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REGULARITY OF POINTS IN
THE SPECTRUM OF A C*-ALGEBRA

M.H. SHAH

ABSTRACT. The relationship between different notions of
regularity for the points in the spectrum of a C*-algebra is
investigated. Under certain conditions on the points of the
spectrum, the Fell regularity implies Glimm regularity and
vice versa. A localized version of the Fell-Dixmier theorem on
continuous trace of a C*-algebra is described.

1. Introduction. Let A be a C*-algebra, and let A be the spectrum
of A, the space of all (equivalence classes of) irreducible representations
of A. In [4, 4.5.3(iii)] and [5, Remark to Theorem 6] two notions of
regularity of points in the spectrum A are described. A point ™ € Ais
said to be Fell-regular (or a Fell-point) if there exists an a € A™ (the set
of positive elements of A) and a neighborhood V' of 7 such that o(a) is
a rank-one projection for all o € V. On the other hand, a point 7 € A
is said to be Glimm-regular if, whenever (e, U) is a pair such that e € A
and U is a neighborhood of 7 and (i) o(e) is a projection for all o € U,
(ii) m(e) is a rank-one projection, then there exists a neighborhood Uy
of m with Uy C U such that o(e) is rank-one for all ¢ € Uy. A point 7
is said to be a separated point of A if for each o € /T\m there exist
disjoint open sets U; and Us; such that 7 € U; and o € Us.

It is known [5, 6] that the notions agree if A is liminal with A
Hausdorff. We investigate the relation between these notions for more
general C*-algebras. Of course, if 7 € A is Fell-regular, then, since
m(A) contains nonzero elements of the algebra of compact operators
K(H,), we have m(A) 2 K(H,) [4, 4.1.10]. On the other hand, if
m(A) N K(H;) = {0}, then, although 7 cannot be Fell-regular, it is
automatically Glimm-regular (by vacuous satisfaction). However, we
prove that, if T € Aisa separated point, then 7 is Fell-regular if and
only if 7(A) O K(H,) and 7 is Glimm-regular. We give examples to
show that if 7 is not a separated point then (even if 7(A) contains the
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compacts) neither kind of regularity implies the other. We also give an
example to show that 7 can be both Fell regular and Glimm regular
without being a separated point.

From [4, 4.5.3, 4.5.4] we know that if A is a C*-algebra with contin-
uous trace, then A is liminal, A is Hausdorff and every point of EA is
Fell-regular; conversely, A is a C*-algebra with continuous trace if A is
Hausdorff and every point of A is Fell-regular. These latter conditions
are known as the “Fell-Dixmier conditions for continuous trace of the
C*-algebra A.” In the final section we will prove a localized version of
the Fell-Dixmier theorem.

The symbols B(H) and K(H) denote, respectively, the C*-algebras
of bounded linear and compact linear operators acting on a Hilbert
space H with adjoint as involution and operator norm. A C*-algebra
A is said to be liminal if 7(A) = K(H,) for every 7 € A, where
H is the Hilbert space for w. For the following definitions we refer
the reader to [1]. If ¢ and ¢ are pure states of a C*-algebra A and
p, q are their respective support projections in A**, then the transition
probability between ¢ and ¢ is denoted by (p,%) and is defined by
(p, 0y = ¢©(q) = ¥(p). If ¢ and ¢ are unitarily equivalent, there
will be an irreducible representation m : A — B(H) and unit vectors
&,n € H such that for every a € A we have ¢(a) = (n(a)¢, &), and
¥(a) = (r(a)n,n). Hence, the transition probability between ¢ and
¥ is given by (p,%) = [(£,n)|>. If ¢ and ¢ are inequivalent (that
is, their respective GNS irreducible representations are not unitarily
equivalent), then (p,¥) = 0. In Proposition 2.1 we shall use the subset
R(A) of P(A) x P(A) which is defined by R(A) = {(¢,¥) : ¢ and ¢
are unitarily equivalent pure states of A}.

