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SECOND-ORDER STURM-LIOUVILLE
BOUNDARY VALUE PROBLEM INVOLVING
THE ONE-DIMENSIONAL p-LAPLACIAN

YU TIAN AND WEIGAO GE

ABSTRACT. In this paper, we prove the existence of at
least three solutions for the Sturm-Liouville boundary value
problem depending upon the parameter A. Our main tool is
a three critical points theorem given by Averna and Bonanno

(3]-

1. Introduction. In recent years, a great deal of work has
been done in the study of the existence of multiple solutions of two-
point boundary value problems, by which a number of physical and
biological phenomena are described. For the background and results,
we refer the reader to the monograph by Agarwal et al. and some recent
contributions such as [2, 6-9].

Various fixed point theorems are applied to get interesting results,
see for example, [6-9] and the references therein. Among them, Kras-
nosel’skii fixed point theorem, Leggett-Williams fixed point theorem, a
five functionals fixed point theorem and fixed point theorems in cones
are very frequently used.

In recent years, a three critical point theorem given by Ricceri [10] is
also widely used and has been generalized by Averna and Bonanno [3].
Using the variational principle and the mountain pass theorem, Averna
and Bonanno gave a definite interval, say |1/p2(r),1/p1(r)], in which
A lies, then ® + AU has at least three critical points. Their result is as
follows.
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Theorem 1.1 [3]. Let X be a reflexive real Banach space, let P :
X — R be a continuously Gateauz differentiable and sequentially weakly
lower semi-continuous functional whose Gateaur derivative admits a
continuous tnverse on X*, and let ¥ : X — R be a continuously
Gateaux differentiable functional whose Gateaur derivative is compact.
Assume that

(1) 1im g 100 (®(x) + A¥(z)) = +00 for all X € [0, +o0;
(ii) there is an v € R such that

infd <r
X
and
p1(r) < pa(r),
where U(z)  inf v
. A Y
= f :
p1(r) a8 o R ;
¥(z) — ¥(y)
r) = 1nf sup —
e2(r) w€@1(|=00,r]) yeo—1([r,+oc) P(Y) — B(x)’

and ® (oo, r[) is the closure of ®~1(]—o0, r|) in the weak topology.
Then, for each

| aml

the functional ® + AV has at least three critical points in X.

This theorem has been applied to the Dirichlet and mixed boundary
value problem, see [3, 4, 5]. The aim of this paper is to obtain
further applications of Theorem 1.1 to the second order Sturm-Liouville
boundary value problem

(1.1) { (p()®p(2'(2)))" + S(t)q’p(w(t)):Af(tw(t)) t € [a,0],
' '(a) - Bz(a) = A, ~z'(b) + oz(b) = B,

where p > 1, ®,(z) := |z[P~%z, p,s € L™[a,b] with ess inf, ;;p > 0
and ess inff, ;s > 0, A € ]0,+00[, A and B are constants, a, (3, 7,
o > 0, f is an L'-Carathéodory function and ) is a positive parameter.
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With the p-Laplacian and the new type of boundary condition taken
into consideration, difficulties, such as how to construct a suitable
functional ® and how to prove the equivalence between the critical
points of ® + AV and the solutions of BVP (1.1), have to be overcome.
Under suitable hypotheses, we prove that the problem (1.1) has at least
three solutions when A lies in an explicitly determined open interval.

This paper is organized as follows. In Section 2, the variational ap-
proach is justified and the regularity of an appropriate functional in-
volved is proved. In Section 3, existence results are given in Theo-
rem 3.1 and Corollary 3.2. At the same time, we give a particular case
(Theorem 3.3) of Theorem 3.1.

2. Preliminaries. To begin with, we introduce some notations.
Here, and in the sequel, we assume that, [a, b] is a compact real interval,
X is the Sobolev space W'?([a,b]) equipped with the norm

]l = (/:p(t)lw'(t)l” +s(8)]z(O)[? dt>1/p,

which is clearly equivalent to the usual one; F' is the real function

13
Flt,¢) = /0 f(t,2) da.

We denote [|#]|o := SUD,¢[q5 [2(t)] to be the norm in C°([a, b]). More-
over, ||z||; and ||z|/L~ stand for the norm in L!([a,b]) and L*([a,b]),
respectively.

