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WHEN IS BETWEENNESS PRESERVED?

XIANG-DONG HOU AND GREGORY MCCOLM

ABSTRACT. Let V and W be vector spaces over an ordered
field F. A map f: V — W is said to preserve betweenness
if, for every vi,v2,v3 € V, if vy is between v; and v3 on a
line, then f(v2) is between f(v1) and f(v3) on a line. Wetzel
asks whether every injection f : R2 — R2 which preserves
betweenness must be affine. We give an affirmative answer
after treating the problem in a more general setting.

1. Introduction. Let V and W be vector spaces over an ordered
field F such that dim V' > 2. It is immediate that every affine injection
f from V to W “preserves betweenness” in the sense that for any
v1,vs2,v3 € V, if vg is between vy and v3 on a line, then f(vq) is between
f(v1) and f(v3) on a line. But to what extent is the converse true? For
this question, we will see that it suffices to assume V = W = F2, cf.
Remark 1.2 below.

It is known that if F = R, and if f : R?> — R? is a bijection that
preserves betweenness, then f is affine (see e.g., [1, IV.10.4]). This uses
the fact [1, IV.10.1] that any bijection of R? which maps lines to lines
is affine. Wetzel [5] raises a natural question:

Problem 1.1. Let f : R?> — R?2 be an injection which preserves
betweenness. Must f be affine?

We will answer this question affirmatively (Corollary 4.6). The
property of preserving nonbetweenness turns out to be critical. We
will show that for any subfield F C R, if a map f : F2 — F? preserves
betweenness and nonbetweenness, then f is affine.

We now define our terms.

Let V be a vector space over an ordered field F. For a,b € V, the
closed segment and open segment between a and b, denoted by seg [a, b]
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and seg (a, b), respectively, are defined by
segla,b] ={ra+(1—7)b:7€F, 0 <7 <1},

seg (a,b) = seg[a, b] \ {a, b}.
Points in seg [a, b] are said to be between a and b. If a # b, the unique
line in V' through a and b is denoted by ab and consists of the points
{ra+(1—-7)b: 7€ F}.

Let W be another vector space over F, and let f : V — W be
a map. We say that f preserves betweenness if for any a,b € V,
f(seg[a,b]) C seg[f(a), f(b)]. We say that f preserves nonbetweenness
if for any a,b,c € V with b ¢ seg[a,c|, f(b) ¢ seg[f(a), f(c)]. Recall
that, for any k, a k-flat in V is a k-dimensional affine subspace of V.
Let |A| be the cardinality of a set A.

Let “2” refer to isomorphism between affine spaces and, given a map
f and a subset A of its domain, let f|4 be the restriction of f to A.

Let F be an ordered field and let Z(F) be the set of all nonempty
open intervals in F. (An open interval in F is of the form (o, ) :=
{yeF:a<~vy<p}for some a,8 €F.) Amap f: F — Z(F) is
called order preserving if, for 1,72 € F with v; < 2, f(v:) = (o, 5i),
1 = 1,2, where 81 < ag. Call F compressible if there exists an order
preserving map f : F — Z(F). We will investigate the relations among
the following properties of ordered fields F:

Pl. Every injection f : F2 — F? which preserves betweenness is
affine.

P2. Every injection f : F2 — F? which preserves betweenness must
also preserve nonbetweenness.

P3. There is no injection f : F2 — F which preserves betweenness.
P4. The field F is incompressible.

Remark 1.2. We should observe that P1 and P2 are equivalent to the
following statements P1’ and P2’ respectively.

P1’. For any vector spaces V and W over F with dimV > 2, every
injection f : V — W which preserves betweenness is affine.

P2'. For any vector spaces V and W over F with dimV > 2, every
injection f : V' — W which preserves betweenness must also preserve
nonbetweenness.
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To see that P1 = P1’, let A be any 2-flat in V. Since f preserves
betweenness, f(A) is contained in a 2-flat B in W. Then the map

F2 4 74 po g2

is an injection which preserves betweenness. Thus f|4 is affine. We
claim that since this is true for all 2-flats A in V, f is affine. In fact,
for any x,y € V and a € F, let A C V be any 2-flat containing z and y.
Then f(az+(1—a)y) = f|a(az+(1—a)y) = afla(@)+1—a)fla(y) =
af(z) + (1 —a)f(y). The proof of P2 = P2’ is similar to the proof of
P1 = P1’.

