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STABILITY OF
THE T-PERIODIC SOLUTION ON THE ES-S MODEL

J.G. LIAN AND H.K. ZHANG

ABSTRACT. In this paper, by employing the powerful and
effective coincidence degree method, we show the existence of
T-periodic solutions of the extended simplified Schnakeberg
(ES-S) model in D, where D is a strictly positively invariant
region of the ES-S model. Furthermore, Floquet theory is
provided to show that the T-periodic solution zo(t) of the ES-
S model is unique in D and locally uniformly asymptotically
stable. This establishes a solid foundation for studying the
patterns of the extended Schnakeberg (E-S) model. The
novelty of the approach in this paper is to combine degree
theory and Floquet theory together to study stability of the
periodic solution in an ordinary differential equation system
with continuous positive periodic coefficients. Actually, this
provides a general method of qualitative analysis for the T-
periodic solution in a nonautonomous system.

1. Introduction. In the last several decades, there have been a lot
of models developed involving the study of cells reproduction pattern,
such as the Brusselator model [13, 14|, the Glycolysis model [17], the
Gray-Scott model [5, 6, 9, 10, 12] and the Gierer-Meinhardt model [3].
Usually, the system of reaction-diffusion equations with zero-flux and
periodic boundary conditions [7], which has stable steady-states, will
induce the cell reproduction pattern by basic analysis due to the Turing
principle [11, page 380]. For models with constant coeflicients, their cell
division patterns do not relate to the time factor. Time-related process
of cell division is called aberrance of cell division, whose patterns have
significant meaning to cancer pathology, especially, for the mechanism
of splitting of the cancer cell. “Unlike normal cells, cancer cells do
not carry on maturing once they have been made. In fact, the cells
in a cancer can become even less mature over time. With all the
reproducing, it is not surprising that more of the genetic information in
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the cell can become lost. So the cells become more and more primitive
and tend to reproduce more quickly and even more haphazardly.” [18]
As a result, to explain cancer cell reproduction, one has to study time-
related patterns. Therefore, we extend the Schnakeberg model with
constant coefficients to the model with coefficients to be positive T-
periodic functions (we call such a model an E-S model). The goal
of this research is to study the pattern formations of the E-S model.
This is quite a different job compared to the study of the Schnakeberg
model by using Turing instability. In this case, we need to find a T-
periodic solution for the E-S model in a certain patch; as a source
of the T-periodic pattern, we have to study the stability of the T-
periodic solution and its bifurcation along some parameters. From
the mathematical point of view, the Turing instability method only
works on an autonomous system, but what we need to focus on is a
nonautonomous system. Therefore, study of the E-S model becomes
much more complicated and challenging.

In this paper, by employing the powerful and effective coincidence
degree method, we show existence of T-periodic solutions of the ES-S
model in D, where D is a strictly positively invariant region. Further-
more, Floquet theory is provided to show that the T-periodic solution
zo(t) of the ES-S model is unique in D and locally uniformly asymp-
totically stable. This establishes a solid foundation for studying the
patterns of the E-S model.

2. Invariant region of the ES-S model. The Schnakeberg model

[16] is

ug(r, t) = diAu(r,t) + a — u(r,t) + u2(r,t)v(r,t) r €A,

ve(ryt) = daAv(r,t) + b — u?(r, t)v(r,t) reA
with boundary conditions

n(r) - Vu(r,t) = n(r) - Vo(r,t) =0
for r € OA, where n(r) is the unit outward normal vector field along
the boundary of A = [0,1] x [0,{], [ > 0, and a,b,d;,ds are positive
constants. If we consider the case when reactants are well stirred,
then the diffusion terms disappear. In this case, we get the simplified
Schnakeberg (S-S) model [11, page 156]
{ U=a—u+ u?v,
¥ =b— u?v.
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If, in the S-S model, we allow the coefficients a and b to be positive
continuous T-periodic functions of ¢ with period 7" > 0, then the cor-
responding model is called an ES-S model. Similarly, the Schnakeberg
model will be called an E-S model if we replace constants a and b by
positive continuous T-periodic functions.

Let
[ u(t) _Ja—-u+uPv
z(t) = {v(t) and F(t,z(t)) = {b 2w
Then the ES-S model is defined by
(1) o(t) = F(t,z(t))

with conditions

(2) 1.1<a(t) < 1.6, 0.04<b(t)<0.1.