2. The Fell and Glimm regular points. We give a short proof
of the following result using a continuity property [2] for transition
probabilities for pure states of the C*-algebra A.

Proposition 2.1. Let A be C*-algebra with spectrum :%:1\ Let 7 € A.
Suppose 7 is Fell-reqgular. Then 7 a separated point of A implies m is
Glimm regular.
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Proof. Suppose 7 is a separated point of A. Suppose 7 is not Glimm-
regular. Then, there exist an e € A, a neighborhood U of 7 in A4, and a
net (7, ) in U convergent to 7 such that (i) 7(e) is a rank-one projection,
(ii) o(e) is a projection for all o € U, (iii) rank (mo(€e)) > 2. By (iii)
choose, for each a, orthogonal unit vectors &,,n, € 7o(e)Hr,, and
define Pa = <7T04(')'£0t7£0t>7 1/1(1 = <7r0t(')770t777a>7 Clearly, Saa,'(pa € P(A)a
the set of pure states of A with relative w*-topology. Choose a unit
vector £ € w(e)H,, and define ¢ = (w(-)§,£) € P(A). We will show
that ¢q,%a — ¢. Let a € A. Since 7w(e) is a one-dimensional

projection, m(eae) = ¢(a)w(e). Since 7 is a separated point of A,
the map o — ||o(a)|| is continuous at « for all a € A [4, 3.9.4(a)].
Therefore, |mo(eae — ¢(a)e)| < ||ma(eae — p(a)e)|] = 0. Now, since

6a(@) — $(@)] = ga(cac — p(a)e)] < ||ma(cac — pa)e)l] — 0, we get
Yo — . Similarly, ¥, — ¢. Since 7 is Fell-regular by [2, Theorem 4.2
((ii) — (i))] the transition probability map (, ): R(A) — [0, 1], given
by (f,g) — (f,g) is continuous at (¢, ¢). Therefore, (¢q, Vo) = (¥, )

implies <<Paa¢a> — <907‘10>' But <‘Pa7'(/}a> = |<£a777a>|2 =0 (Since
€x L na), whereas (p,p) = [(£,6)|* = 1, a contradiction to the

continuity of the map (, ): R(A) — [0, 1] at (¢, ). Thus, 7 is Glimm-
regular. |

An alternative, but more lengthy, proof of Proposition 2.1 can be
given by developing the methods of [5] in a more general setting.

Proposition 2.2. Let A be a C*-algebra with spectrum/gl\. Suppose
m 18 a separated point and a Glimm-regular point of A such that
m(A) D K(Hy). Then 7 is Fell-regular.

Proof. Let E be a rank-one projection in K(H.). Then, since
m(A) D K(H,), there exists an a € A such that m(a) = E. Let
b=a*a > 0. Then n(b) = E and since ||w(b)|| < ||b]| so, in particular,
Ib|] > 1. Therefore, Sp (b) N [1,00) # &, where Sp (b) is the spectrum
of b. Define g : [0,00) — R by

g(t)_{t if t €[0,1]

1 ift e (1,00);

then g is continuous on Sp (b). Define ¢ = g(b) > 0. Then 7(c) = E
and |l¢|]| = 1. Since 7w is a separated point of A, the mapping
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o — |lo(x)|| is continuous at m for each x € A [4, 3.9.4 (a)]. Also,
|r(c? — ¢)|| = 0. Hence, there exists a neighborhood U of 7 in A such
that ||o(c? — ¢)|| < 3/16 for all o € U. It follows from this that for
o €U, Sp(o(e)) €[0,1/4]U[3/4,1]. Define f : [0,1] — [0,1] by

0 if t €[0,1/4]
fty={ 2t—1/2 ifte[1/4,3/4]
1 if t € [3/4,1].

