CROSSED PRODUCTS OF LOCALLY C^* -ALGEBRAS

MARIA JOIŢA

ABSTRACT. The crossed products of locally C^* -algebras are defined and a Takai duality theorem for inverse limit actions of a locally compact group on a locally C^* -algebra is proved.

1. Introduction. Locally C^* -algebras are generalizations of C^* -algebras. Instead of being given by a single C^* -norm, the topology on a locally C^* -algebra is defined by a directed family of C^* -seminorms. In [9], Phillips defines the notion of action of a locally compact group G on a locally C^* -algebra A whose topology is determined by a countable family of C^* -seminorms, and also defines the crossed product of A by an inverse limit action

$$\alpha = \lim_{\stackrel{\leftarrow}{n}} \alpha^{(n)}$$

as being the inverse limit of crossed products of A_n by $\alpha^{(n)}$. In this paper, by analogy with the case of C^* -algebras, we define the concept of crossed product, respectively reduced crossed product of locally C^* -algebras.

The Takai duality theorem says that if α is a continuous action of an Abelian locally compact group G on a C^* -algebra A, then we can recover the system (G,A,α) up to stable isomorphism from the double dual system in which $G=\widehat{\widehat{G}}$ acts on the crossed product $(A\times_{\alpha}G)\times_{\widehat{\alpha}}\widehat{G}$ by the dual action of the dual group. In [3], Imai and Takai prove a duality theorem for C^* -crossed products by a locally compact group that generalizes the Takai duality theorem [12]. For a given C^* -dynamical system (G,A,α) , they construct a "dual" C^* -crossed product of the reduced crossed product $A\times_{\alpha,r}G$ by an isomorphism

²⁰⁰⁰ AMS Mathematics subject classification. Primary 46L05, 46L55. This research was partially supported by grant CEEX-code PR-D11-PT00-48/2005 from The Romanian Ministry of Education and Research and by grant CNCSIS (Romanian National Council for Research in High Education)-code A 1065/2006.

Réceived by the editors on November 18, 2004, and in revised form on May 19, 2005.

 β from $A \times_{\alpha,r} G$ into L(H), the C^* -algebra of all bounded linear operators on some Hilbert space H and show that this is isomorphic to the tensor product $A \otimes \mathcal{K}(L^2(G))$ of A and $\mathcal{K}(L^2(G))$, the C*-algebra of all compact operators on $L^2(G)$. If G is commutative, the "dual" C^* -crossed product constructed by Imai and Takai is isomorphic to the double crossed product $(A \times_{\alpha} G) \times_{\widehat{\alpha}} \widehat{G}$. Katayama [6] shows that a nondegenerate coaction β of a locally compact group on a C^* -algebra Ainduces an action $\widehat{\beta}$ of G on the crossed product $A \times_{\beta} G$ and proves that the C^* -algebras $(A \times_{\beta} G) \times_{\widehat{\beta}_r} G$ and $A \otimes \mathcal{K}(L^2(G))$ are isomorphic. In [13], Vallin shows that there is a bijective correspondence between the set of all actions of a locally compact group G on a C^* -algebra A and the set of all actions of the commutative Kac C^* -algebra $C^*\mathbf{K}_G^a$ associated with G on A. A coaction of G on A is an action of the symmetric Kac C^* -algebra $C^*\mathbf{K}_G^s$ associated with G. If G is commutative, we can identified $C_r^*(G)$ with $C_0(G)$ via the Fourier transform, whence it becomes clear that a coaction of G is the same thing as an action of G. Thus, we can regard the coactions of a locally compact group G as "actions of the dual group even there isn't any dual group." Also, Vallin shows that an action α (coaction β) of G on A induces a coaction $\widehat{\alpha}$ (action $\widehat{\beta}$) of G on the crossed product $A \times_{\alpha,r} G$ (respectively $A \times_{\beta} G$) and proves a version of the Takai duality theorem showing that the double crossed product $(A \times_{\alpha,r} G) \times_{\widehat{\alpha}} G$ is isomorphic to $A \otimes \mathcal{K}(L^2(G))$. We propose to prove a version of the Takai duality theorem for crossed products of locally C^* -algebras.

The paper is organized follows. In Section 2 we present some basic definitions and results about locally C^* -algebras and $\operatorname{Kac} C^*$ -algebras. In Section 3 we define the notion of crossed product (reduced crossed product) of a locally C^* -algebra A by an inverse limit action α of a locally compact group G and prove some basic properties of these. Section 4 is devoted to actions of a $\operatorname{Kac} C^*$ -algebra on a locally C^* -algebra. We show that there is a bijective correspondence between the set of all inverse limit actions of a locally compact group G on a locally C^* -algebra A and the set of all inverse limit actions of the commutative $\operatorname{Kac} C^*$ -algebra $C^*\mathbf{K}_G^a$ on A, Proposition 4.4. As a consequence of this result, we obtain: for a compact group G, any action of the $\operatorname{Kac} C^*$ -algebra $C^*\mathbf{K}_G^a$ on A is an inverse limit of actions of the $\operatorname{Kac} C^*$ -algebras $C^*\mathbf{K}_G^a$ on A_p , $p \in S(A)$. In Section 5, using the same arguments as in [13], we show that any inverse limit action α (coaction β) of a locally

