, = ©m = ¥ = 0 in system (1), we observe that there
are two nonnegative equilibria: Fy(0,0,0) and E;(2? 2% 0), where

imrm>

0 b26_d1T1(1 _ e—d17’1) 0 be—dln
X = €T —
e ady ’ " a

Further, if the following condition
(H1) bkpe~h™ > q1ds

holds, then system (1) has a unique positive equilibrium E* (2., k., y*),
where

. b(1—e h)(agbe BT 4 dyp)

Z; - )
s di(araz + kp?)
(5) m* — a2b67d1T1 + d2p
m aras + kp?

. bkpe H™ — q1ds
¥y = ayay + kp?
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We need the following well-known results.

Lemma 3.1 [7]. The roots of equation \ 4 2be=%" — be=7(A+d) =
with b,d, ™ > 0, have negative real parts.

Lemma 3.2 [8]. Consider the following equation
&(t) = ax(t — 1) — bx(t) — cx?(t),

where a, b, c and T are positive constants and z(t) > 0 for allt € [-7,0].
We have

(i) If a > b, then lim;_, 1o z(t) = (a — b)/c¢;
(ii) If a < b, then t_l}gloox(t) =0.

Theorem 3.1. The equilibrium Eqy is unstable. Under condition
(H1), the equilibrium E; is unstable.

Proof. The characteristic equation of equilibrium FEj is
(A +d1) (A + do) (A — be~ T Ard)y — g,

Clearly, A = —d; and A\ = —ds are always two negative zeros. All
other eigenvalues are given by the solutions of A — be~Tt(A+d1) =0, To
show that a positive zero exists, we notice that the graph of y = A
and y = be~ "t (A +d1) must intersect at a positive value of A\. Hence, the
equilibrium FEj is unstable.

The characteristic equation of the equilibrium FEj is

bk. —(d1T1+)\T2)

(A +di) (A + 2be=h7 — pem T (A1) <,\ +dy — pe_) =0.
ai

Clearly, A = —d; is always a negative zero. By Lemma 3.1, the solutions

of A+ 2be~%m — pe~Tt(A+d1) — () have only negative real parts. All

other zeros are given by the solutions of A = bkpe_(d1”+’\72)/a1 — ds.

We will show that a positive zero exists if bkpe~®™ > q;ds. In fact, if
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we set f(A) = A+ dy — bkpe  (4T1HAT2) /g then we get

bkprye (d1T1HAT2)

=1+ >0,
ai
dy — bkpe— 4T
floy=22222%P g
ay

So f(A) = 0 has a positive real part. Consequently, (H1) implies that
the equilibrium F; is unstable. This completes the proof of Theorem
3.1. ]

Theorem 3.2. If assumptions (H1) and
(H2) ajaz > kp?
hold, then the positive equilibrium E* is globally asymptotically stable.

Proof. First we show that E* is locally asymptotically stable.

The characteristic equation of the equilibrium E* is

(A +d) [N py* +2a12", —be” O\t dy 4+ 2a0y™ — kpz’,e™*72)
+ kp*xl,yte 2] = 0.

Clearly, A = —d; is always a negative zero. We denote

g\ = A\ +py* +2a12F, — be*7'1()\+d1))()\+d2 +2a0y* — kprne*)‘ﬁ)

ATy

+ kp*x),yte”

We only need to prove that the solutions of g(A) = 0 have only negative
real parts. Let A = £ + in (here £ and 7 are real). We get

g(\) = (E+in + py* + 2a1x, — be” HEFNEMY (¢ 4 in 4 dy + 2a5y*
— kpz), e ™ (E+in)) + kpzxfny*efw(gﬂn)
= (B1 + A11)(Ba + Azi) + (Bs + Azi) =0,
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where
Ay =0+ be T (hFE) sin(nty),

Ay =n+ kpx;‘nef&z sin(nta),

Ag = —kpzac;‘ny*tfg"2 sin(nTz),

By =&+ py* 4 2a12), — b Tr(d1+E) cos(nTy),
By = £+ ds + 2a0y" — Ic;IJ:E;‘,Le_ET2 cos(n72),
B; = kax;y*e_sz cos(nTz).

From the above, we get
Bg = A1A2 — BlBg, A3 = 7A1.BQ — AzBl.