Then f is continuous. Define e = f(c). If o € U, then by definition
of f, Sp(c(e)) € {0,1}. Since o(e) > 0, it follows that o(e) is a
projection for all o € U, and 7(e) = m(f(c)) = E. But, by assumption,
m is Glimm-regular; therefore, there exists a neighborhood V' of 7 with
V' C U such that o(e) is one-dimensional for all o € V. So 7 is Fell-
regular. ]

By combining Proposition 2.1 and Proposition 2.2 we obtain the
following Theorem.

Theorem 2.1. Let A be a C*-algebra with spectrum A Letme A
be a separated point of A. Then the following are equivalent: (1) m is
Fell-regular; (2) n(A) 2 K(H,) and w is Glimm-regular.

It follows immediately from Theorem 2.1 that if A is liminal and A
is Hausdorff, then the notions of Fell regularity and Glimm regularity
coincide for elements of A (see [5, page 60] and [6, page 74]).

Remark 2.1. If 7 € A and w(A) 2 K(H,), then 7(A)NK(H,) = {0}
[4, 4.1.10] and so 7 is Glimm-regular (by vacuous satisfaction) but not
Fell-regular. However, even if we assume w(A) O K(H,), then neither
kind of regularity implies the other in the absence of the hypothesis
that 7 is a separated point. In Kaplansky’s example [4, 4.7.19], the
one-dimensional representation A (and also u) is a nonseparated Fell-
point that is not Glimm-regular (consider the pair (e,U) where e = 1
and U = 2) On the other hand, in the example in [3, page 443], the
C*-algebra A has a one-dimensional representation A with the property
that if g € A and A(g) = 1 then there is no neighborhood V of XA in A
such that o(g) is a projection for all o € V. Thus, A is Glimm-regular
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(vacuously) and not Fell-regular (in fact the upper multiplicity My ()
is 2). By Theorem 2.1, X\ cannot be a separated point of A. Indeed,
the construction in [3, page 443] shows that for each ¢t € (0,1) there is
a one-dimensional representation A; which cannot be separated from A
by disjoint open sets.

We now give an example to show that 7 can be both Fell-regular and
Glimm-regular without being a separated point.

Ezample 2.1. Let X = I x I where I = [0,1]. Define A
{f € C(XaMQ): f(0,0) = diag ()‘(f)ao)af(oal) = diag (A(f)vﬂ‘(f
£(0,1) = diag (\(£), pe(f) for all ¢ € (0, 1)}, where A(f), u(f), pe(f)
C.

With pointwise operations and sup-norm A is a C*-subalgebra of
C(X,Ms). Let (z,y) € X. Define 7(, ) : A = M3(C) by ., (f) =
f(z,y). One can check that

),

€

A\:{ﬂ'(z’y) 0<z<1,0<y<1}U{p:0<t<1}U{Apu}
We show that A is Fell-regular. Define h : X — M5(C) by
h(z,y) = diag (1,0) for all (z,y) € X.

Let J = AhA. Then, clearly, J is a norm-closed two sided ideal of A.
Let

V= A\ ({u:te(0,1}ufu}) ={ocd:o(]) #{0}}.

Then V is an open neighborhood of A in A. Since o(h) = diag (1,0) for
all 0 € V'\ {A} and A(h) = 1, therefore X is a Fell-point of A.

We show that A is Glimm-regular. For each £ > 0,
Ve={ A U{7(gy) : 0<2<e,0<y <1}

is an open neighborhood of A, corresponding to the closed two-sided
ideal of A consisting of all functions f which vanish on [e,1] x [0, 1] and
satisfy p(f) = pe(f) =0 for all t € (0,1). Suppose that (e,U) is a pair
such that e € A, U is a neighborhood of A in A, a(e) is a projection for
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all 0 € U and A(e) = 1. An elementary compactness argument shows
that there exists € > 0 such that V., C U. The function

(z,y) — tr(e(z,y))

is a continuous, integer-valued function on the connected set {(0,0)} U
((0,€) x [0,1]) and takes the value 1 at (0,0). It follows that m(, ,)(e)
has rank one for all 7(, ) € V.. Thus, A is Glimm-regular.