compact group G on a locally C^* -algebra A induces an inverse limit coaction $\widehat{\alpha}$ (action $\widehat{\beta}$) of G on the crossed product $A\times_{\alpha,r}G$ (respectively $A\times_{\beta}G$), Proposition 5.5. Finally, we prove that if α is an inverse limit action of a locally compact group G on a locally C^* -algebra A, then there is an isomorphism of locally C^* -algebras from $(A\times_{\alpha,r}G)\times_{\widehat{\alpha}}G$ onto $A\otimes \mathcal{K}(L^2(G))$ and the inverse limit actions $\widehat{\alpha}$ and $\alpha\otimes$ ad ρ are equivalent, Theorem 5.6.

2. Preliminaries. A locally C^* -algebra is a complete complex Hausdorff topological *-algebra A whose topology is determined by a family of C^* -seminorms, see [1, 2, 4, 9, 10]. If S(A) is the set of all continuous C^* -seminorms on A, then for each $p \in S(A)$, $A_p = A/\ker(p)$ is a C^* -algebra with respect to the norm induced by p, and

$$A = \lim_{\stackrel{\leftarrow}{p \in S(A)}} A_p.$$

The canonical maps from A onto A_p , $p \in S(A)$ are denoted by π_p , the image of a under π_p by a_p and the connecting maps of the inverse system $\{A_p\}_{p\in S(A)}$ by π_{pq} , $p,q\in S(A)$ with $p\geq q$.

A morphism of locally C^* -algebras is a continuous *-morphism Φ from a locally C^* -algebra A to a locally C^* -algebra B. An isomorphism of locally C^* -algebras is a morphism of locally C^* -algebras which is invertible and its inverse is a morphism of locally C^* -algebras. An S-morphism of locally C^* -algebras is a morphism $\Phi: A \to M(B)$, where M(B) is the multiplier algebra of B, with the property that for any approximate unit $\{e_i\}_i$ of A the net $\{\Phi(e_i)\}_i$ converges to 1 with respect to the strict topology on M(B). If $\Phi: A \to M(B)$ is an S-morphism of locally C^* -algebras, then it extends to a unique morphism $\overline{\Phi}: M(A) \to M(B)$ of locally C^* -algebras, see [5].

A Kac C^* -algebra is a quadruple $\mathbf{K} = (B, d, j, \varphi)$, where B is a C^* -algebra, d is a comultiplication on B, j is a coinvolution on B, and φ is a semi-finite, lower semi-continuous, faithful weight on B, see [13].

Let A and B be two locally C^* -algebras. The injective tensor product of the locally C^* -algebras A and B is denoted by $A \otimes B$, see [2], and the locally C^* -subalgebra of $M(A \otimes B)$ generated by the elements x in $M(A \otimes B)$ such that $x(1 \otimes B) + (1 \otimes B)x \subseteq A \otimes B$ is denoted by M(A, B). If G is a locally compact group, then $M(A, C_0(G))$

may be identified with the locally C^* -algebra $C_b(G, A)$ of all bounded continuous functions from G to A.

Let G be a locally compact group. $C^*\mathbf{K}_G^a = (C_0(G), d_G^a, j_G^a, ds)$ is the commutative $\operatorname{Kac} C^*$ -algebra associated with G and $C^*\mathbf{K}_G^s = (C_r^*(G), d_G^s, j_G^s, \varphi_G)$ is the symmetric $\operatorname{Kac} C^*$ -algebra associated with G, see [13].

An action of a Kac C^* -algebra $\mathbf{K} = (B, d, j, \varphi)$ on a C^* -algebra A is an injective S-morphism α from A to M(A, B) such that $(\overline{\alpha \otimes \operatorname{id}}) \circ \alpha = (\operatorname{id}_A \otimes \sigma_B \circ d) \circ \alpha$, see [13].

3. Crossed products. Let A be a locally C^* -algebra, and let G be a locally compact group.

Definition 3.1. An action of G on A is a morphism α from G to Aut (A), the set of all isomorphisms of locally C^* -algebras from A to A. The action α is continuous if the function $(t,a) \to \alpha_t(a)$ from $G \times A$ to A is jointly continuous.

Definition 3.2. A locally C^* -dynamical system is a triple (G, A, α) , where G is a locally compact group, A is a locally C^* -algebra and α is a continuous action of G on A.

Definition 3.3. We say that $\{(G,A_\delta,\alpha^{(\delta)})\}_{\delta\in\Delta}$ is an inverse system of C^* -dynamical systems if $\{A_\delta\}_{\delta\in\Delta}$ is an inverse system of C^* -algebras and for each t in G, $\{\alpha_t^{(\delta)}\}_{\delta\in\Delta}$ is an inverse system of C^* -isomorphisms. Let

$$A = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} A_{\delta} \quad \text{and} \quad \alpha_t = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} \alpha_t^{(\delta)}$$

for each $t \in G$. Then the map $\alpha : G \to \operatorname{Aut}(A)$ defined by $\alpha(t) = \alpha_t$ is a continuous action of G on A and (G, A, α) is a locally C^* -dynamical system. We say that (G, A, α) is the inverse limit of the inverse system of C^* -dynamical systems $\{(G, A_{\delta}, \alpha^{(\delta)})\}_{\delta \in \Delta}$.