So, we have
Bi + A2 = (kp2a:;y*e_5”)2,

and

Bi + A2 = (A1Ay — B1B2)? + (—A1By — A3By)?
= (A142)° + (B1B2)? + (A1B2)? + (A2B1)*%.

SO, (B1B2)2 S B?% + Ag
If £ > 0, then

(B1Bz)* < Bj + A3 < (kp°z;,y*)*.

But
B; > py* + 2a;1z;, — be~hm
= (py" + a1z, — be™ ") + ayz}, = arzy, >0,
By > dy + 2a0y™ — kpz),
= (d2 + a2y™ — kpz),) + a2y™ = az2y™ > 0.
Thus, B;B2 > ajazzl,y* > 0. From assumption (H2), it is easy to
get (B1B2)? > (kpz;,y*)?, which is a contradiction to the above
inequality. Thus, £ < 0. This implies that A has negative real part.
Therefore, E* is locally asymptotically stable.

Next, we prove that E* is globally attractive using an iteration
technique.
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Assume that (2 (t), zm(t), y(t)) is a positive solution of system (1)
with initial condition (2). Let

U, = limsup sup 2, (t), Vi = liminf inf z,, (),

t—+o00 t—r+o0
U, =1 t V,, = liminf infy(t).
Y gjgopsupy( )s y = liminfinfy(t)

In the following, we shall show that U,, =V, = z,, Uy =V, = y*.

From the second equation of system (1), we can get
T () < be™ Mg, (t— 1) — ara? (2).
Therefore, by Lemma 3.2, we derive that

be— 9171

U, = limsup sup z,, (t) < = M.

t—+o00 ay

Then, for € > 0 sufficiently small, a 77 > 0 exists such that if t > 77 4,
Ty (t) < M7™ + e. We therefore derive from the third equation of
system (1) that for ¢t > Ty + T,

§(t) < kp(My™ +€)y(t — 72) — day(t) — azy®(1).
Consider the following auxiliary equation
0(t) = kp(MP™ + €)v(t — 12) — dav(t) — axv*(t).

Since (H1) holds, by Lemma 3.2 we derive that

kp(M{™ —d
limsupv(t) = p(My™ +€) — dy .
t— 400 az

By comparison, we obtain that

kp(M{™ —d
Uy = limsupsup y(t) < pAML™ +e) — dy .
t——+o00 asz

Since this is true for arbitrary € > 0, it follows that

Uy < klem - d2
a2

= Miy
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Hence, for € > 0 sufficiently small, there exists a T5 > T} + 7 such that
ift>To+7,yt) <M +e.

For € > 0 sufficiently small, we derive from the second equation of
system (1) that, for ¢t > Tp + T,

T (t) > be*dlnxm(t —11) = p(MY + &)z (t) — arz? (t).

By comparison, we obtain that

be— % _ (MY
Vi, = lminf inf a,, (¢) > — p(M{ +¢)
t——+oo a1

Since this is true for arbitrary € > 0 sufficiently small, we conclude that
Vin > Ni™, where
N&m — be—d1‘r1 _pM{J
1 e

Therefore, for ¢ > 0 sufficiently small, there exists a T3 > T3 + 7 such
that if ¢t > T5 4+ 7, Ty (t) > Nf™ —e.

For ¢ > 0 sufficiently small, we derive from the third equation of
system (1) that, for ¢t > T5 + T,

y(t) = kp(NT™ — e)y(t — 72) — day(t) — azy>(t).

By comparison, we obtain that

V, = liminfinfy(t) > kp(Ny™ —¢) = d2‘

t——+o0 az

Since this is true for arbitrary ¢ > 0, we conclude that V;, > Ny, where

Hence, for € > 0 sufficiently small, there exists a T, > T5 + 7 such that
ift>Ty+7,y(t) >Ny —e.
For € > 0 sufficiently small, it follows from the second equation of

system (1) that for ¢t > Ty + T,

B (t) < be™ Mg (t—11) — p(NY — &) (t) — a2 (2).

m
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By comparison, we obtain that

b —dimi _ n(NY —
U, = limsup sup z,,, (t) < © p(Ni 8).
t——+o0 ai

Since this is true for arbitrary € > 0 sufficiently small, we conclude that
U, < M3™, where
ME™ — be hm _pNil
2 a1

Therefore, for € > 0 sufficiently small, there exists a T5 > T4 + 7 such
that if ¢t > Ts + 7, @, (t) < My™ + €.