Finally, we show that A is not a separated point of A, We will
construct a net in A and show that it converges to both A and pu. Let
V be some open neighborhood of A. Therefore, there exist a closed two
sided ideal K of A such that K = V. Since A\(K) # {0} there exists an
f € K such that A(f) # 0. Therefore, f(0,1) = diag (A(f), #(f)) # 0.
Now, since f is continuous, therefore f(z,1 —z) — f(0,1) as  — 07;
that is, 7(y1-4)(f) — diag (A(f),u(f)) as  — 0%. So there exist a
d > 0 such that m(; 1_4)(f) # 0, for all z € (0,9), that is, 75 1) €V,
for all z € (0,0) and, therefore, 7(; 1_,) — p as © — 07. Following the
above lines with A replaced by u we will get ;1 _,) = pasz — 0t;
thus, we get m(, 1) = A\, pas z — 0". Since ker € ker p, X is not a

separated point of A. This completes our example.

3. Fell-Dixmier conditions for continuous trace of a C*-
algebra. The following result is a local version of the Fell-Dixmier
theorem (see the introduction). The proof uses some classical methods
from [4] and also a more recent lower semi-continuity result from [2].

Theorem 3.1. Let A be a C*-algebra with spectrum A. Let 7 € A.
Then the following are equivalent: (1) 7 is a Fell-point, and 7 is a
separated point; (2) there exists a two sided ideal J of A such that
(i) kerm is strictly contained in J (norm closure of J), (ii) for each
a€ JT, trm(a) < oo and the map o — tro(a) is continuous at .

Proof. ((1) = (2)). Define S = {a € A" : o — tro(a) is finite and
continuous at 7}. Clearly, S+ S C S and if z € A satisfies zz* € S,
then, since tr o(zz*) = tro(z*z), forall o € A, z*z € S. Let # € S and
y € AT be such that y < z. Note that trr(y) < trn(z) < co. Let ()
be a net in A such that m, — 7. Then, by [4, 3.5.9], lim, inf tr 7o (y) >
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tr(y) > 0, and lim, inf tr 7o (2 — y) > tr(z) — trw(y) > 0. Or

- liénsup(—trwa(x) +trme(y)) > tra(z) — trw(y).

Since o — trw(z) is continuous at 7, we get

—(—trm(x)) — Iiénsup(trﬂa(y)) > trw(z) — trw(y).

Since tr7(x) < oo, we can cancel it out on both sides and get

—limsup(trme(y)) > —trw(y), or 0 <limsup(trm,(y)) < tra(y).

Thus, lim, tr s (y) = tr(y) < oo, and hence y € S. Let J = lim(S).
Then by [4, 4.5.1 (c) (ii)], J is a two sided ideal of A such that J* = S.

We show first that ker 7 is contained in J. Let o € A and suppose
ker7 is not contained in kero. It is enough to show that J is not
contained in ker 0. Since 7 is a separated point of A, there exist disjoint
open sets V1, Vo in A such that 7 EAV1, o € V5. There exists a closed
two-sided ideal K of A such that K = V5. Since o(K) # {0}, there
exists k € KT such that o(k) # 0, whereas 6(k) = 0 for all § € V;.
Now, since, trf(k) = 0 for all # € V;, the map 6 — tré(k) is finite
and continuous at 7. Thus, k € S C J. Since o(k) # 0, k ¢ kero
and hence J is not contained in kero. Thus, ker 7 is not contained
in kero implies that J is not contained in kero. Or, equivalently,
J Ckero — ker m C ker o. This shows that ker7 C J.