We say that x is a solution of BVP (1.1) if v € Z = {z € X :
p®,(z')(-) € Wh*°([a,b])} satisfies the boundary condition in BVP
(1.1) and

—(p(t)2p(2"(1)))" + s(£)@p(2()) = Af(t, z(t))
for almost every t € [a, b].

For each x € X, put
(2.1)

O(z) := |

p p

A+ Bz(a)

(0]

ap(a)
- Bp

?

jzl”, p(b) ‘B — ox(b)
p op gl
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Clearly, ® is a Gateaux differentiable functional whose Géateaux
derivative at the point z € X is the functional ®'(z) € X*, given
by
(2.3)

)0 = [ (o2, 000 + s, =)0 d
- o2, ( Z=I )t + ptaye, (2 Yot

(07

for every v € X, and ®' : X — X* is continuous. Moreover, taking into
account that ® is convex, from [12, Proposition 25.20 (i)], we obtain
that @ is a sequentially weakly lower semi-continuous functional.

It is easy to see that ¥ : X — R is a Gateaux differentiable functional
whose Gateaux derivative at the point € X is the functional ¥'(z) €
X* given by

(2.4) V' (2)(0) = — / £t 2(t)o(t) dt
for every v € X.

Proposition 2.1. z € X is a critical point of ® + AV if and only if
x is a solution of BVP (1.1).

Proof. Let x € X be a critical point of the functional ® + A¥; then,
for any v € X,

(@ +A¥)'(),v) =0,

that is,

b
[ el 00 + sty 0ot ai
B — oz(b) A+ Bz(a)
()%, (f)wb) T (@), (—) v(a)

«

b
- )\/ F(t,z(t))v(t) dt = 0.
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Simple calculations show that

23) [ R, () + s (a(6) = A1 ()] (0
T o(b)o(d) [%(x%b)) 3, (B%”(”))]
M) - <I>p<x'<a>>] 0

(67

+ plao(a) |2

for all v € X and hence for all v € C§°([a, b]). Thus, by the fundamental
lemma of variational method, x satisfies the equation in BVP (1.1) for
almost every t € [a,b]. Then (2.5) becomes

p(b)u(b) [fbp(x’(bﬁ — (B%'x(b))]

+ @@ o, (22 ) )| o

for all v € X. We will show that z satisfies the boundary condition in
BVP (1.1). If not, without loss of generality, we assume

vz'(b) + oz(b) > B,

which means that

Let v(t) =t —a € C*([a,b]) C X. Then

p(b)u(b) [fbp(x’(bﬁ — (B%'x(b))]

+otayu(a)|o, (252D ) )
=)0~ a) 2,0/ 0) ~ 2, (E=270 )] 50

a contradiction. So  is a solution of BVP (1.1).
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If z is a solution of BVP (1.1), for any v € X, multiplying v(¢) on
the both sides of the equation in BVP (1.1), then integrating on [a, b],
in view of the boundary condition, it is easy to see that x satisfies
((®+ A\T) (), v) =0. o

We need the following lemmas in the proof of Theorem 3.1.

Lemma 2.2. If x € W'P([a,b]) and there exists r > 0 such that
®(z) < r, then

Jolle < L+ o5 [(%)Uq(p(a))”” +(b—a)l/e (ess in p>1/p]

[a,

= O(r).

Proof. If ®(x) < r, then

P
(2.6) =l .,

p
ap(a) | A+ Bz(a) [P
Bp

o
hold. By (2.6) and the mean value theorem we have

(2.7)

|z()] < \w(a)|+/ @' (s)] ds < |e(a)] + (b~ a)*/ ||| o

)

—1/p
(2.8) < le(a)] + (b— )V ( inf p) Jall

—1/p
< |z(a)| + (b — a)/? <ess inf p) /pr.

[a,b]

By (2.7), we have

(2.9) |w(a>|sA+ﬁx5|+|A WHM

From (2.8) and (2.9), the result follows. O
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Lemma 2.3. &' : X — X* admits a continuous inverse on X*.

