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A GENERALIZATION OF WOLSTENHOLME’S
HARMONIC SERIES CONGRUENCE

HAO PAN

ABSTRACT. Let A, B be two nonzero integers. Define the
Lucas sequences {u,}22 , and {v,}22 , by

up =0, w1 =1, up=Aupn—1— Bup—_2 forn>2
and
vo=2, vi=A, wvn=Avp_1— Bvp_3forn>2.

For any n € Z7, let w, be the largest divisor of u, prime to

U, u2,... ,Un_1. We prove that for any n > 5
n—1 2
E v _ (P DA un (mod w?)
u 6 Un o
- J
j=1

where A = A2 — 4B.

1. Introduction. Let A, B be two nonzero integers. Define the
Lucas sequence {u, 2, by

up=0, w;=1 and wu,= Au, 1 — Bu, o forn>2.
Also its companion sequence {v,}>2 , is given by
vw=2, vy=A and v, = Av,_1 — Bv,_2 forn > 2.
Let A = A% — 4B be the discriminant of {u,}52, and {v, }°°,. It is

easy to show that
Un = a™ + Bn
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and
n—1

n—1 .
— jgn—-1—j _ ) & if A=0,
o jz:;) P { (@™ —pB")/(a—B) otherwise,

where

= (A+VR),  p= (A-VA)

Let p > 5 be a prime. The well-known Wolstenholme’s harmonic
series congruence asserts that

p—1 1
(1.1) =~ =0 (mod p?).
“J

J

In [3], Kimball and Webb proved a generalization of (1.1) involving the
Lucas sequences. Let r be the rank of apparition of p in the sequence
{un}$ g, i.e., 7 the least positive integer such that p | w,. Kimball and

‘Webb showed that

L

(1.2) L =0 (mod p?)
1 J

T

J

provided that A=0orr=p+1.

In this paper we will extend the result of Kimball and Webb to
arbitrary Lucas sequences. For any positive integer n, let w, be the
largest divisor of w, prime to wuj,us,...,u,—1. Here w, was firstly
introduced by Hu and Sun [2] in an extension of the Lucas congruence
for Lucas’s u-nomial coefficients.

Theorem 1.1. Let n > 5 be a positive integer. Then

(1.3) iu—f LI)A “n (mod w?).

Un

It is easy to check that either all u,, are odd when n > 1, or one of
up = A and uz = A2 — B is even. So w, is odd for any n > 3. Also
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we can verify that either u,, is prime to 3 for each n» > 1, or 3 divides
one of uy, uz and uy = A*> — 2AB. Hence, 3 { w,, provided that n > 4.
Finally, we mention that w,, is always prime to v,, when n > 3. Indeed,
since

Up = Atup_1 — Bup—o and  (wp, Aup_1) = (W, u2tn_1) = 1,
we have w,, and B are co-prime. And, from
Up = Upy1 — Buy_1 = Auy, — 2Buy, 1,

it follows that (wy, v,) = (wp, 2Buy,—1) = 1.

The Fibonacci numbers Fy, Fi,... are given by
Fob=0, Fi=1 and F,=F, 1+ F,_o forn>2.
And the Lucas numbers Ly, Ly,... are given by
Ly=2,L;=1 and L,=L, 1+ L, o forn>2
Then, by Theorem 1.1, we immediately have

Corollary 1.2. Let p > 5 be a prime. Let n be the least positive
integer such that p | F,,. Then we have

L_ 5(n*—1) F,
F 6 L,

(1.4) (mod p?).

wm‘

The proof of Theorem 1.1 will be given in the next section.

2. Proof of Theorem 1.1. For any n € N, the g-integer [n], is
given by

n

=1+q+--+q" "

l—¢

[n]q = 1— q

Now we consider [n], as the polynomial in the variable g. Recently Shi
and Pan [5] established a g-analogue of (1.1) for prime p > 5:

p—1
1 2

D
=L - lfq +
> 71, )+

(2.1) L1 )%, (mod [p]2).