Definition 3.4. A continuous action α of G on A is an inverse limit action if we can write A as inverse limit

$$\lim_{\stackrel{\leftarrow}{\delta \in \Delta}} A_{\delta}$$

of $C^*\text{-algebras}$ in such a way that there are actions $\alpha^{(\delta)}$ of G on A_δ such that

$$\alpha_t = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} \alpha_t^{(\delta)}$$

for all t in G [9, Definition 5.1].

Remark 3.5. The action α of G on A is an inverse limit action if there is a cofinal subset of G-invariant continuous C^* -seminorms on A (a continuous C^* -seminorm p on A is G-invariant if $p(\alpha_t(a)) = p(a)$ for all a in A and for all t in G).

The following lemma is Lemma 5.2 of [9].

Lemma 3.6. Any continuous action of a compact group G on a locally C^* -algebra A is an inverse limit action.

Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. By Remark 3.5, we can suppose that S(A) coincides with the set of all G-invariant continuous C^* -seminorms on A.

Let $C_c(G, A)$ be the vector space of all continuous functions from G to A with compact support.

Lemma 3.7. Let $f \in C_c(G, A)$. Then there is a unique element $\int_G f(s) ds$ in A such that for any nondegenerate *-representation (φ, H_{φ}) of A

$$\left\langle \varphi \left(\int_{G} f(s) \, ds \right) \xi, \eta \right\rangle = \int_{G} \left\langle \varphi(f(s)) \xi, \eta \right\rangle \, ds$$

for all ξ, η in H_{φ} . Moreover, we have:

- (1) $p(\int_G f(s) ds) \le M \sup\{p(f(s)); s \in \sup\{f\}\}$ for some positive number M and for all $p \in S(A)$;
 - (2) $(\int_G f(s) ds) a = \int_G f(s) a ds$ for all $a \in A$;
- (3) $\Phi(\int_G f(s) ds) = \int_G \Phi(f(s)) ds$ for any morphism of locally C^* -algebras $\Phi: A \to B$;
 - (4) $(\int_G f(s) ds)^* = \int_G f(s)^* ds$.

Proof. Let $p \in S(A)$. Then $\pi_p \circ f \in C_c(G, A_p)$ and so there is a unique element $\int_G (\pi_p \circ f)(s) ds$ in A_p such that for any nondegenerate *-representation $(\varphi_p, H_{\varphi_p})$ of A_p

$$\left\langle \varphi_p \bigg(\int_G (\pi_p \circ f)(s) \, ds \bigg) \xi, \eta \right\rangle = \int_G \left\langle \varphi_p ((\pi_p \circ f)(s)) \xi, \eta \right\rangle ds$$

for all ξ, η in H_{φ_p} ; see, for instance, [11, Lemma 7].

To show that $(\int_G (\pi_p \circ f)(s) ds)_p$ is a coherent net in A, let $p, q \in S(A)$ with $p \geq q$. Then we have

$$\pi_{pq}\left(\int_{G} (\pi_{p} \circ f)(s) \, ds\right) = \int_{G} \pi_{pq}((\pi_{p} \circ f)(s)) \, ds \text{ using Lemma 7 of } [\mathbf{11}]$$
$$= \int_{G} (\pi_{q} \circ f)(s) \, ds.$$

Therefore, $(\int_G (\pi_p \circ f)(s) ds)_p \in A$, and we define $\int_G f(s) ds = (\int_G (\pi_p \circ f)(s) ds)_p$.

Suppose that there is another element b in A such that for any nondegenerate *-representation (φ, H_{φ}) of A

$$\langle \varphi(b)\xi, \eta \rangle = \int_{C} \langle \varphi(f(s))\xi, \eta \rangle ds$$

for all ξ, η in H_{φ} . Then for any $p \in S(A)$ and for any nondegenerate *-representation $(\varphi_p, H_{\varphi_p})$ of A_p

$$\langle \varphi_p(\pi_p(b))\xi, \eta \rangle = \int_C \langle \varphi_p((\pi_p \circ f)(s))\xi, \eta \rangle ds$$

for all ξ, η in H_{φ_p} . From these facts and [11, Lemma 7], we conclude that

$$\pi_p(b) = \int_G (\pi_p \circ f)(s) \, ds$$

for all $p \in S(A)$. Therefore, $b = \int_G f(s) ds$ and the uniqueness is proved.

Using [11, Lemma 7] it is easy to check that $\int_G f(s) ds$ satisfies the conditions (1)–(4).