Proof. Firstly, for every x € X \ {0}, it follows from (2.3) that

lim M = lim
lel—+oo ||| ll[| = +o0
y l|lz||? — p(b)®p (B — oz(b)/7) z(b) + p(a)®y (A + Bz(a)/a) x(a)’

]

if |z(a)|, |z(b)| < +oo; then

if |z(a)|, |z(b)] — +o0, then

—p(b)ép(B%m(w)x(b) >0, p(a)Qp(M)x(a) > 0.

(0]

So lim g 400 (®' (), z) /||| = +o0, that is, &' is coercive.

Moreover, given u,v € X, it follows from the nondecreasing property
of @, that

(®'(u) — ®'(v),u - v)

= / [o(8)(@p (W (2)) = (v (1)) (W' (2) = ©'(2))

o) (2 (T (P2 ) ) i) - o)
+ o) (2, (22U (A ) - (e
> [ @, o) - 2,0 @) - vo)
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thus, by [11, (2.2)], there exist c,,d, > 0 such that

(2.10) (®'(u) — ®'(v),u —v)

e Jy (B[ (1) = o' (D) + s(B)]u(t) - v(®)]?] dt
if p>2

dy [ 1l (8) = ' @)/ ([ (1)) + [ (1)) )>~

Hu(t) = v(@)]/(lu(®)] + [v(t)])*~P] dt,

if 1<p<2.

v

If p > 2, then it follows that
(®'(u) = '(v),u = v) = cpllu =]l

so @ is uniformly monotone. By [12, Theorem 26.A (d)], we have that
(®')~! exists and is continuous on X*.

If 1 < p < 2, by the Holder inequality, we obtain
(2.11)

o(8)]? %
/W“ ol P“<(/)m*ilw$%r”0
x(L%wm+wwwﬁf_W
wl(t) — v(t)2 p/2
S(laﬁﬁlw$Vwﬁ>
" 2(p—1)(2—p)/2</: W) + (o6 dt) e

b 2 /2
(p—1)(2-p)/2 u(t) —o(t)]
? M(/(u@LHMMVPdQ

x (|[ul| + o] G=PP/2.

Similarly,

b
(2.12) / |u'(t) — o' ()P dt < o(p—1)(2—p)/2 1

b () = (1) p/2 . ol @=P)P2
</a (' ()] + o' ({27 dt) (el + llvll) :
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Thus from (2.10), (2.11) and (2.12), we have

(2.13) (®'(u) — ®'(v),u —v)

(- worat)”” + (2 ) - nwﬁ”

- @”@WMWWMHMW
2/p
M (J () = o) + [w'(6) — o' (D) dt

>

- (IIuH + [loll)*~
> M// HU*UH2 .

= Ul +lol)>=>

therefore, ®' is strictly monotone. By [12, Theorem 26.A (d)] we obtain
that (®')~1 exists and is bounded. Furthermore, given g;, g2 € X*, by
(2.13) we have

(@)~ (1) = (@) (g2)ll < z\/}" (@)~ (gl

_ 2—
+1(2) " (g2)l) " llgr — g2llx-,

so (®')7! is Lipschitz continuous for 1 < p < 2. Thus, we have
showed ®' : X — X* admits a continuous inverse on X*. The proof is
complete. ]

Lemma 2.4. ¥': X — X* is a continuous and compact operator.

Proof. First we will show that ¥’ is strongly continuous on X. For
this, let u, — w as n — oo on X; by [12] we have u, converges
uniformly to u on [a,b] as n — oo. Since f is a L!'-Carathédory
function, one has f(t,u,) — f(¢t,u) as n — oo. So ¥'(u,) — ¥'(u) as
n — oo. Thus we have showed that ¥’ is strongly continuous on X,
which implies that ¥’ is a compact operator by [12, Proposition 26.2].
Moreover, ¥’ is continuous since it is strongly continuous. The proof
is complete. ]
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3. Main results. In the following theorem, we will use the following
notation:

L(k) dt{A%—ﬁk ‘ B —ok|f
v+ bo
(2b+a (B—ok) (2a+Db)(A+ Bk)