Secondly, we show that kerm # J, that is, J strictly contains ker .
Since 7 is a Fell-point, there exist an e € AT and an open neighborhood
V of 7w in A such that o(e) is a rank-1 projection for all & € V. Now
as tro(e) = 1 for all ¢ € V, so the map o + tro(e) is finite and
continuous at 7. Therefore, e € S C J C J. Since m(e) # 0, e ¢ ker 7
and therefore ker m # J. Thus, ker 7w C J.

((2) = (1)). Since kerm C J, there exists a € JT such that
m(a) # 0. Therefore by [4, 4.4.2 (ii)], 7 is a Fell-point. Now
suppose that my € 2\ {m} and that (7,) is a net in A such that
o — m,mp. Let x € JT. Then, by [2, Theorem 2.4], lim,, inf tr m, (z) >
trmo(x) + trw(z). But the map o — tro(z) is finite and continuous
at m; therefore, lim, inftrmy(z) = lim, trm,(x) = trw(z). Hence,
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tr(z) > trmo(x) 4+ trw(z). Since tr(z) is finite and = > 0, we obtain
mo(z) = 0. Since z € J* is arbitrary, we get mo(J*) = {0}. By
linearity and continuity of my, we get, respectively, mo(J) = {0} and
mo(J) = {0}. Thus, J C kermo and hence kerm C kermy. That is,

o € {m}. This shows that  is a separated point of A. o

Remark 3.1. If 7 satisfies the equivalent conditions of Theorem 3.1
and if ker 7 is a maximal closed two-sided ideal of A, then, of course,
J is dense in A. However, ker 7 need not be maximal. Indeed, let
A = B(H) for an infinite dimensional Hilbert space H, and let = be
the identity representation. Since {m} is open and dense in ;4\, m is
a Fell-point and a separated point. The construction in the proof of
Theorem 3.1 leads to J being the ideal of trace-class operators.

Corollary 3.1. Let A be a C*-algebra with spectrum A. Letme ;{\,
and let m(A) = K(H,). Then the following are equivalent: (1) m is a
Fell point, and 7 is a separated point, (2) there exists a dense two-sided
ideal J of A such that, for each a € JT, trm(a) < oo and the map
o — tro(a) is continuous at .

Proof. ((1) = (2)). Suppose 7 is a Fell-point and a separated point
of A. Then, by Theorem 3.1, there exist a two-sided ideal J of A such
that ker 7 C J and, for each a € J*, the map o — tro(a) is finite and

continuous at m. But 7(A) = K(H,) implies that ker 7 is a maximal
ideal of A, therefore J = A.

((2) = (1)). Since J = A, ker C J. Therefore, by Theorem 3.1, 7
is a Fell-point and a separated point of A. a

In Example 3.8 of [2] A is a C*-algebra for which every 7 € Aisa
Fell point yet both the separated points and the nonseparated points
form dense subsets in A. In the following corollary, we show how the
Fell-Dixmier theorem can be obtained from our local version.

Corollary 3.2. Let A be a C*-algebra with spectrum A. Then the
following are equivalent: (1) A is Hausdorff and every point of A is
Fell-regular, (2) A is a C*-algebra with continuous trace.
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Proof. ((2) = (1)). By (2), A is liminal. By Corollary 3.1, every
point 7 € Ais Fell-regular and a separated point. Since A is liminal, it
follows from [4, 4.2.5] that A is a 17 space, and hence A is Hausdorff
(since every 7 € A is a separated point).

((1) = (2)). Let 7 € A. Since 7 is a Fell-point, 7(4) 2 K(H,).
But A is Hausdorff and so m(A) = K(H,). By Corollary 3.1, there is
a dense two-sided ideal J, (associated with 7) of A such that for each
a € JF, trm(a) < oo and the map o — tr(a) is continuous at 7. Let
J be the Pedersen ideal of A. Then J C J,. Thus, for each a € JJF/l
trm(a) < oo and the map o — tro(a) is continuous at 7. Since m € A
is arbitrary, the map o +— tro(a) is continuous on E, and hence A has
continuous trace. O
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