A GENERALIZATION OF WOLSTENHOLME'S HARMONIC SERIES CONGRUENCE

HAO PAN

ABSTRACT. Let A,B be two nonzero integers. Define the Lucas sequences $\{u_n\}_{n=0}^\infty$ and $\{v_n\}_{n=0}^\infty$ by

$$u_0 = 0$$
, $u_1 = 1$, $u_n = Au_{n-1} - Bu_{n-2}$ for $n \ge 2$

and

$$v_0 = 2$$
, $v_1 = A$, $v_n = Av_{n-1} - Bv_{n-2}$ for $n \ge 2$.

For any $n \in \mathbf{Z}^+$, let w_n be the largest divisor of u_n prime to $u_1, u_2, \ldots, u_{n-1}$. We prove that for any $n \geq 5$

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2-1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{w_n^2},$$

where $\Delta = A^2 - 4B$.

1. Introduction. Let A, B be two nonzero integers. Define the Lucas sequence $\{u_n\}_{n=0}^{\infty}$ by

$$u_0 = 0$$
, $u_1 = 1$ and $u_n = Au_{n-1} - Bu_{n-2}$ for $n \ge 2$.

Also its companion sequence $\{v_n\}_{n=0}^{\infty}$ is given by

$$v_0 = 2$$
, $v_1 = A$ and $v_n = Av_{n-1} - Bv_{n-2}$ for $n \ge 2$.

Let $\Delta = A^2 - 4B$ be the discriminant of $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$. It is easy to show that

$$v_n = \alpha^n + \beta^n$$

²⁰⁰⁰ AMS Mathematics subject classification. Primary 11B39, Secondary

Keywords and phrases. Wolstenholme's harmonic series congruence, Lucas sequence.

sequence. Received by the editors on February 27, 2006.

1264 HAO PAN

and

$$u_n = \sum_{j=0}^{n-1} \alpha^j \beta^{n-1-j} = \begin{cases} n\alpha^{n-1} & \text{if } \Delta = 0, \\ (\alpha^n - \beta^n)/(\alpha - \beta) & \text{otherwise,} \end{cases}$$

where

$$\alpha = \frac{1}{2}(A + \sqrt{\Delta}), \qquad \beta = \frac{1}{2}(A - \sqrt{\Delta}).$$

Let $p \geq 5$ be a prime. The well-known Wolstenholme's harmonic series congruence asserts that

(1.1)
$$\sum_{j=1}^{p-1} \frac{1}{j} \equiv 0 \pmod{p^2}.$$

In [3], Kimball and Webb proved a generalization of (1.1) involving the Lucas sequences. Let r be the rank of apparition of p in the sequence $\{u_n\}_{n=0}^{\infty}$, i.e., r the least positive integer such that $p \mid u_r$. Kimball and Webb showed that

(1.2)
$$\sum_{j=1}^{r-1} \frac{v_j}{u_j} \equiv 0 \pmod{p^2}$$

provided that $\Delta = 0$ or $r = p \pm 1$.

In this paper we will extend the result of Kimball and Webb to arbitrary Lucas sequences. For any positive integer n, let w_n be the largest divisor of u_n prime to $u_1, u_2, \ldots, u_{n-1}$. Here w_n was firstly introduced by Hu and Sun [2] in an extension of the Lucas congruence for Lucas's u-nomial coefficients.

Theorem 1.1. Let $n \geq 5$ be a positive integer. Then

(1.3)
$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2-1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{w_n^2}.$$

It is easy to check that either all u_n are odd when $n \ge 1$, or one of $u_2 = A$ and $u_3 = A^2 - B$ is even. So w_n is odd for any n > 3. Also

we can verify that either u_n is prime to 3 for each $n \geq 1$, or 3 divides one of u_2 , u_3 and $u_4 = A^3 - 2AB$. Hence, $3 \nmid w_n$ provided that n > 4. Finally, we mention that w_n is always prime to v_n when $n \geq 3$. Indeed, since

$$u_n = Au_{n-1} - Bu_{n-2}$$
 and $(w_n, Au_{n-1}) = (w_n, u_2u_{n-1}) = 1$,

we have w_n and B are co-prime. And, from

$$v_n = u_{n+1} - Bu_{n-1} = Au_n - 2Bu_{n-1},$$

it follows that $(w_n, v_n) = (w_n, 2Bu_{n-1}) = 1$.

The Fibonacci numbers F_0, F_1, \ldots are given by

$$F_0 = 0$$
, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

And the Lucas numbers L_0, L_1, \ldots are given by

$$L_0 = 2$$
, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$.

Then, by Theorem 1.1, we immediately have

Corollary 1.2. Let $p \geq 5$ be a prime. Let n be the least positive integer such that $p \mid F_n$. Then we have

(1.4)
$$\sum_{j=1}^{n-1} \frac{L_j}{F_j} \equiv \frac{5(n^2 - 1)}{6} \cdot \frac{F_n}{L_n} \pmod{p^2}.$$

The proof of Theorem 1.1 will be given in the next section.