]
A+,Bk 2a+0b
a—aﬂ 3

( a)(y+bo)  (b—a)(a—aB)
Q(k) t)dt{m {‘ +6k otk

+k

}

B-— B—ok 2b+a P
+ max X +k
'y+b0 v+ bo 3
) B ok 2b+a+kp A+pk 2a+b I
m.
ax v + bo a—aP 3 ,
1p(0) |B—ok|" , apla) |A+Bk|”
o B « ’
A+ k:
yl(t) afaﬁ + K,
= L [@+aB-ock) Qa+hA+pR)],
20 =5, v + bo a—afB
(2a+b)(2b+a) [B—ok A+Bk]
3(b—a) Y+bo a—afB
B — ok
t) = t+k
yS() ’7+b0— + R,
(2a+b)/3 (2b+a)/
p::/ F(t,yl(t))dt—i-/ F(t,y2(t)) dt
a (2a+b)/3

+ /( F(t,ys(t)) dt.

2b+a)/3
Theorem 3.1. Assume that there exist three positive constants
k,d,l >0 with l < p,

p(b)BP  p(a)AP
L(k) > pd > ) + BT

and a positive function p € L'([a,b]) such that:
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max‘5|<@ f F(t,
d = (p(b)B? [opyP~ 1) (p(a)A”/Bpa” Y

b
p
— max F(t,€)dt]|;
|§\S®(d)/a ®,€) ]

© 1(k) + Q) + R(k)
(H2) F(t,&) < p(t)(1+ |€|Y) for almost every t € [a,b] and all £ € R.

Then for each A € |A1, Ao[, the problem (1.1) has at least three solutions,
where

L(k) + Q(k) + (vp(b)) /o |(B — ay(b)) /7"
pl' — pmaxj¢<e f F(t,€)dt
(ap(a))/B1(A + By(a))/al”

pl' — pmax¢ <o) f: F(¢,&)dt

A =

+

and

\y = 4= 1P0)B)/(op7" )]~ [(pla) A7)/ (Bpo?)]
max|se( [, F(t,€)dt

Proof. From the previous section we have seen that ®: X — R is a
continuously Gateaux differentiable and sequentially weakly lower semi-
continuous functional whose Gateaux derivative at the point u € X
is the functional ®'(u) € X*, given by (2.3). (®')7! exists and is
continuous on X*. ¥ : X — R is a continuously Gateaux differentiable
functional whose Gateaux derivative given by (2.4) is compact.

By Proposition 2.1, the solutions to Problem (1.1) are exactly the
critical points of the functional ® + AP, so our aim is to apply
Theorem 1.1 to ® and V.
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For (i) in Theorem 1.1, by condition (H2) and (2.1) we have

p

p —
lim (®(z) + A\¥(z)) > lim <||x|| n vp(b) ‘B ox(b)
lell=+o0 lel>+oo \ P op o]

b
[ uoa e )

p _ p
s (L 200 B0

Z et \ p | op 5
l
= Ml {1+ [lo0)] + s (0~ 1] })
= +00.

So (i) is satisfied.

To prove (ii) in Theorem 1.1, first we claim that

maxiei<o(r) J, F(t,€) dt
r— (p(b)BP)/(opyP~1)] — [(p(a)AP)/(Bpar—1)]

(A1) ¢i(r) < [
for each » > 0 and

(A2) a(r)
Ly F(ty(t)) dt — maxig <o) J, F(t,€) dt
lylle + (o) /o 1(B = ay(8)) /4P + (ap(a)) /B[(A+ By(a)) /al?

for each r > 0 and every y € X such that

2p

b b
(31)  ®(y)>r and / F(t,y() de > max / F(t,¢) dt.

In fact, for » > 0, taking into account that ®—1(] — oo, r[)w =
@ 1(] — 00,7]) and = = 0 on [a, b] obviously belongs to ® (] — oo, )
and that ¥(0) = 0, we have

b
0 (7‘) < SUPged~1(]—oco,r]) fa F(tvw(t)) dt
1(r) < .
r—[(p(0)BP)/(apyP=1)] = [(p(a) AP)/ (Bpar=)]
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Thus, since z € ® (] — oo, 7]), that is, ®(z) < r, by Lemma 2.2, we
have

(3.2) [z][c < O(r).
As a consequence,
SUD -1 (oo Jy £ (1 2(1)) di
r = [(p(0)BP)/(opyP~1)] — [(p(a) AP)/(Bpar—T)]
< [(max¢|<e(r) f F(t,£)dt)
= (r—(p(b)Br)/(opy*~1) — [(p(a)AP)/ (Bpar=1)])”
So (A1) is proved.