In addition, note that if dim(V) > 2 and if f : V — W preserves
betweenness and nonbetweenness, then f must be injective: if a,b € V,
a # b, then choose x,y € V so that a but not b is between x and y, so

f(a) € seg[f(z), f(y)] while f(b) & seg[f(z), f(y)], forcing f(a) # f(b).
P1’ implies that every map f : V — W that preserves betweenness and
nonbetweenness is affine.

We will prove the following results.
Theorem 1.3. P1 = P2 & P3 = P4.
Theorem 1.4. P3 holds if F = R.
Theorem 1.5. If F C R, P2 = P1.
Theorem 1.6. P4 fails for countable F.

Thus P1 fails for countable ordered fields, but holds for R. This
leaves open the situation for uncountable proper subfields of R (i.e.,
for uncountable, incomplete Archimedean fields, see [4, Section 67,
Exercise 3]) and for uncountable non-Archimedean fields. It is also
open for which uncountable fields do we have P4 = P3.

In Section 2, we observe certain facts about betweenness and prove
Theorems 1.3 and 1.6. The proofs of Theorems 1.4 and 1.5 are more
involved and are given in Sections 3 and 4.
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2. Betweenness, nonbetweenness, and incompressible fields.
We first observe some simple facts about betweenness and nonbetween-
ness. Again, let V" and W be vector spaces over an ordered field F, and
let f:V — W be a map which preserves betweenness. Then, for ev-
ery line L in V, f(L) is contained in a line in W. If f also preserves
nonbetweenness, it is one-to-one, so if L and L' are distinct lines in V'
intersecting at P, then f(L) C M, f(L') C M', where M and M’ are
distinct lines in W intersecting at f(P).

First, a word of warning. A map f : V — W is said to preserve
noncolinearity if, for any a,b,c € V not colinear, f(a), f(b), f(c) € W
are not colinear. While maps preserving nonbetweenness preserve
noncolinearity, the converse is not true, which we prove as follows.

Lemma 2.1. Let F be any infinite field, and let a1,az,a3 € F?
be distinct but colinear. Then there exists X = X (a1, a2,a3;F) C F?
such that {a1,a2,a3} C X, |X| = |F|, and a1, a2, as are the only three
colinear points in X.

Proof. Let

X = {X CF?: {a1,a2,a3} C X and aq, a2, ag are the

only three colinear points in X }

Then (X, C) is a poset and every chain C in (X, C) has an upper
bound UxecX. By Zorn's lemma, (X, C) has a maximal element
Xo. We claim that |Xo| = |F|. Suppose to the contrary that
|Xo| < |F|. Let £ be the set of all lines in F? passing through two
points in Xy, and let S be the set of all slopes of lines in £. Then
|S| < |Xo/? < |F|. Hence there is a line M in F? which is not
parallel to any line in £. Since [IM NL| = 1 for each L € L, we
have [M N (UreeL)| < L] < | Xo|? < |F| = |M|. Let z € M\ (UgecL).
Clearly, Xy U {z} € X, which contradicts the maximality of X. O

Corollary 2.2. Let F be an ordered field. Then there is a map
f : F2 — F? which preserves noncolinearity but does not preserve
nonbetweenness.
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Proof. Suppose that ai,az,as € F? are colinear: assume that
as € seg(ay,as). Choose X = X(ay,as,as3;F) from Lemma 2.1, and
let f:F? — X be any injection such that f(a;) = a1, f(az) = a3, and
f(ag) = as. [}

Now we turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. P1 = P2 is obvious.

P2 = P3. Suppose to the contrary that there exists an injection
f : F2 — F which preserves betweenness. Then f : F2 — F — F?
preserves betweenness but does not preserve nonbetweenness, which is
a contradiction.

P3 = P2. Suppose to the contrary that there exists an injection
f : F2 — F? which preserves betweenness but does not preserve
nonbetweenness. Let a,b,c € F? be such that b ¢ seg[a,c| but

f(b) € seg[f(a), f(c)]. Since a, b, c affinely span F2, f(F?) C f(a)f(c).
Thus, the map

F* L F(@)f(0) = F
is an injection that preserves betweenness. This contradicts P3.