Let f, h in $C_c(G, A)$. It is easy to check that the map $(s, t) \to f(t)\alpha_t(h(t^{-1}s))$ from $G \times G$ to A is an element in $C_c(G \times G, A)$ and the relation

$$(f \times h)(s) = \int_{G} f(t)\alpha_{t}(h(t^{-1}s)) dt$$

defines an element in $C_c(G, A)$, called the convolution of f and h. Also it is not hard to check that $C_c(G, A)$ becomes a *-algebra with convolution as product and involution defined by

$$f^{\sharp}(t) = \gamma(t)^{-1} \alpha_t (f(t^{-1})^*)$$

where γ is the modular function on G.

For any $p \in S(A)$, define N_p from $C_c(G, A)$ to $[0, \infty)$ by

$$N_p(f) = \int_G p(f(s)) \, ds.$$

Straightforward computations show that N_p , $p \in S(A)$, are submultiplicative *-seminorms on $C_c(G, A)$.

Let $L^1(G, A, \alpha)$ be the Hausdorff completion of $C_c(G, A)$ with respect to the topology defined by the family of submultiplicative *-seminorms $\{N_p\}_{p\in S(A)}$. Then by [7, Theorem III 3.1]

$$L^1(G,A,\alpha) = \lim_{\stackrel{\longleftarrow}{p \in S(A)}} (L^1(G,A,\alpha))_p$$

where $(L^1(G, A, \alpha))_p$ is the completion of the *-algebra $C_c(G, A)/\ker(N_p)$ with respect to the norm $\|\cdot\|_p$ induced by N_p .

Lemma 3.8. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. Then

$$(L^{1}(G, A, \alpha))_{p} = L^{1}(G, A_{p}, \alpha^{(p)})$$

for all $p \in S(A)$, up to a topological algebraic *-isomorphism.

Proof. Let $p \in S(A)$ and f in $C_c(G, A)$. Then

$$\|f + \ker(N_p)\|_p = \int_G p(f(s)) \, ds = \int_G \|\pi_p(f(s))\|_p \, ds = \|\pi_p \circ f\|_1.$$

Therefore we can define a linear map ψ_p from $C_c(G,A)/\ker(N_p)$ to $C_c(G,A_p)$ by

$$\psi_p\left(f + \ker(N_p)\right) = \pi_p \circ f.$$

It is not hard to check that ψ_p is a *-morphism, and since ψ_p is an isometric *-morphism from $C_c(G,A)/\ker(N_p)$ to $C_c(G,A_p)$, it can be uniquely extended to an isometric *-morphism ψ_p from $(L^1(G,A,\alpha))_p$ to $L^1(G,A_p,\alpha^{(p)})$.

To show that ψ_p is surjective, let $a \in A$ and $f \in C_c(G)$. Define \widetilde{f} from G to A by $\widetilde{f}(s) = f(s)a$. Clearly $\widetilde{f} \in C_c(G, A)$ and

$$\psi_p(\widetilde{f} + \ker(N_p))(s) = f(s)\pi_p(a)$$

for all s in G. This implies that

$$A_p \otimes_{\operatorname{alg}} C_c(G) \subseteq \psi_p((L^1(G,A,\alpha))_p) \subseteq L^1(G,A_p,\alpha^{(p)})$$

whence, since $A_p \otimes_{\operatorname{alg}} C_c(G)$ is dense in $L^1(G, A_p, \alpha^{(p)})$ and since ψ_p is an isometric *-morphism, we deduce that ψ_p is surjective and the lemma is proved. \square

Corollary 3.9. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. Then

$$L^{1}(G, A, \alpha) = \lim_{\stackrel{\leftarrow}{p \in S(A)}} L^{1}(G, A_{p}, \alpha^{(p)})$$

 $up\ to\ an\ algebraic\ and\ topological\ *-isomorphism.$

Remark 3.10. If $\{e_i\}_{i\in I}$ is an approximate unit for A and $\{f_j\}_{j\in J}$ is an approximate unit for $L^1(G)$, then $\{\widetilde{f}_{(i,j)}\}_{(i,j)\in I\times J}$, where $\widetilde{f}_{(i,j)}(s)=f_j(s)e_i$, $s\in G$, is an approximate unit for $L^1(G,A,\alpha)$, see [7, Lemma XIV.1.2]. Then by [1, Definition 5.1], we can construct the enveloping algebra of $L^1(G,A,\alpha)$.

Definition 3.11. A covariant representation of (G, A, α) is a triple (φ, u, H) , where (φ, H) is a *-representation of A and (u, H) is a unitary representation of G such that

$$\varphi(\alpha_t(a)) = u_t \varphi(a) u_t^*$$

for all $t \in G$ and for all $a \in A$.

We say that the covariant representation (φ, u, H) of (G, A, α) is nondegenerate if the *-representation (φ, H) of A is nondegenerate.

Remark 3.12. (1) If (φ, u, H) is a covariant representation of (G, A, α) such that $\|\varphi(a)\| \leq p(a)$ for all $a \in A$, then there is a unique covariant representation (φ_p, u, H) of the C^* -dynamical system $(G, A_p, \alpha^{(p)})$ such that $\varphi_p \circ \pi_p = \varphi$.