Moreover, for each r > 0 and each y € X such that ®(y) > r, we
have

ot U(z) — ¥(y)
T zed-1(-cor)) B(y) — ()

_ [P R, y(t) dt — [0 F(t,2(t)) dt
= inf < :
@€®=1(]—o0,r) ®(y) — ®(z)

Since (3.2) holds for z € ® (] — 00, 7]), we obtain

b
po(r)>  inf [ F(t,y(0) dt — maxigico) J, F(t,€)d
= wed 1 (—o0,r) 3(y) — o(z)

and, under further condition (3.1), we can write
a(r) be t,y(t)) dt — maxpe<e(r f F(t,¢&)dt
~ 1/pllyll + (vo(8))/(op) |(B — oy(b)) /9

f F(t,y(t))dt — Max¢|<o(r) be(t,f) dt
(ap(a))/Bp|(A+ By(a))/al’

+

So (A2) is proved.
Now, in order to prove (ii) in Theorem 1.1, taking into account (A1)
and (A2), it suffices to find r > 0, y € X such that (3.1) and
max|¢|<e(r) f F(t,€)dt
r— (p(b)BP/opyP~ 1) (p(a)AP/Bpar=1)
- S F(t,y(t)) dt — maxie <o [L F(t,€) dt
[yllP + (vo(0)) /o [(B — oy (b)) /A" + (ap(a))/BI(A+ By(a)) /ol

(3.3)
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hold. To this end, we define
y1(t) te€]a,(2a+0b)/3];
y(t) = { y2(t) te€[(2a+10)/3,(2b+ a)/3];
tel(

[(2b+a)/3,b],

ys(t)
and 7 := d. Clearly y € X, and

b
L(k) = / p(0)]y' (B) P dt < |ly|”
(3:4) < / Ol @) + () lyl|2] dt
= LK) + Q(k).

From (3.4) and L(k) > pd, we have ®(y) > ||y||’/p > L(k)/p > d. From
condition (H1) and (3.4), it follows that (3.3) holds, which means (3.1)
holds, too. u]

Forp=1,s=1, A=B =0,a =0, b =1, we have the following
corollary.

Corollary 3.2. Assume that g : R — R is a positive continuous
function and put G(§) = fogg(s) ds. Besides assume that there exist
four positive constants k,d, 1, n > 0 with I < p such that G(€) > 0 for

vk (3y+ J)k]
v+o 3(y+o)
and that the following conditions hold:

(L1) k2 [(B/a)” + (o/ (v + o)) + ((20) /(v + o) + (B/))?] > pd;

(L2)

¢ e

1 p
|:d + kp (A + [(gp—l)/('yp—l)] + [(/Bp—l)/(ap—l)])] G(©(d))

p 1/3 @
© b &+ oG]+ (37 (@) V o %5 v ) a

2/3
+/ G<( 20 +E>kt+g<—a +§>k+k> dt|;
1/3 Yy+o « 3\v+0 «
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(L3) G(&) < (1 + [€]") for almost every t € [0,1] and all £ € R
Then for each X € |A\1, A2, the problem

—(®p(2'(2)))" + @ ( (t)) = Ag(=()) € [0,1],
(3:5) {aa:'(O) Bx(0) =0, vyz'(1) + ox(1) = 0,
has at least two nontrivial solutions, where
KP(A+oP 1 /4Pt + BPt faP )
p(fy"* G((BRt/) + ) dt + [ G(=((20/7+ o) + (B/a) kt

KA+ P Ayt o far )
2/3(0/(1 + ) + (8/a)k + B) dt — G(6(d))

and

- )
() +(os)
co{(505) () )

Proof. Since p=1,s=1, A=B=0,a=0,b=1, then

P » P

() < G5) +(55+2)

(1) - Gois)

+max{(§élii>>p ()}

R(k) = & kp Bpl
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yz(t):—( 20 +§>kt+§< Z +é>k+k,
vy+o

Yyto «
ok

t) =— t+k
yS() 7+o_+a

1/3
oo [ (5 )
0 «
2/3
+/ G(( 20 +é>kt+g(—0 +ﬁ>k+k> dt
1/3 Yy+o 3\7+o0 «
1
+/ G<— okt +k>dt.
2/3 Y+o
So A = L(k)+Q(k). Moreover, since g : R — R is a positive continuous

function, G is nondecreasing on R, which means max¢|<gq) G(&) =

G(O(d)).