P3 = P4. Assume to the contrary that F is compressible. Let
g : F = Z(F) be an order preserving map. For each a € F, we claim
that there exists an injection h, : F — g(a) which preserves the order
of F. For example, if g(a) = (—1,1), we can define

h(y) = {7/(1+7) if ¥ >0,
v/(1—=7) ify<0.
Note that h, : F — (—1,1) is an injection and preserves the order.
Define f : F2 = F by

fla,) = ha(y), forall (a,v) € F2

Then f is an injection which preserves betweenness, contradicting P3. 0O
We conclude this section with a look at compressibility.

Proposition 2.3. If an ordered field F has a dense subset D such
that |F| > |D|, F is incompressible.
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Proof. Otherwise, let f : F — Z(F) be an order preserving map. For
each v € F, choose § € DN f(y). Then v — 4§ is an injection from F
to D. Thus, |F| < |D|, which is a contradiction. O

Proof of Theorem 1.6. We prove that if an ordered field F is
countable, then it is compressible. Let F = {«ag,a1,...}. An order
preserving map f : F — Z(F) can be constructed inductively as follows.
Choose f(ap) € Z(F) arbitrarily. Suppose that, for ¢ = 0,...,k,
f(a;) = (Bi,v:) € Z(F) have been chosen such that for 7, j € {0, ..., k},
a; < a; implies y; < B;. Let

a;, =max{a; :0<i<k, o < g1},
aj, =min{a; :0<j <k, oj > opq1}

Then v;, < Bj,- Choose Biy1,Vre+1 € F such that v;, < Bry1 < Yet1 <
Bj, and define f(ak+1) = (Be+1,7%+1) € Z(F). O

Corollary 2.4. Let F be a subfield of R. Then F is incompressible
if and only if F is uncountable.

Proof. This follows from Propositions 2.3 and Theorem 1.6. |

3. Proof of Theorem 1.4. We now prove Theorem 1.4: P3
holds if F = R. Suppose to the contrary that there is an injection
f : R?> = R which preserves betweenness. Then f gives each line L
in R? a well-defined orientation: the unit direction vector v of L such
that f(a +v) > f(a) for some (hence all) a € L.

Lemma 3.1. Within each parallel class of lines, except possibly one
parallel class, all lines have the same orientation.

Proof. We show that there cannot be two parallel classes with lines of
opposing orientations. Otherwise, we will have a parallelogram in one
of the two cases in Figure 1, where the arrows indicate the orientations.
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a b a b
Case (a) Case (b)

FIGURE 1. Two cases of oriented parallelograms.

C

d
a b
FIGURE 2. A parallelogram with diagonals.

In case (a), we have

fla) < f(b) < f(c) < f(d) < f(a),

which is a contradiction. In case (b), without loss of generality, assume
that the orientation of the diagonals are as in Figure 2. Then

fe) < fle) < f(d) < f(e),

which is again a contradiction. ]

So at most one parallel class can admit lines of opposing orientations.
Without loss of generality, suppose that all horizontal lines are oriented
to the right and all vertical lines upwards. Then observe that if L; and
Ly are two lines with slopes p;, p2 such that —oco < p; < p2 < +00
and L is oriented to the right, then L, is also oriented to the right (cf.
Figure 3), for if Ly were oriented leftwards, there would be a cycle.
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2

Ly

FIGURE 3. Orientations of Ly and La.

slope=p.

orientation by f orientation by fog

FIGURE 4. Orientations by f and fog.

Put
P = {p € R : lines with slope p are oriented to the right}.

From the above observation, P is an interval containing [0, +00), and
there exists

(3.1) px =inf P € [—00,0)

such that if p > p., then a line of slope p is oriented towards the right,
while if p < py, a line of slope p is oriented towards the left, see Figure 4.
(If p» = —o0, all nonvertical lines run to the right.)

If p. = —00, let g : R? — R? be g(¢,%) = (=, ¢); otherwise, let
9(p,¥) = (¢, ¥ — p«@). Note that as g is an injection that preserves

betweenness, so is f og. Then, oriented by f o g, all nonhorizontal lines
are oriented upwards, and

(fog)(o1,91) < (fog)(d2,v2) whenever oy < 1.
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So if Ly is the horizontal line of vertical coordinate ¥, ¥ < »
implies that all of (f o g)(Ly,) precedes all of (f o g)(Ly,), i.e., the
map ¥ — (f o g)(Ly) compresses R?, which is a contradiction to
Corollary 2.4.