(2) If (φ_p, u, H) is a covariant representation of the C^* -dynamical system $(G, A_p, \alpha^{(p)})$, then $(\varphi_p \circ \pi_p, u, H)$ is a covariant representation of the locally C^* -dynamical system (G, A, α) .

If $R(G,A,\alpha)$ denotes the nondegenerate covariant representations of (G,A,α) , then it is easy to check that

$$R(G, A, \alpha) = \bigcup_{p \in S(A)} R_p(G, A, \alpha)$$

where $R_p(G, A, \alpha) = \{(\varphi, u, H) \in R(G, A, \alpha); \|\varphi(a)\| \leq p(a) \text{ for all } a \in A\}$. Also it is easy to check that the map $\varphi_p \mapsto \varphi_p \circ \pi_p$ from $R(G, A_p, \alpha^{(p)})$ to $R_p(G, A, \alpha)$ is bijective.

Proposition 3.13. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. Then there is a bijection between the covariant nondegenerate representations of (G, A, α) and the nondegenerate *-representations of $L^1(G, A, \alpha)$.

Proof. Let $(\varphi, u, H) \in R(G, A, \alpha)$. Then, there is a $p \in S(A)$ and $(\varphi_p, u, H) \in R(G, A_p, \alpha^{(p)})$ such that $\varphi = \varphi_p \circ \pi_p$. Since $(\varphi_p, u, H) \in R(G, A_p, \alpha^{(p)})$, there is a unique nondegenerate *-representation $(\varphi_p \times u, H)$ of $L^1(G, A_p, \alpha^{(p)})$ such that

$$(\varphi_p \times u)(f) = \int_G \varphi_p(f(t)) u_t dt$$

for all $f \in L^1(G, A_p, \alpha^{(p)})$, see, for instance, [8, Proposition 7.6.4].

Let $\varphi \times u = (\varphi_p \times u) \circ \widetilde{\pi}_p$, where $\widetilde{\pi}_p$ is the canonical map from $L^1(G, A, \alpha)$ to $L^1(G, A_p, \alpha^{(p)})$, $\widetilde{\pi}_p(f) = \pi_p \circ f$ for all f in $L^1(G, A, \alpha)$. Then, clearly $(\varphi \times u, H)$ is a nondegenerate *-representation of $L^1(G, A, \alpha)$ and moreover,

$$(\varphi \times u)(f) = (\varphi_p \times u)(\pi_p \circ f) = \int_G \varphi_p((\pi_p \circ f)(t))u_t dt = \int_G \varphi(f(t))u_t dt$$

for all $f \in L^1(G, A, \alpha)$. Thus, we have obtained a map $(\varphi, u, H) \to (\varphi \times u, H)$ from $R(G, A, \alpha)$ to $R(L^1(G, A, \alpha))$. To show that this map is bijective, let (Φ, H) be a nondegenerate *-representation of $L^1(G, A, \alpha)$. Then, there is $p \in S(A)$ and a nondegenerate *-representation (Φ_p, H) of $L^1(G, A_p, \alpha^{(p)})$ such that $\Phi = \Phi_p \circ \pi_p$. By [8, Proposition 7.6.4] there is a unique nondegenerate covariant representation (φ_p, u, H) of $(G, A_p, \alpha^{(p)})$ such that $(\Phi_p, H) = (\varphi_p \times u, H)$. Therefore, there is a nondegenerate covariant representation (φ, u, H) of (G, A, α) , where $\varphi = \varphi_p \circ \pi_p$, such that $(\Phi, H) = (\varphi \times u, H)$.

To show that (φ, u, H) is unique, let (ψ, v, K) be another nondegenerate covariant representation of (G, α, A) such that $(\psi \times v, K) = (\Phi, H)$. Then there is a $q \in S(A)$ with $q \geq p$ such that $(\psi, v, K) \in R_q(G, A, \alpha)$ and $(\Phi, K) \in R_q(L^1(G, A, \alpha))$. Therefore $\Phi = \Phi_q \circ \widetilde{\pi}_q$ with $(\Phi_q, H) \in R(L^1(G, A_q, \alpha^{(q)}))$ and $\psi = \psi_q \circ \pi_q$ with $(\psi_q, v, K) \in R(G, A_q, \alpha^{(q)})$ and moreover, $(\Phi_q, H) = (\psi_q \times v, K)$.

On the other hand, $(\varphi_p \circ \pi_{qp}, u, H) \in R(G, A_q, \alpha^{(q)})$ and

$$((\varphi_p \circ \pi_{qp}) \times u)(f) = \int_G (\varphi_p \circ \pi_{qp})(f(t))u_t dt$$
$$= \int_G \varphi_p(\widetilde{\pi_{qp}}(f)(t))u_t dt$$
$$= \Phi_p(\widetilde{\pi_{qp}}(f)) = (\Phi_p \circ \widetilde{\pi_{qp}})(f) = \Phi_q(f)$$

for all $f \in L^1(G, A_q, \alpha^{(q)})$. From these facts and [8, Proposition 7.6.4], we conclude that the covariant representations (ψ_q, v, K) and $(\varphi_p \circ \pi_{qp}, u, H)$ of $(G, A_q, \alpha^{(q)})$ coincide, and so the covariant representations (ψ, v, K) and (φ, u, H) of (G, A, α) coincide. \square

Definition 3.14. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. The crossed product of A by the action α , denoted by $A \times_{\alpha} G$, is the enveloping algebra of the complete locally m-convex *-algebra $L^1(G, A, \alpha)$.