Lemma 2.1. There exists a strictly positively invariant region
D= {(u,v) €eR?:1<u<2 001<v<0.1}

for the ES-S model given by (1) with conditions (2).

Proof. Clearly D is a closed convex subset of R?. We only need
to check whether n(u,v) - F(t, (u,v)) < 0 along the boundaries of D,
where n(u,v) is the unit normal vector field along the boundary of D
and F(t, (u,v)) is defined in (1). Notice that for, any (u,v) € D,

(3) 1<u<2 001<v<0.1

Let I; = {(u,v) € R*> : u = 1}, for any (u,v) € I3 N ID,
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Let I = {(u,v) € R? : u = 2}, for any (u,v) € Il N D,
n(u,v) = (1,0). It follows from (2) and (3) that

n(u,v) - F(t, (u,v)) = a(t) — 2+ 4v(t) < 0.

Let I3 = {(u,v) € R? : v = 0.01}, for any (u,v) € I3 N ID,
n(u,v) = (0, —1). Then using (2) and (3), we get

n(u,v) - F(t, (u,v)) = —b(t) + 0.01u%(t) < 0.

Let Iy = {(u,v) € R? : v = 0.1}, for any (u,v) € Iy N D,
n(u,v) = (0,1). It follows from (2) and (3),

n(u,v) - F(t, (u,v)) = b(t) — 0.1u?(t) < 0.

Since n(u,v) - F(t, (u,v)) < 0 for all (u,v) € 9D, D is a strictly
positively invariant region. ]

Linearize the system (1) with respect to its T-periodic solution
z(t) = (u(t),v(t))’ € D for any t € R (if such a T-periodic solution
exists). Then we get
(4) W(t) = AW (2),

where

(=14 2u(t)u(t)  ud(t)
A(t)—Fzm—( —2u(t)v(t) —uz(t)>

wy (1)
W(t) =
“ <w2 (t)>
is a variation vector field along the trajectory z(t).

Proposition 2.1. Linear system (4) satisfies tr (A(t)) < 0 and
det (A(t)) > 0 for any t € R.

Proof. By (2) and (3),

tr (A(t)) = —1 + 2u(t)v(t) — w?(t) < 0.
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Furthermore,
det (A(t)) = u?(t) >0. O
3. Preliminaries. Consider the nonlinear system

(5) i(t) =V(t,z(t)), =(to) =m0, =(t)€ R

Lemma 3.1. If z*(t) is an exponentially stable solution of (5), then
it is also a uniformly asymptotically stable solution of (5).

For the proof, see [4, pages 178-179)].

Let X = {z € C([0,T]) | z(0) = (T)}. Clearly X is a Banach space
with the supremum norm. Define Lz (t) = (t) with domain

Dom (L) = {z € C*([0,]) | 2(0) = 2(T)}.

It is easy to verify that Dom (L) is contained in X, the range of L is
Im (L) = {2(t) € X | fOT z(t)dt = 0} and L is a Fredholm mapping of
index 0. Let

(6) © = {z € Dom (L) | z(¢t) € D, for all ¢t € [0,T]}.

Define 71 : © — X by Fi(z) = F(-,z(-)) and H;(x)(t) = Fi(x)(t) —
Lz(t).

Now, construct a homotopy family
Hy: (Dom(L)N®©) X [0,1] — X
to be of the form
(7) Hx(2)(t) = Fa(z)(t) — Lz(t),

where Fy : © x [0,1] - X with

o e ()
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Here d(t) = (1 — A)L4 + Xa(t) and b(t) = 0.05(1 — A) + Ab(t) with
A € [0,1]. It is easy to verify that Fy : © x [0,1] — X is L-compact.
For more details of degree theory, see [8, Chapters I-IV].

Lemma 3.2. Given \ € [0,1], if x5 € © is a T-periodic solution of
the system

(9) () = Falz)(t),

then x) € ©.

Proof. Clearly, @ and b satisfy conditions (2). System (9) is an ES-S
model. By Lemma 2.1, D is still a strictly positively invariant region
of system (9). None of the T-periodic solutions of (9) in © can touch
the boundary of D. O

Corollary 3.1. 0 ¢ H,((Dom (L) N dD) x [0,1]).