For ¢ > 0 sufficiently small, it follows from the third equation of
system (1) that, for t > T5 + T,

J(t) < kp(M5™ + )y(t — m2) — day(t) — a2y’ ().

By comparison, we obtain that

kp(M5™ —d
U, = limsupsup y(t) < p(My™ +¢) = d .
t— 400 as

Since this is true for arbitrary £ > 0, we conclude that U, < M}, where

kpMS™ — d
Mé’:%,

Hence, for £ > 0 sufficiently small, there exists a Ty > T5 + 7 such that,
ift>Tg+7,y(t) <M +e.

Continuing this process, we obtain four sequences M7=, N7m, MY
and NY, n=1,2,..., such that for n > 2,

be~hm — pMY

M = , Nim=——___ _T7n
(6) ntl ay ai
ay — FPMEm —da Ny kpNim = dy

Clearly, we have

Ny < Vi SUp < Mp™, Ny <V, <U, <M.
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It follows from (6) that

. (agbe 1™ + dop)(ajas — kp?) = k2pt m
(7) My, = a2a2 * aja3 My

Obviously M%m > z, . It follows from (H2) ajas > kp? and (7) that

MEn e — (agbe™ 1™ 4 dyp)(aras — kp?)  k?*p* — a?al Ao
i TS g
< (agbe™ 1™ + dyp)(aras — kp?)  k?p* —a2a3 0
= 22 + 202 m=U-
102 102

So, the sequence MZ™ is monotonically decreasing. It follows that
lim¢_, oo M2 exists. Taking n — +oo, we obtain from (7) that

asbe™ 1 4+ dop .

8 lim M = .
(8) Jm My p—— m
Similarly, we derive that

. Ton % . Y o % . Y ok
(9) t—lgl—noo Nn = Lo t—lgl—noo Mn =Y, t—ligloo Nn =Y.

It follows from (8) and (9) that

We therefore have

o) =l ) =0

Using L’Hospital’s rule, it follows from (4) that
f:ﬁ bersx,, (s) ds
T1

tEIEoo Lim (t) - tlggloo edit
— lm beditz,, (t) — betr (t’”)xm(t — 1)
Tt dyedrt
b(l—e hm)
— 7d1 xm = l‘im-

This completes the proof of Theorem 3.2. |



1732 YAN WANG, JIANHONG WU AND YANNI XIAO

Therefore, if conditions (H1) and (H2) hold, we conclude that the
unique positive equilibrium E* is globally asymptotically stable. Bio-
logically, condition (H2) means the product of intra-specific coefficients
is greater than the product of inter-specific coefficients. Note that con-
dition (H2) is not relevant to the birth rate b, the death rates d; and
dy of immature prey and predator, the maturation delay 7; and the
gestation delay 7». It is only relevant to the intra-specific competition
rate ay,as of the mature prey and predator, the capturing rate p, as
well as the effective consumption rate kp of system (1).

Theorem 3.3. If assumption
(H3) bkpe 1™ < aydy

holds, then the equilibrium Ey(z? . ,x°

0, 0) is globally asymptotically
stable.

Proof. First, we show that the equilibrium E; is locally asymptoti-
cally stable. The characteristic equation of the equilibrium FEj is

bkpe—(lel-i-/\Tz) >
ne ) =o.

(A4 dy) (A + 2be™ BT — pemr(A+dr))y <>\ +dy —
ai

Clearly, A = —d; is always a negative eigenvalue. By Lemma 3.1, the
solutions of A 4 2be~ 4™ — pe~Tt(A+d1) = () only have negative real
parts. Next, we will prove that, under assumption (H3), all roots of
the equation \ + dy — bkpe_(d”l“"\”)/al = 0 have negative real parts.
Let A = € + in (here &,n are real). Then we get

bkpe~ 17 e =2 cos(nTs)

f + d2 - - 07
ay
bkpe 11T gip
n+ L - (7) _ g,
1

From the above two equations, we deduce that

<bkpe_d”1 e=ém

ay

(10) ) (€4 da)? R

If £ > 0 and assumption (H3) holds, we get

bk —d1T1 2 bk —d1T1 2
(€ +do)? +7° > <£+L> P> <L> :
ay ax
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It follows from equation (10) that

bkpe— % > 2

(€+dz)2+n2§( -

It is a contradiction. So, £ < 0. Therefore, F; is locally asymptotically
stable.

