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MATHEMATICAL ANALYSIS OF
A BASIC VIRUS INFECTION MODEL
WITH APPLICATION TO HBV INFECTION

LEQUAN MIN, YONGMEI SU AND YANG KUANG

ABSTRACT. The basic virus infection model (BVIM) is
widely used in the studies of hepatitis B virus (HBV) infec-
tion dynamics. This model assumes that the infection process
follows a mass action law. The basic infection reproductive
number of the model is proportional to the number of all cells
of the host’s organa prior to the infection. This suggests that
the BVIM may not be a reasonable model for describing the
HBYV virus infection since it implies that an individual with
a smaller liver may be more resistent to virus infections than
an individual with a larger one. In this paper, we formulate a
standard incidence based model that amends the BVIM (we
shall call it ABVIM below) which will correct this mass ac-
tion induced model artifact. If its basic infection reproductive
number is less than 1, then every positive solution will con-
verge to the infection-free steady state. We also present an
application of ABVIM to some clinic HBV infection data.

1. Introduction. Hepatitis B is one of the major diseases in the
world. The WHO has reported that over one-third of the world’s
population (more than 2 billion people) has been or is actively infected
by HBV, more than 350 million have chronic (lifelong) infections [12],
25-40 percent of these chronic infection carriers will die from liver
cirrhosis or primary hepatocellular carcinoma [10]. The HBV carrier
rate varies from 0.1 percent to 20 percent in different areas of the world
[4]. Chronic HBV infection is often the result of exposure early in life,
leading to viral persistence in the absence of strong antibody or cellular
immune responses [9].

The study of anti-HBYV infection treatment may benefit from the use
of mathematical modeling. Several models have been introduced for
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understanding HBV dynamics [1, 3, 6, 7, 8, 10, 13, 14]. Among
those models, the basic virus infection model (BVIM) introduced by
Zeuzem et al. [14] and Nowak et al. [10] is widely used in the studies
of virus infection dynamics. The BVIM with three variables takes the
form of

&= \—dxr— fvx

(1) y = pvz —ay
v =ky — pv

where z, y and v are numbers of uninfected (susceptible) cells, infected
cells and free virus, respectively. Uninfected cells are assumed to be
produced at the constant rate A. Uninfected cells are assumed to die
at the rate of dr and become infected at the rate of Svx, where 3 is a
(questionable) rate constant describing the infection process. Infected
cells are thus produced at the rate of Svx and are assumed to die at the
rate ay. Free virions are assumed to be produced from infected cells
at the rate of ky and are removed at the rate of pv. This model can
describe some aspects of the viral dynamics in HBV infection.

Clearly, BVIM has a basic infection reproductive number of

ABk
2 Ry = —.
(2) 0= adu
If R; > 1, then the BVIM has two steady states, the infection free
steady state Ey and the endemic steady state E*:

®) By = (5.00),

o e R )

It is known that if a basic reproduction number Rj is less than 1, then
E; is locally asymptotically stable and E* does not exist. The global
attractive properties of these steady states are studied by Leenheer and
Smith [5] recently.

Observe that the basic infection reproductive number Rj is propor-
tional to A\/d which represents the number of total cells of the liver.
This suggests that the BVIM may not be a reasonable model for de-
scribing HBV virus infection since it implies that an individual with
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a smaller liver may be more resistent to the virus infection than an
individual with a larger one. Therefore, the practical meaning of Rj is
biologically questionable at the best.

A typical chronically infected HBV patient has a total serum daily
production rate of about 2 x 10! to 3 x 10'? virions [3]. An average
human liver consists of billions of liver cells. These large numbers
suggest that a more plausible HBV model should employ a standard
incidence function, instead of the mass action incidence used in BVIM.
Therefore, we propose the following amended basic HBV virus model
(to be referred to as ABVIM)

(5a) b= A—dz— D"
r+y
. Buzx
5b - -
(5b) iy W
(5¢) v =ky— pv

where the meanings of the variables z, y, v and the parameters A, d, a,
k and p are the same as those of the BVIM. However, here 3 has a clear
biological meaning which is the maximum infection rate of a virus. An
extension of this model with a time delay in infection is presented and
studied in Gourley et al. [1].