Remark 3.15. By Corollary 3.9 and Corollary 5.3 of [2], $A \times_{\alpha} G$ is a locally C^* -algebra and

$$A\times_{\alpha}G=\lim_{\stackrel{\longleftarrow}{\underset{p\in S(A)}{\longleftarrow}}}A_{p}\times_{\alpha^{(p)}}G$$

up to an isomorphism of locally C^* -algebras.

Proposition 3.16. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. Then there is a bijection between nondegenerate covariant representations of (G, A, α) and the nondegenerate representations of $A \times_{\alpha} G$.

Proof. Since $A \times_{\alpha} G$ is the enveloping locally C^* -algebra of the complete locally m-convex *-algebra $L^1(G,A,\alpha)$, there is a bijection between the nondegenerate representations of $A \times_{\alpha} G$ and the nondegenerate representations of $L^1(G,A,\alpha)$, [2, pages 37]. From this fact and Proposition 3.13 we conclude that there is a bijection between the nondegenerate representations of $A \times_{\alpha} G$ and the nondegenerate covariant representations of (G,A,α) .

For each $p \in S(A)$, we denote by $(\varphi_{p,u}, H_{p,u})$ the universal representation of A_p and by $(\varphi_p, H_{p,u})$ the representation of A associated with $(\varphi_{p,u}, H_{p,u})$, that is, $\varphi_p = \varphi_{p,u} \circ \pi_p$.

Lemma 3.17. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. Then $(\widetilde{\varphi_p}, \lambda, L^2(G, H_{p,u}))$, where

$$\widetilde{\varphi_p}(a)(\xi)(t) = \varphi_p(\alpha_{t-1}(a))(\xi(t))$$

and

$$\lambda_s(\xi)(t) = \xi(s^{-1}t)$$

for all a in A, ξ in $L^2(G, H_{p,u})$ and s, t in G, is a nondegenerate covariant representation of (G, A, α) .

Proof. It is a simple verification.

Let $p \in S(A)$. The map $r_p : L^1(G, A, \alpha) \to [0, \infty)$ defined by

$$r_p(f) = \|(\widetilde{\varphi_p} \times \lambda)(f)\|$$

is a C^* -seminorm on $L^1(G,A,\alpha)$ with the property that $r_p(f) \leq N_p(f)$ for all f in $L^1(G,A,\alpha)$.

Let

$$I = \bigcap_{p \in S(A)} \ker(r_p).$$

Clearly I is a closed two-sided ideal of $L^1(G, A, \alpha)$ and $L^1(G, A, \alpha)/I$ is a pre-locally C^* -algebra with respect to the topology determined by the family of C^* -seminorms $\{\hat{r}_p\}_{p\in S(A)}$, $\hat{r}_p(f+I)=\inf\{r_p(f+h);h\in I\}$.

Definition 3.18. The reduced crossed product of A by the action α , denoted by $A \times_{\alpha,r} G$, is the Hausdorff completion of $(L^1(G,A,\alpha), \{r_p\}_{p \in S(A)})$, that is, $A \times_{\alpha,r} G$ is the completion of the pre-locally C^* -algebra $(L^1(G,A,\alpha)/I, \{\widehat{r}_p\}_{p \in S(A)})$.

Lemma 3.19. Let (G, A, α) be a locally C^* -dynamical system such that α is an inverse limit action. Then

$$(A \times_{\alpha,r} G)_p = A_p \times_{\alpha^{(p)}} {}_r G$$

for all $p \in S(A)$, up to an isomorphism of C^* -algebras.

Proof. Let $p \in S(A)$. If $f \in L^1(G, A, \alpha)$, then we have

$$\begin{split} \|(f+I) + \ker(\widehat{r}_p)\|_{\widehat{r}_p} &= \widehat{r}_p(f+I) = \inf\{\|(\widetilde{\varphi_p} \times \lambda) \left(f + h\right)\|; h \in I\} \\ &= \inf\{\|(\widetilde{\varphi_p} \times \lambda) \left(f\right)\|; h \in I\} \\ &= r_p(f) = \|f + \ker(r_p)\|_{r_p} \,. \end{split}$$

From this relation, we conclude that $(A \times_{\alpha,r} G)_p$ is isomorphic to the completion of $L^1(G, A, \alpha) / \ker(r_p)$ with respect to the C^* -norm induced by r_p .