In the following, we show that E; is globally attractive. From the
second equation of system (1), we get

T (1) < be™ Mg, (t— 1) — ara? (2).
By comparison, we obtain that

be— 9T

= R*™.

(11) lim sup sup z, (t) <
t—+o00 ai

Under assumption (H3), we can choose € > 0 sufficiently small such
that

be—dim1
(12) kp( ea +€>—d2<0.
1

Hence, for € > 0 sufficiently small satisfying (12), there exists a T3 > 0
such that if t > T} + 7, 2, (t) < R*™ + . We therefore derive from the
third equation of system (1) that, for ¢t > Ty + T,

§(t) < kp(R™™ + e)y(t — 2) — day(t) — a2y (t).
Consider the following auxiliary equation
o(t) = kp(R™™ + e)v(t — 12) — dav(t) — axv?(t).

Since (12) holds, by Lemma 3.2 we derive that limsup,_,, ., v(t) = 0.
By comparison, we obtain limsup, , , ., supy(t) = 0. Hence, for ¢ > 0
sufficiently small satisfying (12), there exists a 75 > T + 7 such that
ift>To+7, ylt) <e.

It follows from the second equation of system (1) that, for ¢t > T+,

G (£) = be™ N, (t — 1) — epwm (t) — ayz2, (1)
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By comparison, we obtain that

be ™ —¢
lim inf inf x,, (t) > A
t— 400 ay

Since € > 0 is arbitrarily small, we conclude that

be~ Tt
lim inf inf z,, (¢) > ,
t——+o0 al
which, together with (11), yields
. be~ Tt 0
t—l)lgloo Lm (t) B ay = Fm:

Using L’Hospital’s rule, it follows from (4) that

ftt_n betrsz,. (s) ds

lim z;p,(t) = lim

t—4oo t—Foo edit
~ lm behrlz,, (t) — ber g (t — 1)
t—Foo djedrt
—diT
_b(d—eTmm) o o
- dl T = Tim-

This completes the proof of Theorem 3.3. u]

4. Existence of Hopf bifurcation. As noted earlier, the dynamics
of system (1) is determined by the following subsystem
j:m(t) = beidl‘rl mm(t - Tl) - aflxzn(t) - pxm(t)y(t)a
§(t) = kpam(t — 2)y(t — 1) — day(t) — azy®(2).

In this section, we focus on two special cases where either ;, = 0 or
T2 = 0.

4.1. Case 1. 73 = 0. The corresponding subsystem is

Em(t) = bz (t) — a1z, (t) — pzm (t)y(t),

(13) §(8) = kpan (t — o)yt — ) — day(t) — asy? ().
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As shown earlier, if bkp > ai1ds and the assumption (H1) hold when
71 = 0, system (13) has a unique positive equilibrium E*(z¥,,y*) given
by

(14) LL‘* — a2b + d2p * bkp - a1d2
™ aiag + kp?’ Y aas + kp*’

The characteristic equation at the equilibrium E* is
(15) M4 AN+ B = (C)A+ D)e ™,
where

A= (kp+a1)z,, +a2y* >0,  B=aizy,(kpay, + axy”) > 0,
C = kpz;, > 0, D = kpzx;,(2a12), — b).

Theorem 4.1. If
4ay kpxr, < ayds + bkp, A’D? — B*C? - 2BD? > 0,
then as 1o increases from zero, there is a value 199 such that the unique
positive equilibrium E* is locally asymptotically stable when T2 € [0, T20)

and unstable when o > To9. Furthermore, system (13) undergoes Hopf
bifurcation at E* when 1o = To.

Proof. Obviously, for 2 = 0, equation (15) yields
(16) M+ (A-C)\+(B—-D)=0,
where
A-C=ayz), + axy” >0, B — D =z}, (bkp — a1dz) > 0.

Equation (16) has roots with negative real parts; therefore, the positive
equilibrium E* is locally asymptotically stable when m = 0.

Now we check when there is a unique pair of purely imaginary roots
+iwp for characteristic equation (15) at the positive equilibrium E*.
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If A\ = iw with w > 0 is a root of equation (15), then by separating
real and imaginary parts, we have the following

B — w? = D cos(wrz) + Cwsin(wry),

(17) .
Aw = Cw cos(wTs) — D sin(ws).