Remark 3.2. The above proof almost works for any incompressible
field. Unfortunately, the critical step (3.1) depends on the completeness
of R.

4. Proof of Theorem 1.5. We now prove Theorem 1.5: if F C R,
then P2 = P1. This will follow from Theorem 4.5.

In this section, we assume that F is a subfield of R and f : F2 — F2
a map which preserves betweenness and nonbetweenness.

Lemma 4.1. Let L be any line in F2, and let M be the line in F?
which contains f(L). Then f|r : L — M is continuous.

Proof. We may assume that both L and M are the horizontal axis.
Write f(v,0) = (9(7),0), v € F. It suffices to prove that g : F — F
is continuous. Note that since f preserves betweenness, g is monotone;
without loss of generality, suppose that g is increasing.

Suppose to the contrary that g is not continuous. Without loss of
generality, suppose that g is not right continuous at 0. Assume g(0) =0
and let

(4.1) w= lim+ g(v).
v—0
YEF

Then w € R and w > 0.
By (4.1), we can choose 8 € F, 8 > 0, such that 8’ := ¢(B) is

sufficiently close to w for the lines f(0,1)(0,w) and f(0,2)(8’,0) to
intersect at some point r such that (w,0) is between f(0,1) and r and
(8',0) is between f(2,0) and r. (See Figure 5.)

Now choose p € F? on (0,2)(8,0) so that (0,2) lies between p
and (8,0). Let («,0) be the intersection of p(0,1) and L, and let
f(a,0) = (a/,0). As the intersection of (0,1)(e,0) and (0,2)(8,0) is p,
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P £(0,0)

FIGURE 5. Proof of Lemma 4.1.

the intersection of f(0,1)(c’,0) and f(0,2)(5',0)is f(p). As0 < a < 3,
w < a' < B and f(p) is between f(8,0) = (5’,0) and r (see Figure 5).
Then f(0,2) is not between f(3,0) and f(p), contradicting the fact
that (0,2) is between (3,0) and p and that f preserves betweenness. O

Remark 4.2. As g in Lemma 4.1 is monotone and continuous on
a dense subset of R, it can be uniquely extended to a continuous
monotone function g* : R — R, which is thus uniformly continuous on
bounded closed intervals of R. Thus, g itself is uniformly continuous
on bounded closed intervals of F.

Lemma 4.3. Let U = [—1/4,1/4] x [-1/4,1/4] C F2. Then for
every a € F2, f is uniformly continuous on a + U.

Proof. Without loss of generality, assume a = (0,0). Let

v =(=2,2), w=(-1,1), vy =(22), ws=(1,1).
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) o 91(@) ! we@ |
w1 w2
T a
a+U
(a) the domain F?
f(v1) f(g1(x)) f(v2) f(g2(x)) M
fwi) fw2)
f(z) f(a)

(b) the target F2

FIGURE 6. Proof of Lemma 4.3.

Put L = 7703 and M = f(v1)f(v2). Identify both L and M with F. By
Lemma 4.1, f|; : F — F is monotone and continuous. By the above
remark, f| is uniformly continuous on every bounded interval of F.

For every z € a+U, and for i = 1,2, let g;(x) be the intersection point
of Tw; and L. Then f(x) is the intersection point of f(g;(z))f(w;),
i = 1,2. (See Figure 6.) Let I be a bounded closed interval on L
such that I D g;(a +U), i = 1,2. Clearly, g; is uniformly continuous
on a + U. Since f is uniformly continuous on I, f(g;(z)) is uniformly
continuous on a + U. It follows that f(z) is uniformly continuous on
a+ U. (See Figure 6 (b).) o
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Lemma 4.4. The map f has a unique continuous extension f* :
R2 — R2. Moreover, f* preserves betweenness and nonbetweenness.

Proof. Since f is locally uniformly continuous on F? (Lemma 4.3) and
since F? is dense in R?, the existence and uniqueness of the continuous
extension f* follow from a simple fact in analysis. (See, e.g., [2, Chapter
7, Proposition 11].)