Lemma 3.3. D.(Hy(z)(t),®) = Dg(Ho(z)(t),DP) = 1, where Dy,
denotes Leray-Schauder degree and Dp denotes Brouwer degree.

Proof. For the system Hy(z)(t) = 0, there is only one steady-state
p=(a+b,(b/a+b)) = (1.45,(1/29)) in the strictly positively invariant
region D, which is a trivial T-periodic solution. Since Hy(z)(t) = 0 is
an autonomous system, Proposition 2.1 and Bendixson’s criteria [15,
page 264] guarantee that p is only one T-periodic solution in D.

For the system Ho(z)(t) = 0, the Leray-Schauder degree of Hy in D is
in fact reduced into the Brouwer degree. Therefore, by Proposition 2.1,

Dy (Hy,0) = Dg(Hy,D) = Dg(Fo,D) =sign (det A(t)) =1,
where A(t) is defined in (4). o

Lemma 3.4. For system (4) with conditions (2), zero is the only
T-periodic solution.

Proof. Suppose (4) has a nontrivial T-periodic solution called W7 (¢).
By Proposition 2.1 and Floquet theory [2, pages 93-105], its orbit I is
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orbitally asymptotically stable. For s € R, sWi(t) is also a T-periodic
solution of (4). Then the orbit of sW;(t) cannot be attracted to I' for
any s € R. This leads to a contradiction to the orbital asymptotic
stability of T'. o

Remark 3.1. For the linear system (4), if tr (A(t)) does not change
sign in some simply connected region E C R?, then (4) has no
nontrivial periodic solution in E; since system (4) is a linearization
of a nonautonomous system, Bendixson’s criteria cannot be used to
prove Lemma 3.4.

Lemma 3.5. Suppose F : X — X is a completely continuous map of
a Banach space such that F(0) = 0 and F is Frechet differentiable at 0
with Frechet derivative T € K(X), where K(X) is a set of all compact
operators defined on X. If I — T € L(X) is reqular (invertible), then
there exists an n > 0 such that, for B={z € X : ||z||o <71}, we have

D(F —1,B)=D(T — 1, B).

For the proof, see [1, Chapter 14].

Assume that system (4) is the linearization of system (1) with respect
to zo(t); by Theorem 2.10 of [2, page 97], system (4) can be transformed
into an autonomous system

(10) 2(t) = RZ(1),

where R is called a monodromy matrix of A(t).

Lemma 3.6. Let A(t) and W (t) be defined in (4), LW (t) = W (¢);
B(zo(t),e) C © denotes a small neighborhood of xo(t), B(0,e) C
O\ {zo(t)} denotes a small neighborhood of 0. Set

QW (t),A) = AR + (1 — NA()W(t) — LW (t).

Then
DB(Q('? 1)7B(075) n Rz) =1L
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Proof. Clearly, tr (R) = p1+p2 = (1/T) fOT tr (A(s)) ds (mod(27i/T))
< 0, where p; and py are eigenvalues of R. By Proposition 2.1, for any
A€ [0,1],

tr AR+ (1 — M) A(t)) = Mtr (R) + (1 — Mtr (A(t)) <0,

and Remark 3.1 implies that Q(W (t),\) = 0 has only a trivial T-
periodic solution in B(0,¢). By degree invariance with respect to the
homotopy family,

DL(Q('? 0)73(075)) = DL(Q('? 1)7 B(O,é‘)) = DB(Q(') ]-)a B(O,&) N R2)

Consider the Taylor expansion of Hy(x)(t) at xo(t) € B(zo(t),e),
where Hq(z)(t) is defined in (7) as A = 1. Then we have

Hy(2)(t) = Hu(zo)(t) + M(2)(x(t) — zo(t)) + h(t, z(t) — zo(t)),

where M = F{ — L is (Hy)!, and h(t,z(t) — zo(t)) is a function of
o(]|z(t) — o(t)]|so). Since zg(t) is the unique solution of Hj(z)(t)
0 in D, by excision property of the degree, Dp(H;(z)(t),©)
Dy (Hi(z)(t), B(zo(t),e)) and by Lemma 3.5,