On the other hand, $A_p \times_{\alpha^{(p)},r} G$ is the completion of $L^1(G,A_p,\alpha^{(p)})/I_p$, where $I_p = \{f \in L^1(G,A_p,\alpha^{(p)})/(\widetilde{\varphi_{p,u}} \times \lambda)(f) = 0\}$, with respect to the norm $\|\cdot\|'$ given by $\|f + I_p\|' = \|(\widetilde{\varphi_{p,u}} \times \lambda)(f)\| \le \|f\|_1$. But the completion of $L^1(G,A,\alpha)/\ker(r_p)$ with respect to the norm $\|\cdot\|_{r_p}$ is isomorphic to the completion of $L^1(G,A,\alpha^{(p)})/I_p$ with respect to the norm $\|\cdot\|'$, since

$$\begin{aligned} \|f + \ker(r_p)\|_{r_p} &= r_p(f) = \|(\widetilde{\varphi_p} \times \lambda)(f)\| \\ &= \|(\widetilde{\varphi_{p,u}} \times \lambda)(\pi_p \circ f)\| \\ &= \|\widetilde{\pi}_p(f) + I_p\|' \end{aligned}$$

for all $f \in L^1(G, A, \alpha)$. Therefore, the C^* -algebras $(A \times_{\alpha, r} G)_p$ and $A_p \times_{\alpha^{(p)}, r} G$ are isomorphic. \square

Corollary 3.20. If (G, A, α) is a locally C^* -dynamical system such that α is an inverse limit action, then

$$A \times_{\alpha,r} G = \lim_{\substack{\leftarrow \\ p \in S(A)}} A_p \times_{\alpha^{(p)},r} G$$

up to an isomorphism of locally C^* -algebras.

4. Actions of a Kac C^* -algebra on a locally C^* -algebra. Let $C^*\mathbf{K}=(B,d,j,\varphi)$ be a Kac C^* -algebra, and let A be a locally C^* -algebra.

Definition 4.1. An action of $C^*\mathbf{K}$ on A is an injective S-morphism α from A to M(A,B) such that

$$(\overline{\alpha \otimes \mathrm{id}_B}) \circ \alpha = (\overline{\mathrm{id}_A \otimes (\sigma_B \circ d)}) \circ \alpha.$$

An action α of $C^*\mathbf{K}$ on A is an inverse limit action if we can write A as an inverse limit

$$\lim_{\stackrel{\leftarrow}{\delta \in \Delta}} A_{\delta}$$

of C^* -algebras in such a way that there are actions $\alpha^{(\delta)}$ of $C^*\mathbf{K}$ on A_{δ} , $\delta \in \Delta$ such that

$$\alpha = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} \alpha^{(\delta)}.$$

Two actions α_1 and α_2 of $C^*\mathbf{K}$ on the locally C^* -algebras A_1 , respectively A_2 , are said to be equivalent if there is an isomorphism of locally C^* -algebras $\Phi: A_1 \to A_2$ such that $\alpha_2 \circ \Phi = (\overline{\Phi \otimes \mathrm{id}_B}) \circ \alpha_1$.

Proposition 4.2. Let G be a locally compact group. If α is an action of $C^*\mathbf{K}_G^a$ on A, then the map $\Sigma(\alpha)$ that applies $t \in G$ to a map $\Sigma(\alpha)_t$ from A to A defined by $\Sigma(\alpha)_t(a) = \alpha(a)(t^{-1})$, is a continuous action of G on A.

Proof. Since α is a continuous *-morphism from A to $C_b(G, A)$, $\Sigma(\alpha)_t$ is a continuous *-morphism from A to A for each t in G. Using the same arguments as in the proof of Proposition 5.1.5 of [13], it is not difficult to see that $\Sigma(\alpha)_t$ is invertible and, moreover, $(\Sigma(\alpha)_t)^{-1} = \Sigma(\alpha)_{t-1}$ for all t in G. Therefore $\Sigma(\alpha)_t \in \text{Aut }(A)$ for each t in G.

To show that the map $(t,a) \to \Sigma(\alpha)_t(a)$ from $G \times A$ to A is continuous, let $(t_0,a_0) \in G \times A$, and let $W_{p,\varepsilon} = \{a \in A; p(a-\Sigma(\alpha)_{t_0}(a_0)) < \varepsilon\}$ be a neighborhood of $\Sigma(\alpha)_{t_0}(a_0)$. Since $\alpha(a_0) \in C_b(G,A)$, there is a neighborhood U_0 of U_0 such that

$$p(\alpha(a_0)(t^{-1}) - \alpha(a_0)(t_0^{-1})) < \frac{\varepsilon}{2}$$

for all t in U_0 , and since α is a continuous *-morphism, there is a neighborhood V_0 of a_0 such that

$$\|\alpha\left(a\right) - \alpha\left(a_{0}\right)\|_{p} = \sup\{p(\alpha\left(a\right)\left(t\right) - \alpha\left(a_{0}\right)\left(t\right)\}; \ t \in G\} < \frac{\varepsilon}{2}$$

for all a in V_0 . Then

$$p\left(\Sigma\left(\alpha\right)_{t}\left(a\right) - \Sigma\left(\alpha\right)_{t_{0}}\left(a_{0}\right)\right) \leq p\left(\alpha\left(a\right)\left(t^{-1}\right) - \alpha\left(a_{0}\right)\left(t^{-1}\right)\right) + p\left(\alpha\left(a_{0}\right)\left(t^{-1}\right) - \alpha\left(a_{0}\right)\left(t^{-1}\right)\right) \leq \left\|\alpha\left(a\right) - \alpha\left(a_{0}\right)\right\|_{p} + \frac{\varepsilon}{2} < \varepsilon$$

for all $(t,a) \in U_0 \times V_0$ and the proposition is proved.