For (5), if y(0) = v(0) = 0, then we see that y(t) = v(t) = 0 for t > 0.
It is easy to show that the solution with initial condition z(0) > 0,
y(0) > 0 and v(0) > 0 or x(0) > 0, v(0) > 0 and y(0) > 0 will have
all its component positive for ¢ > 0. Hence, we will assume below that
z(0) > 0, y(0) = 0 and v(0) > 0. Notice that the ABVIM has a basic
infection reproductive number of

( Ro= 2
that is independent of the questionable factor A/d.
If Ry > 1, then the ABVIM also has two steady states
(7) B < A , AMRo —1) ’ Ak(Ry — 1) >’
d+a(Ry—1)" d+a(Ry—1)" p[d+a(Ry —1)]

representing the disease free steady-state and the endemic steady state,
respectively. Observe that a biologically meaningful E* (meaning its
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component must be nonnegative) does not exist if Ry < 1, and it
becomes E; when Ry = 1.

Let z = z + y; then we have
2 < X\ — min{a,d}z.
A simple comparison argument shows that

lim sup (z(t) + y(t)) < A/ min{a, d}.
t—o0

Which shows that the z and y components of the solution are even-

tually uniformly bounded by A/ min{a, d}. Indeed, we can show the z

component of the solution is eventually uniformly bounded by A/d. The

v equation implies that the v component of the solution is eventually
uniformly bounded by k\/p min{a, d}.

It is clear that if 0 < z(0) < A/d, v(0) > 0 and y(0) > 0, then
0<z(t) <A/dfort>0.

2. Dynamics of ABVIM. We consider first the local stability of the
steady state Ey. The Jacobian matrix of the vector field corresponding
to ABVIM (5) is

By oz o
(z +y)? (z+y)? T+y
8  J= Buy _ B B
(z +y)? (z +y)? T+y
0 k —
The Jacobian matrix, evaluated at Ey, is
-d 0 -3
(9) Jo,=| 0 —a B
0 k. —pu
The three eigenvalues of the matrix Jg, are
(10) A1=—d
- 2 —4(ap — Bk
a1 Ny = —(atm) +V/(at p)? ~ 4ap — BF)

2
(12) N = Z@t#) = V(at w)? — dap - BF)
2
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It follows that if Ry = (8k/ap) < 1, then Ey is locally asymptotically
stable. If Ry > 1, then E is unstable.

We now consider the local stability of steady state E*. We assume
in the rest of this section that Ry > 1. The Jacobian matrix at E* is

d— a’u(Ro —1)? a’u(Ro — 1) _ap

Bk Bk k

Jg- = a’u(Ry — 1)? a’u(Ro — 1) .

(13) W o -
—d—Cy Cs —Cs
£ Cl —Cg —a Cg
0 k — i

Notice that kC3 = ap. The characteristic equation associated with
Jg~ is given by

(14) P+ (p+d+a+Cp+Co)l? + (uCq +dCs + Crpu + ad
+dp + Cra)l + dCou + Crap = 0.
For convenience, we denote the above equation by
(15) PP+ axl® + a1l + ap = 0.
Observe that

0y = a?p?(Ry — 1)ﬂ[c}l€+ a(Ry — 1)) S 0.

Clearly, a1, az are both lager than zero and

aras > duCs + apCh + adp > ag.
By the Routh-Hurwitz criterion, we see that E* is locally asymptoti-
cally stable whenever Ry > 1.

Therefore, we have proven the following theorem for model (5).

Theorem 2.1. If Ry < 1, then Ey s locally asymptotically stable
and E* does not exist. If Ry > 1, then Ey is unstable and E* is locally
asymptotically stable.
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The global stability of E is implied by the more general result of
Gourley et al. [1]. Their proof employed the more advanced monotone
dynamical system theory. For convenience, we provide a similar but
much more straightforward proof. In addition, we explicitly describe
an initial condition determined positive invariant region that confines
the solution.

Theorem 2.2. If the basic reproduced number Ry = (Bk/ap) < 1,
then solutions initiated in the domain

(16)
av(0)

A
D:{(x,y,v)|x6 |:078:|7 yZOa UZOa y_’_%gy(o)—‘rT}

stay in it and tend to Ey.