Dr(Hy(2)(t), B(xo(t),€)) = Dr(M(£)(x(t) — o (t)), B(wo(t), €))-

Let W(t) = x(t) — o(t). Then by Lemma 3.3,

4. Main results.

Theorem 4.1. For the ES-S model, there exists only one uniformly
asymptotically stable T-periodic solution xy(t) in D.
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Proof. (Existence). Combine Lemmas 3.2 and 3.3 and Corollary 3.1.
By a general existence theorem of the Leray-Schauder type, we get

Dr(Hy(z)(t),0) = Dr(Ho(x)(),0) = Dp(Fo(z)(t), D) =1,

which implies that there at least exists one T-periodic solution z(t) =
(ug(t),vo(t))T of the ES-S model in D. If a and b are constants, it is easy
to show that there is only one trivial T-periodic solution z( € int (D);
otherwise, we can easily verify that xo(t) is a nontrivial T-periodic
solution of the ES-S model in D by substituting xo(t) into the ES-S
model.

(Uniqueness). Define
Cr = {z(t) € ©z(t) satisfies (1) with conditions (2)}.
Since zo(t) € Cr, Cr is not an empty set. If a and b are constants,
there is only one constant solution in Cr.

If one of a(t) and b(t) is a nontrivial T-periodic function, then
zo(t) € Cr is a nontrivial T-periodic solution. Assume C7 is not a
singleton; we pick

m=(19). w0 = (10)

in Cr and substitute them into (1) to get

(11) di(t) = F(t,z:(t), i=1,2.
Define 2(t) = z1(t) — z2(t). By the mean value theorem, we get
1) w0 =) [ Fltaa) 00 - ()] o
and
r . [ =1+2n(t) m(t)
[ Filtiaao) + 00 - mmionas = (T 2O 7O,
where

m(t) = / s (£) + O(uus (£) — ua (1)) 26,
1
n(t) = / s (£) + Bun (£) — wn(£))][w2(£) + 8w (£) — v ()] db.
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Since
n(t) = 5 (02(£)ur (6) + ua (B)er (6) + 5 (a1 () — wa () (1 () — va()

and
m(t) = %(ul(t) —us(8))? + us(t)us (1),

b ( /0 " F [t a(t) + 821 (6) — 22(0)] d9>

=_1— %vl(t)2 — l1)2(75)2 — svi(t)va(t)

+ %vz(t)m(t) + g“l(t)W(t)

2 2
+ gUl(t)ul(t) + gUZ(t)W(t)'

Notice the following facts:

1 2
Fu2()ur(t) + gua(t)uz(t) <

Lo () + St (t) < 2

It follows that
(13) tr (/0 Fl[t, z2(t) + 0(z1(t) — z2(t))] d9> < 0.

Equation (13) implies that the zero solution is the only T-periodic
solution for (12) by Remark 3.1. Hence, z1(t) = x2(t). Cr is a
singleton.

(Stability). If a(t) and b(t) are constant functions, then zg € D is
a constant solution of system (1). By Proposition 2.1, zg is a locally
uniformly asymptotically stable solution.

If one of a(t) and b(¢) is a nontrivial T-periodic function, z((¢) is a
nontrivial T-periodic solution of system (1). By Proposition 2.1, one
Floquet exponent p; has negative real part. If Real (p3) < 0, zo(t) is
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locally uniformly asymptotically stable by [2, Theorem 2.13, page 101]
and Lemma 3.1.

To show that Real (p2) < 0 always holds by treating these two cases:
(1) p2 is a complex number. Notice that p; and p2 are conjugate
eigenvalues of R. Therefore, Real (p;) < 0 implies that Real (p2) < 0;
(2) p2 is a real number. Clearly p; is also a real number and p; < 0
implies that pa # 0 (otherwise, (4) must have one nontrivial T-periodic
solution, which contradicts Lemma 3.4). If p; > 0, then det (R) < 0,
sign (det (R)) = —1 = Dp(Q(-,1), B(0,e) N R?), which contradicts
Lemma 3.6. m|

5. Future works. In this paper, we proved the existence, uniqueness
and stability of the periodic solution xo(t) of the ES-S model. This
establishes a foundation for further study of patterns of the E-S model.
Of course, the problem mentioned here is still open; the investigation
of this question is currently underway.
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