Squaring and adding both equations of (17), we get
(18) w* + (A% - 2B - C?*)w? + (B* — D?) =0,
where

A? — 2B — C? = 2askpzl,y* + (a1z},)” + (azy*)? > 0,
B — D =x}, (bkp — a1ds) >0, B+ D = x},(4darkpz), — ards — bkp).

As daikpx!, < aidy + bkp means B2 — D? < 0, we conclude that
there is a unique positive wy satisfying equation (18). Therefore, the
characteristic equation (15) has a pair of purely imaginary roots %iwy.
From equation (17) it follows that the corresponding 7 value, 72,, to
the given wy is

Top = — arccos , n=0,1,2,....

(B —w?)D + ACw? 2nm
wo

C2wi + D? wo

For o = 0, E* is stable. Hence by Butler’s lemma [3], E* remains
stable for 5 < T9.

Now we would like to show

d(Rel)

0.
dT2 -

T2=T2n

This will signify that at least one eigenvalue exists with positive real
part for 79 > 7o,. Now differentiating equation (15) with respect 72,
we get

2A+ A — e 2(C = CAry — DTQ)] j—’\ = —ACX+ D)e™ 7,
T2
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That is,

<ﬁ> 2 +A—e2(C - CArp — D)

dry —A(CX+ D)e=Am
. 220+ A C T2
T CACA+D)e = T ACAFD) A
A —-B D To

“A2(A2+ AN+ B) N(CA+D) X’
Thus,

. { d(Re \) }
sign
dT2 /\_in
Re
< dTZ > }A =iwo

o
- H{Re[ X2 )\2+AB)\+B)]/\=iwoRe [mhﬂwo}
o

—B —uw? D
Re [wz B — w? + Awi) * w2(D + Cwi)} }
[ C%wt 42D + (A2D? — B2C? - 2BD?)
- { (D7 + C2?)[(B — w?)? + A%7] }

We can rewrite the numerator as follows. Let
V =w?, f(w) = C?w* + 2D*w? + (A’D? — B*C? — 2BD?).
Then,
f(V)=C?*V? +2D*V + (A’D? - B*C? - 2BD?)
and
f'(V)=2C%*V +2D* >0, (V>0),

which means that f(w) is monotonically increasing on [0, +00). We
know f(0) = A?2D? — B2C? — 2BD? > 0 and we have f(w) > 0 for
w > 0. Then we obtain

d(Re \)

dr > 0.

T2=T2n,W=Wo
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0 10 20 30 40 50
t

FIGURE 1. z, as a function of ¢ for system (13) with 2 = 0.9500 > 720, indicating
that a Hopf bifurcation of stable periodic solutions from E* occurs.

Therefore, the transversality condition holds and Hopf bifurcation oc-

curs at 7 = To,, W = wg. This completes the proof of Theo-
rem 4.1. o
Here are some numerical simulations: where b = 3, d; = 0.5,

do =09, p=1,k =1, ap = 0.2, ap = 0.7. It follows that the
conditions of Theorem 4.1 are satisfied. Therefore, at 79 ~ 0.5307,
Hopf bifurcation occurs. Figures 1-3 display a Hopf bifurcation of
stable periodic solutions when 7 = 0.9500.

4.2. Case 2. 7 = 0. The subsystem of system (1) with 7, = 0
becomes

Em(t) = be™ MM am (t = 71) — a1 () — pram (t)y(t),
(19)
§(t) = kpm (H)y(t) — day(t) — a2y (t).
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3.5r 1

0 10 20 30 40 50

FIGURE 2. y as a function of ¢ for system (13) with 75 = 0.9500 > 720, indicating
that a Hopf bifurcation of stable periodic solutions from E* occurs.

35 1

>25F 4

1.5r B

FIGURE 3. The periodic solutions for system (13) with 72 = 0.9500 > 720.
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When condition (H1), bkpe %™ > a;dy, holds, system (19) has a
unique positive equilibrium E*(z},,y*), where

. asbe 1™ 4 dop . bkpe h™ — q1dy
aras + kp? aias + kp?