To prove that f* preserves betweenness, let a,b,c € R? be such that
b=r1a+ (1 —7)cfor some 7 € R, 0 <7 < 1. Choose sequences a,, ¢,
in F? such that a, — a, ¢, — ¢, and choose a sequence 7, in F such
that 0 <7, < 1and 7, = 7. Put b, = Tpa, + (1 — 7,)c, € F2. Then
b, — b. Since f preserves betweenness, we have:

(1) as the slope of f(ay)f(by) is the same as f(b,)f(cn),

[ 183]-

and

(2) as the vectors f(a,) — f(bn) and f(c,) — f(b,) point in opposite
directions,

[£(an) = £(ba)] [f(cn) — £(ba)] " <.

Letting n — oo, we have, by the continuity of matrix operations,

VAR R

and
T

(£ (@) = f®)][f () = f*(®)] <o.
Hence, f*(b) is between f*(a) and f*(c).

To prove that f* preserves nonbetweenness, by Theorems 1.3 and
1.4, it suffices to show that f* is one-to-one. Assume to the contrary
that f*(a) = f*(b) for some a,b € R? with a # b. Since f*
preserves betweenness, f*(¢) = f*(a) for all ¢ € segla,b]. Choose

u,v,w € F2\ ab not colinear such that %o and ww (viewed as lines in

R?) intersect seg[a,b] at v' and w'. (See Figure 7.) Since f(u)f(v)

and f(u)f(w) are nonparallel lines in F?, they are also nonparallel
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FIGURE 7. Proof of Lemma 4.4.

lines in R%. Clearly, f(u) is the intersection point of f(u)f(v) and

f(u)f(w) in R%. On the other hand, f*(a) = f*(v') € f(u)f(v) and

f*(a) = f*(w') € f(u)f(w). Hence, f*(a) is another intersection point
of f(u)f(v) and f(u)f(w) in R2. Therefore, f(u)f(v) = f(u)f(w),

which is impossible since f : F2 — F? is one-to-one. O

To establish Theorem 1.5, it suffices to prove the following theorem.

Theorem 4.5. Let F be a subfield of R and f : F?> — F? a map
which preserves betweenness and nonbetweenness. Then [ is affine.

Proof. By Lemma 4.4, f has a unique continuous extension f* :
R? — R? which preserves betweenness and nonbetweenness. Note
that f* maps every line segment onto a line segment.

We claim that f* maps every line L in R? onto a line in RZ2.
Choose two distinct points aj,a; € L and b € R?\ L. We claim

that f*(a1)f*(a2) = f*(L); as f* preserves betweenness, f*(L) C

f*(a1)f*(az), and it suffices to prove that f*(ai)f*(a2) C f*(L). We
already have

seg [f*(a1), f*(a2)] = f*(seg[a1,a2]) C f*(L).

If u € f*(a1)f*(az) \ seg [f*(a1), f*(a2)], let M be a line through u
which intersects both seg (f*(a1), f*(b)) and seg (f*(az2), f*(b)), say at
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I (®)
V1 ’L)é
V2
f*(a1) f*(az2) v

FIGURE 8. Proof of Theorem 4.5.

v1 and vy, respectively. (See Figure 8.) Note that seg[f*(a;), f*(b)] =

f*(seglai,b]) C f*(R?), i = 1,2. We claim that (f*) (v )( )1 (v2)
is not parallel to L. Let v} € seg [f*(az), f*(b)] be such that v, v} is par-
allel to f*(ay)f*(az), so the line through (f*)~*(v;) and parallel to L

iIf (f*)~1(v1)(f*)~1(v}), which is different from (f*)=1(v1)(f*)~1(v2).
et

(F*)Hva), (f*) Hv2) N L = {c}.

Then u = f(c) € f*(L).
From the fact that f* preserves betweenness and nonbetweenness

and maps lines onto lines, its follows immediately that f* : R2 — R?
is onto.

It is a classical result, see e.g., [3, Proposition 69.1], that if V is
an n(> 2)-dimensional vector space over a field with at least three
elements, then any bijection g : V' — V which maps lines to lines is
semi-affine. Consequently, f* : R?> — R? is semi-affine. Since the
automorphism group of R is trivial, f* is affine. It follows immediately
that f = f*|p2 : F? — F? is affine. O

Corollary 4.6. P1 holds for F = R.

Proof. Simply combine Theorems 1.3, 1.4 and 1.5. o
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