<.
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Let

be the nth cyclotomic polynomial, where ¢, = e2™*/". We know that
®,,(g) is a polynomial with integral coefficients, and clearly ®,(q) is
prime to [j]; for each 1 < j < n. Indeed, using a similar method, we
can easily extend (2.1) as follows:

Proposition 2.1. Let n be a positive integer. Then
(2.2)

n—1

1

7 [ilq

24 =12(n—1)(1 - q) + (n* = 1)(1 — ¢)*[n], (mod ®,(q)*).

HM

For the proof of (2.1) and (2.2), the reader may refer to [5]. From
(2.2), we deduce that

n—ll i n—12_ 1— j
122 i =122 (qu)

242 —12(n—1)(1—q)

= (n* - 1)(1 —¢)*[nly (mod ®,(q)*).

And the above congruence can be rewritten as

(X

Since ®,(¢) is a primitive polynomial, by Gauss’s lemma, cf. [4,
Chapter IV, Theorem 2.1 and Corollary 2.2], there exists a polynomial
G(q) with integral coefficients such that

3 ( D)) [Tl = el

(n? = 1)(1 - g)(1 - ¢" )H b =0 (mod ®,(q)).
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Proof of Theorem 1.1. When A = 0, the theorem reduces to
Wolstenholme’s congruence (1.1). So below we assume that A # 0,
i.e., @ # (. Let p be a prime with p | w,, and let m be the integer such
that p™ | w,, but p™*! {w,. Obviously, we only need to show that

— - 1A
Z_Jzu Un  (mod p2™)
Uj

n

for each such p and m.

Let K = Q(v/A), and let Ok be the ring of algebraic integers in K.
Clearly o, 8 € Ok.

Let (p) denote the ideal generated by p in Og. We know that if

()

then (p) is prime in Ok, where
)

is the Legendre symbol. Also, there exist two distinct prime ideals p
and p’ such that (p) = pp’ provided that

(-

Finally, when p | A, (p) is the square of a prime ideal p. The reader
can find the details in [1]. Let

7= { () if(A/p)=-1 or O,
pif(A/p)=1.

Obviously, either a or g is prime to 3, otherwise we must have P is

not prime to u; for any j > 2, which implies that p | u;. Without loss

of generality, we may assume that 3 is prime to ‘L.

Lemma 2.2. Let p be a prime and k € Z. Suppose that

(3)-

and (p) = pp’. Then for any m € Z™, p™ | k implies that p™ | k.
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Proof. Observe that o : VA — —v/A is an automorphism over K.
Also we know that o(p) = p’. Hence,

P =o(p™) | o(k) =k

Since p and p’ are distinct prime ideals, by the unique factorization
theorem, we have (p)™ = p™p" divides k. u]

Now it suffices to prove that

For any | € Z*, let

(o, 8) =BV (a/B) = [] (a=¢iB),
1<d<l

(d.h)=1

(n? —l)A Up,

Un

(mod %™).

Q|§

where ¢ is the Euler totient function. Apparently, ®;(a,3) € Ok.
Notice that
!

u = o= H,B‘P(d)i’ (a/B) = H D4(a, B).
a- B 1<d 1<d
dil dil

Hence u; is always divisible by ®;(«, 3). Then we have w,, divides

P (e, B) =

Un

H1<d<n ®4(a, B)

since w,, is prime to ug whenever 1 < d < n.

Substituting /8 for g in (2.3), and noting that

01— J . . :
wy =01 5 g and vy = 671+ (0/8)),
we obtain that
n—1
(12[3 Z (n? —1)p"" l(aﬁ)zun> Hﬁlfjuj
j=1

- B_zw(n)G(aa B)(}n(aa /8)2
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As (wp,6) =1 and ‘P is prime to 3, we conclude that

no! V5 n? —1)A
S B, 0 (mod (1)),
j=1

Finally, since
1 1 e
a® = §(vn + u,V A) and ﬂn = 5(1)” — Up A)v

we have
a"=p"=v,/2 (mod wy).

All is done. 0
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