2. Proof of Theorem 1.1. For any $n \in \mathbb{N}$, the q-integer $[n]_q$ is given by

$$[n]_q = \frac{1-q^n}{1-q} = 1+q+\dots+q^{n-1}.$$

Now we consider $[n]_q$ as the polynomial in the variable q. Recently Shi and Pan [5] established a q-analogue of (1.1) for prime $p \geq 5$:

(2.1)
$$\sum_{j=1}^{p-1} \frac{1}{[j]_q} \equiv \frac{p-1}{2} (1-q) + \frac{p^2-1}{24} (1-q)^2 [p]_q \pmod{[p]_q^2}.$$

1266 HAO PAN

Let

$$\Phi_n(q) = \prod_{\substack{1 \le k \le n \\ (k,n)=1}} (q - \zeta_n^k)$$

be the *n*th cyclotomic polynomial, where $\zeta_n = e^{2\pi i/n}$. We know that $\Phi_n(q)$ is a polynomial with integral coefficients, and clearly $\Phi_n(q)$ is prime to $[j]_q$ for each $1 \leq j < n$. Indeed, using a similar method, we can easily extend (2.1) as follows:

Proposition 2.1. Let n be a positive integer. Then (2.2)

$$24\sum_{j=1}^{n-1}\frac{1}{[j]_q}\equiv 12(n-1)(1-q)+(n^2-1)(1-q)^2[n]_q\pmod{\Phi_n(q)^2}.$$

For the proof of (2.1) and (2.2), the reader may refer to [5]. From (2.2), we deduce that

$$12\sum_{j=1}^{n-1} \frac{1+q^j}{[j]_q} = 12\sum_{j=1}^{n-1} \frac{2-(1-q^j)}{[j]_q}$$
$$= 24\sum_{j=1}^{n-1} \frac{1}{[j]_q} - 12(n-1)(1-q)$$
$$\equiv (n^2-1)(1-q)^2[n]_q \pmod{\Phi_n(q)^2}.$$

And the above congruence can be rewritten as

$$\left(12\sum_{j=1}^{n-1}\frac{1+q^j}{[j]_q}-(n^2-1)(1-q)(1-q^n)\right)\prod_{j=1}^{n-1}[j]_q\equiv 0\pmod{\Phi_n(q)^2}.$$

Since $\Phi_n(q)$ is a primitive polynomial, by Gauss's lemma, cf. [4, Chapter IV, Theorem 2.1 and Corollary 2.2], there exists a polynomial G(q) with integral coefficients such that

$$(2.3) \left(12\sum_{j=1}^{n-1} \frac{1+q^j}{[j]_q} - (n^2-1)(1-q)(1-q^n)\right) \prod_{j=1}^{n-1} [j]_q = G(q)\Phi_n(q)^2.$$

Proof of Theorem 1.1. When $\Delta = 0$, the theorem reduces to Wolstenholme's congruence (1.1). So below we assume that $\Delta \neq 0$, i.e., $\alpha \neq \beta$. Let p be a prime with $p \mid w_n$, and let m be the integer such that $p^m \mid w_n$ but $p^{m+1} \nmid w_n$. Obviously, we only need to show that

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2 - 1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{p^{2m}}$$

for each such p and m.

Let $\mathbf{K} = \mathbf{Q}(\sqrt{\Delta})$, and let $\mathcal{O}_{\mathbf{K}}$ be the ring of algebraic integers in \mathbf{K} . Clearly $\alpha, \beta \in \mathcal{O}_{\mathbf{K}}$.

Let (p) denote the ideal generated by p in $\mathcal{O}_{\mathbf{K}}$. We know that if

$$\left(\frac{\Delta}{p}\right) = -1,$$

then (p) is prime in $\mathcal{O}_{\mathbf{K}}$, where

$$\left(\frac{\cdot}{p}\right)$$

is the Legendre symbol. Also, there exist two distinct prime ideals \mathfrak{p} and \mathfrak{p}' such that $(p) = \mathfrak{p}\mathfrak{p}'$ provided that

$$\left(\frac{\Delta}{p}\right) = 1.$$

Finally, when $p \mid \Delta$, (p) is the square of a prime ideal \mathfrak{p} . The reader can find the details in [1]. Let

$$\mathfrak{P} = \left\{ egin{array}{ll} (p) & \mbox{if } (\Delta/p) = -1 & \mbox{or} & 0, \\ \mathfrak{p} & \mbox{if } (\Delta/p) = 1. \end{array} \right.$$

Obviously, either α or β is prime to \mathfrak{P} , otherwise we must have \mathfrak{P} is not prime to u_j for any $j \geq 2$, which implies that $p \mid u_j$. Without loss of generality, we may assume that β is prime to \mathfrak{P} .