Clearly (L1) means L(k) > pd. Now we show that (L2) means (H1)
in Theorem 3.1.

In fact, (L2) is equivalent to
(3.6)

%G(G(d)) “FGT (O_p,l/ypﬂ) - (ﬂpl/apl))[/o%c<% + k)dt
2/3 o
o, e (-

+§(710 + §>k+k> dt — G(G(d))}-

Noticing the assumption G(§) > 0 for £ € [(vk)/(v +0),[(3y + 0)k/
3(y + 0)]], (3.6) means (H1) in Theorem 3.1.

It is clear that (L3) means (H2) in Theorem 3.1. Now, applying
Theorem 3.1, the result holds. a

Example 3.1. The problem
(3.7)
{ —(®3(z")) + ®3(x) = A (e7*(20z"® — tz°) 4+ 2z) ¢ € [0,1],
22'(0) — z(0) =0, 32'(1)+ (1) =0,
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admits at least three nontrivial solutions for each A € |1/(6'%,1.7)[.
In fact, the function F(¢,z) = e *!2%0 4 2?2 satisfies all assumptions of
Theorem 3.1 by choosing, for instance, d =9, k = 6.

As a consequence of Corollary 3.2, we obtain the following theorem.

Theorem 3.3. Assume that g : R — R is a nonnegative continuous
function satisfying

g(x) _ 0
z—0+ P~1
and
lim M €R

z—+oo IS

for some s € 10,p — 1[. Furthermore, assume there exists k > 0 such
that G(§) = fogg(s) ds >0 for

vk (0+37)k

€ )
¢ y+ao’ 3(y+o)

Then, the problem (3.5) (A = 1) admits at least two nontrivial solutions.

Proof. Fix b > 0, and put
. kP (A + [(voP™) /(7 + bo)P)] + (677" /@)
p(fy? G((Bkt/a) + k) dt + [7] G(—(120/ (v + 0)] + (B/a))kt

KP(A + [(vo?~ 1) /(v + bo)P)] + (8P~ /a))
2/3(lo/(v + 0)] + (B/))k + k) dt)

Since lim, g+ (g(z)/zP 1) = 0, there exists 0 < d < k such that:

pd
kP (A + [(yo?=1) /(v + o)) + (B7 /P~ 1))

1/3 2/3
X / G<@+k>dt+/ G(<2—U+é>kt
0 e 1/3 Yt+o o«

G(O(d)) < min {
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22 ek @], 4L
3\v+0 « A

kP (A + [(yo? D)/ ((y + 0)P)] + (87 /)
plfy”? G((Bkt/a) + k) dt + [ G(=([20)/ (v + )] + (B/))kt
kP (A + [(yo? D)/ ((y + 0)P)] + (87 /)
2/3((0/(y + 0)] + (B/a))k + k) dt — G(O(d))]’

Since lim, 1 o[(g(2))/(z*)] € R, (L2) is satisfied. Hence, by Corol-
lary 3.2, for each

§ K (A + [(yo? ) /(7 + 0)")] + (871 /(a))
plfy? G((Bkt/a) + k) dt + [ G(=(120) /(v + 0)] + (B/)) kt

L A+ (o) /(4 o)) + (8771 /(@)
2/3(lo/(y+ o)l + (B/a))k + k)dt]

the problem (3.5) (A = 1) has at least two nontrivial solutions. o

and

A>

Example 3.2. The problem

—(®3(2'(t)))" + Pa(x(t
(3.8) {295'(0) 2(0) =0, 3a'(1)+a(l) =0,

where

admits at least two nontrivial solutions.
In fact, the function
4
<
Gla) = {af: z <1,
1+22 z>1
satisfies all the assumptions of Theorem 3.3 by choosing k = 3/4.
Acknowledgments. The authors express their sincere gratitude to
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