Proof. Assume that Ry = (Bk/ap) < 1. It is easy to see that
the solutions initiated in the domain D satisfy z(t) € [0,(A/d)]. Let
z =y + (av/k). Then

apv

(17) z'g,Bv—T:ﬁ<l—Rio>v§O.

This shows that solutions initiated in D stay in it. If v(0) = y(0) =0,
then clearly v(t) = y(t) = 0 and z(t) tend to A/d. In the case of
y(0) = 0 and v(0) > 0, we see that v(t) tends to zero which in turn
forces that y(t) tends to zero. In all these cases, we see that, as a result,
we must have z(t) tends to \/d. O

While we know that E* is locally stable when it exists and numerically
E* appears to be globally stable, the mathematical proof of it remains
open.

3. An application to HBV infection dynamics. In the study
[2], one group of HBeAg-Positive chronic hepatitis B patients received
100 mg of lamivudine once daily. The study comprised 48 weeks of
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TABLE 1. Rapid decline in plasma virus: mean HBV DNA levels (log copies/ml)
in response to the therapy, and the virus level returning rapidly after the treatment

was stopped.

Week 0 1 2 4 6 8 12 18
Patient Nos. 272 272 272 267 267 267 267 267
Virus load 98 78 6.6 56 51 48 44 43
Simulation EQ.5 9.8 7.77 6.18 591 5.83 5.76 5.61 5.37
Simulation EQ.1 9.8 7.77 6.18 5.92 585 5.77 5.62 5.40
Week 24 30 36 42 48 52 60 72
Patients Nos. 263 263 259 260 249 248 228 241
Virus load 4.2 4.0 415 42 45 7.0 80 820
Simulation EQ.5 5.14 4.90 4.67 4.44 4.20 7.98 8.08 8.22
Simulation EQ.1 5.17 4.95 4.72 4.50 4.27 8.03 8.11 8.22

treatment and a 24 week treatment free follow-up. While the onset of
therapy and viral levels decline rapidly, the virus returns as soon as the
drug is withdrawn (see Table 1). In the following subsections, we shall
simulate such phenomena with both ABVIM and BVIM models.

3.1. ABVIM-based dynamic simulation. We shall use this
set of clinical data to formulate an anti-HBV infection therapy model.
Assume that, during the lamivudine drug treatment, the dynamic
model of the patients with the mean load HBV DNA is described by
the following amended ABVIM

dx Bux
> N—dr—(1—
7 A—dx—( m)x Ty
dy Bux
(18) Y= (-m) s ay,
dv
= -- — .
o = A= n)ky — v

Before the drug therapy, assume m = n = 0 and that the patients are
in the stable state E*. Therefore,

pv(0)[d + a(Ro — 1))
NRo—-1)

5= auRo‘

(19) k= -
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The following are the detailed steps involved in the estimation of
model parameters.

1) A human liver contains approximately 2 x 10! hepatocytes [10].
A patient has a total of about 3000 ml plasma. Usually, tested virus
qualities are in copies/ml. Consequently, we can assume that

(20) A/d ~ 2 x 10*/3000.

2) Since the half-life of a hepatocyte is about half a year [11], we can
assume that

(21) d = —In(0.5)/183 ~ 0.00379.

3) We select that p = 0.67 [10], which is equivalent to assuming that
the half life of a virus is about one day.

4) Assume that, before the lamivudine treatment, the patients are in
the stable virus persist infection state, that is,

(wv)E*( A A(Ro — 1) Ak(Ry — 1) )
W EE T\ dta(Re—1) d+a(Ro—1)" pld+a(Re 1))
It follows that
y  Ro—1
T+7 Ry

In a chronic HBV infection between 5 percent ~ 40 percent of all
hepatocytes can be infected [10]. Consequently, we can choose Ry =
1.33.

5) Based on the clinical data and numerical simulation, we can select
the parameters as follows.

(22) {d,a,p, Ry, m,n} = {3.7877 x 103, 3.384, 0.67, 1.33,0,0.99982} .