Lemma 2.2. Let p be a prime and $k \in \mathbb{Z}$. Suppose that

$$\left(\frac{\Delta}{p}\right) = 1$$

and $(p) = \mathfrak{pp}'$. Then for any $m \in \mathbf{Z}^+$, $\mathfrak{p}^m \mid k$ implies that $p^m \mid k$.

1268 HAO PAN

Proof. Observe that $\sigma : \sqrt{\Delta} \mapsto -\sqrt{\Delta}$ is an automorphism over **K**. Also we know that $\sigma(\mathfrak{p}) = \mathfrak{p}'$. Hence,

$$\mathfrak{p}'^m = \sigma(\mathfrak{p}^m) \mid \sigma(k) = k.$$

Since \mathfrak{p} and \mathfrak{p}' are distinct prime ideals, by the unique factorization theorem, we have $(p)^m = \mathfrak{p}^m \mathfrak{p}'^m$ divides k.

Now it suffices to prove that

$$\sum_{i=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2 - 1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{\mathfrak{P}^{2m}}.$$

For any $l \in \mathbf{Z}^+$, let

$$\Phi_l(\alpha, \beta) = \beta^{\varphi(l)} \Phi_l(\alpha/\beta) = \prod_{\substack{1 \le d \le l \\ (d, l) = 1}} (\alpha - \zeta_l^d \beta),$$

where φ is the Euler totient function. Apparently, $\Phi_l(\alpha, \beta) \in \mathcal{O}_{\mathbf{K}}$. Notice that

$$u_l = \frac{\alpha^l - \beta^l}{\alpha - \beta} = \prod_{\substack{1 < d \\ d \mid l}} \beta^{\varphi(d)} \Phi_d(\alpha/\beta) = \prod_{\substack{1 < d \\ d \mid l}} \Phi_d(\alpha, \beta).$$

Hence u_l is always divisible by $\Phi_l(\alpha, \beta)$. Then we have w_n divides

$$\Phi_n(\alpha, \beta) = \frac{u_n}{\prod_{\substack{1 < d < n \\ d \mid n}} \Phi_d(\alpha, \beta)}$$

since w_n is prime to u_d whenever $1 \leq d < n$.

Substituting α/β for q in (2.3), and noting that

$$u_j = \beta^{j-1} \frac{1 - (\alpha/\beta)^j}{1 - \alpha/\beta} = \beta^{j-1} [j]_{\alpha/\beta} \text{ and } v_j = \beta^j (1 + (\alpha/\beta)^j),$$

we obtain that

$$\left(12\beta^{-1} \sum_{j=1}^{n-1} \frac{v_j}{u_j} - (n^2 - 1)\beta^{-n-1} (\alpha - \beta)^2 u_n\right) \prod_{j=1}^{n-1} \beta^{1-j} u_j
= \beta^{-2\varphi(n)} G(\alpha, \beta) \Phi_n(\alpha, \beta)^2.$$

As $(w_n, 6) = 1$ and \mathfrak{P} is prime to β , we conclude that

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} - \frac{(n^2 - 1)\Delta}{12} \beta^{-n} u_n \equiv 0 \pmod{(\mathfrak{P}^m)^2}.$$

Finally, since

$$\alpha^n = \frac{1}{2}(v_n + u_n\sqrt{\Delta})$$
 and $\beta^n = \frac{1}{2}(v_n - u_n\sqrt{\Delta}),$

we have

$$\alpha^n \equiv \beta^n \equiv v_n/2 \pmod{w_n}$$
.

All is done. \Box

Acknowledgments. I thank the referee for his/her valuable comments on this paper. I also thank my advisor, Professor Zhi-Wei Sun, for his helpful suggestions.

REFERENCES

- 1. E. Hecke, Lectures on the theory of algebraic numbers, Grad. Texts Math. 77, Springer-Verlag, New York, 1981.
- 2. H. Hu and Z.-W. Sun, An extension of Lucas' theorem, Proc. Amer. Math. Soc. 129 (2001), 3471–3478.
- 3. W.A. Kimball and W.A. Webb, Some generalizations of Wolstenholme's theorem, Appl. Fibonacci Numbers 8, Kluwer Academic Publishers, Dordrecht, 1999.
- ${\bf 4.}$ S. Lang, Algebra, Revised third edition, Grad. Texts Math. ${\bf 211},$ Springer-Verlag, New York, 2002.
- 5. L.-L. Shi and H. Pan, A q-analogue of Wolstenholme's harmonic series congruence, Amer. Math. Monthly 114 (2007), 529-531.

DEPARTMENT OF MATHEMATICS, SHANGHAI JIAOTONG UNIVERSITY, SHANGHAI 200240, P.R. CHINA

Email address: haopan79@yahoo.com.cn