The characteristic equation of the equilibrium E* is
(20) D(A, 1) := A% +a(m1)A + bo(r1)Ae ™™ + (1) + d(m1)e™ ™ = 0.
Denote
(21) PO\ m) =2 +a(m)A+e(n), QA7) = bo(r)A+d(m),

where

(22)
a(Tl) = a1z, + a2y™ + be~ 4 > 0, bo(ﬁ) — _pe—hm1 o 0,
C(Tl) = y*(2a2b€*d1‘r1 + dzp) > 0, d(Tl) — 7a2b67d17—1y* <0.

Clearly, c¢(r1) + d(11) = y*(agbe 9™ + dap) > 0, which implies A = 0
can never be a root of equation (20). When 7 = 0, equation (20)
reduces to

(23) M4 (a+b)\+c+d=0,

where

a+ by = arx;,, + ay™ > 0.
This shows that equation (23) has roots with negative real parts,
implying that E* is locally asymptotically stable when 7 = 0.

Theorem 4.2. There is no purely imaginary root for characteristic
equation (20) at positive equilibrium E*. That is, varying 7 does not
affect the stability of system (19).

Proof. Let A = iw. In equation (21), we have

Flw,m) = |P(iw,n)|2 — \Q(z’w,ﬁ)|2 =(c— w2)2 +w?a® - (w2b(2) + d2).
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Hence, F(w,71) = 0 implies
(24) wh —w?(BE +2¢—a®) + (¢ —d*) =0,

and its roots are given by
CR 2 1/2 CI 2 1/2
W= Sl + 20— @) + AV, WP = (20— ) - AV,

where

A = (b3 +2¢ —a*)? — 4(c* — d?),
? — d® = (y*)*(agbe 1™ 4 dyp)(3azbe 1™ + dyp) > 0.

To ensure that equation (24) has at least one positive root, the following
conditions must be satisfied:

(25) bg+2c—a®>>0, A>0.

First, we assume that b% + 2c — a® > 0 holds. By (22), we can get
a? — b3 > 0. So,

(26) 0<a?—b2 <2
By (22) and (26), we get

A = (b +2¢c —a®)? — 4(c* — d*)
= (b3 + 4c — a®) (b3 — a?) + 4d*

= (a® — b3)? — 4c(a® — b3) + 4d?

< 2c(a® — B2) — 4c(a® — b3) + 4d*

= 4d”* — 2c¢(a® — b3)

= d(agbe™ 1T y*)? — 2y* (2a9be™ 1Tt + dop)(arz], + azy” + 2be” 1)
(a17y, + azy™)

= —dagbe” "My [(ara), + azy*)? + be” M (2a1 7], + azy™))]
— 2dapy* (a1, + azy™ + 2be= 1) (arz, + azy”)

<0,

contradicting (25).
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Clearly, equation (24) has no positive roots. So, there is no purely
imaginary root for characteristic equation (20) at the positive equilib-
rium E*. This completes the proof of Theorem 4.2. u]

5. Discussion. In this paper, we studied a predator-prey system
with stage-structured prey population. The model involves two time
delays: gestation and maturation. Using an iteration technique and a
comparison argument, we established sufficient conditions for the global
asymptotical stability of the positive equilibrium and the boundary
equilibrium. These conditions require the product of intra-specific co-
efficients to be greater than the product of inter-specific coefficients and
are relevant only to the intra-specific competition rates of the mature
prey and predator, the capturing rate, and the effective consumption
rate. We also discussed special cases where one of the delays is ignored.
In particular, we obtained sufficient conditions for the occurrence of a
Hopf bifurcation of stable periodic solutions when the maturation delay
is zero, and we also showed that varying the maturation delay does not
affect stability of the positive equilibrium.

The sufficient conditions provided in [8, 9] for global stability of
the positive steady state depend upon time delay. In [13], Xu gave
a numerical simulation to show the existence of Hopf bifurcation as
gestation delay varies. However, the sufficient conditions obtained in
this paper do not depend upon the two time delays. Furthermore, the
sufficient conditions shown in Theorem 4.1 indicate that a Hopf bifur-
cation occurs as gestation delay increases, and this result is confirmed
by numerical investigation (see Figure 2 in more detail). Our results
also show that the maturation delay does not affect the stability of the
positive equilibrium, which is consistent with the results obtained in
[7].

It remains a challenging but interesting problem whether the local
Hopf bifurcation can be continued for all large gestation delays.
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