Here we take the restraining rate m = 0 because even though we choose
m = 1, there are no obvious affections on our numerical simulation
results for both the therapy period and the treatment-free follow-up.
The basic reproduction number Ry = 1.33 is the one before the therapy,
iie, m = n = 0. Ry will be reduced to 2.394 x 10~* during the
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FIGURE 1. The dynamic simulation (solid lines) of the treatment model (18).
(a) uninfected cells z; (b) infected cells y; (c) virus declines in response to drug
treatment and virus resurges as soon as the drug is withdrawn in which the clinical
data are marked by dots.

treatment. After the lamivudine treatment, the patients are assumed
to return to the state before the therapy, that is, m =n = 0.

Taking the endemic steady state (7) as the initial condition, the
numerical simulation is shown in Figure 1. The simulated data are
given in the fourth and eighth rows in Table 1. As can be seen from
Figure 1 (c), after the onset of therapy viral levels decline rapidly, but
as soon as the drug is withdrawn, virus level returns rapidly. Figure
1 (c) indicates that the model simulation agrees well with the clinical
data reported [3].

3.2. BVIM-based dynamic simulation. Now let us substitute
the term (Bvz)/(z 4+ y) of equation (18) by SBvz. Then we obtain an
anti-HBV infection therapy model based on the basic virus dynamic
equation (1). In this case the parameters k and 8 formulated by (19)
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FIGURE 2. The dynamic simulation (solid lines) of the treatment model based on
(1). (a) uninfected cells x; (b) infected cells y; (c) virus declines in response to drug
treatment and virus resurges as soon as the drug is withdrawn in which the clinical
data are marked by dots.

have the form

(23) k= /,w(O)aR(;, _ AauRS.
AR —1) dk
The other parameters are the same as those given in (22) except
taking a = 3.259d to replace a = 3.38d. Otherwise, simulation data
will deviate more from the clinical ones.

Taking the endemic steady state (4) as the initial condition, the
numerical simulation is shown in Figure 2. The simulated data are
given in the fifth and tenth rows in Table 1.

3.3. Discussion. From Table 1 and Figures 1 and 2, it can been
seen that the simulation results of the BVIM (1) and the ABVIM (18)
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FIGURE 3. The simulation (solid lines) of the solution of the treatment model (18)
for a prolonged treatment lasting 3.44 years. (a) uninfected cells z; (b) infected
cells y; (c) viruses decline in response to drug treatment and viruses rebound as
soon as the drug is withdrawn.

are similar. However, the ABVIM can interpret the clinical data better
in biological terms since it does not imply the absurd statement that an
individual with a smaller liver may be more resistant to virus infections
than an individual with a larger one.

If we prolong the drug treatment to three years and then follow up in
seven years, the corresponding simulation results of equation (18) are
shown in Figure 3. It can be seen that, even though the HBV DNA
load of the patient is reduced to about 1 cppies/ml at the end point
of the three years’ treatment, the HBV DNA load can still relapse to
about 5 x 103 log copies/mL soon after stopping treatment for 10 days,
and then gradually increases to 1.8 x 10® copies/ml after the treatment
is withdrawn in about seven years (see Figure 3).

Only after delaying the therapy to about 4.8 years, all infected cells
can be replaced by uninfected ones (HBV DNA load less than 1/3000
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copies/ml), so that the treatment benefit can be kept. A similar case
appears in the simulation of the BVIM (1). However, treatment only
needs to be prolonged to 3.56 years to delete all HBV in vivo. Clinical
trials demonstrate that it is too short to cure HBV infection with the
drug lamivudine for most patients.

4. Concluding remarks. The widely used BVIM has been exam-
ined. It has been found that its basic infection reproductive number
R§ is questionable. The ABVIM has been introduced whose basic in-
fection reproductive number denoted by Ry seems to be reasonable.
The possible relationships of the BVIM and the ABVIM parameters
are discussed, and other free model parameters are determined based
upon the clinical data [2]. The simulation results of the ABVIM ap-
pear more close to the clinical trial. The predictions of the treatment
endpoint with the drug lamivudine are given, which are longer than 3.5
years for patients with mean plasma HBV DNA levels.

To the best of our knowledge, no other researchers have set up math-
ematical models for interpreting clinical trial data both for drug treat-
ments and treatment free follow-up. The quantitative understanding
of the HBV dynamic will make it possible to devise optimal treatment
strategies for individual patients. More detailed assay data are needed
for modeling. Further research for HBV dynamics is promising [11].
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