Remark 4.3. According to Proposition 4.2, we can define a map Σ from the set of all actions of $C^*\mathbf{K}_G^a$ on A to the set of all continuous actions of G on A by $\alpha \to \Sigma(\alpha)$. Moreover, Σ is injective.

The following proposition is a generalization of [13, Proposition 5.1.5] for inverse limit actions of locally compact groups on locally C^* -algebras.

Proposition 4.4. Let G be a locally compact group. Then the map Σ defined in Proposition 4.2 is a bijective correspondence between the set of all inverse limit actions of $C^*\mathbf{K}_G^a$ on A and the set of all continuous inverse limit actions of G on A.

Proof. Let α be an inverse limit action of $C^*\mathbf{K}_G^a$ on A. Then A may be written as an inverse limit

$$\lim_{\stackrel{\leftarrow}{\delta \in \Delta}} A_{\delta}$$

of C^* -algebras, and there are actions $\alpha^{(\delta)}$ of $C^*\mathbf{K}_G^a$ on $A_\delta, \delta \in \Delta$ such that

$$\alpha = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} \alpha^{(\delta)}.$$

According to [13, Proposition 5.1.5], for each $\delta \in \Delta$ there is a continuous action $\Sigma(\alpha^{(\delta)})$ of G on A_{δ} such that $\Sigma(\alpha^{(\delta)})_t(a_{\delta}) = \alpha^{(\delta)}(a_{\delta})(t^{-1})$ for all a_{δ} in A_{δ} and for all t in G. Since $\{\alpha^{(\delta)}\}_{\delta \in \Delta}$ is an inverse system of morphisms of C^* -algebras, it is not difficult to check that $\{\Sigma(\alpha^{(\delta)})_t\}_{\delta \in \Delta}$ is an inverse system of C^* -isomorphisms for each t in G. Also it is easy to check that

$$\Sigma(\alpha)_t = \lim_{\substack{\leftarrow \\ \delta \in \Delta}} \Sigma(\alpha^{(\delta)})_t$$

for each t in G.

To show that Σ is surjective, let β be a continuous inverse limit action of G on A. Then A may be written as an inverse limit

$$A = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} A_{\delta}$$

of C^* -algebras and there are continuous actions $\beta^{(\delta)}$ of G on A_{δ} , $\delta \in \Delta$, such that

$$\beta_t = \lim_{\stackrel{\longleftarrow}{\delta \in \Delta}} \beta_t^{(\delta)}$$

for each t in G. By [13, Proposition 5.1.5], for each $\delta \in \Delta$ there is an action $\alpha^{(\delta)}$ of $C^*\mathbf{K}^a_G$ on A_δ such that $\Sigma(\alpha^{(\delta)}) = \beta^{(\delta)}$. It is not difficult to verify that $\{\alpha^{(\delta)}\}_{\delta \in \Delta}$ is an inverse system of injective S-morphisms of C^* -algebras. Let

$$\alpha = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} \alpha^{(\delta)}.$$

Then α is an injective S-morphism of locally C^* -algebras and

$$\left(\overline{\alpha \otimes \operatorname{id}_{C_0(G)}}\right) \circ \alpha = \lim_{\substack{\leftarrow \\ \delta \in \Delta}} \left(\overline{\alpha^{(\delta)} \otimes \operatorname{id}_{C_0(G)}}\right) \circ \alpha^{(\delta)}$$

$$= \lim_{\substack{\leftarrow \\ \delta \in \Delta}} \left(\overline{\operatorname{id}_{A_p} \otimes \sigma_{C_0(G)} \circ d_G^a}\right) \circ \alpha^{(\delta)}$$

$$= \left(\overline{\operatorname{id}_A \otimes \sigma_{C_0(G)} \circ d_G^a}\right) \circ \alpha.$$

Therefore α is an inverse limit action of $C^*\mathbf{K}_G^a$ on A and $\Sigma(\alpha) = \beta$. Thus, we showed that Σ is bijective. \square

Corollary 4.5. If G is compact, then any action of $C^*\mathbf{K}_G^a$ on A is an inverse limit action.

Proof. Let α be an action of $C^*\mathbf{K}_G^a$ on A. By Proposition 4.2, $\Sigma(\alpha)$ is a continuous action of G on A which is a limit inverse action, since the group G is compact, Lemma 3.6. From this fact and Proposition 4.4, we conclude that α is an inverse limit action. \square

5. The Takai duality theorem. Let G be a locally compact group, and let A be a locally C^* -algebra.

Lemma 5.1. Let α be an inverse limit action of G on A. Then the reduced crossed product of A by the action α is isomorphic to the locally C^* -subalgebra of $M(A \otimes \mathcal{L}(L^2(G)))$ generated by $\{\alpha(a)(1_{M(A)} \otimes \lambda(f)); a \in A, f \in C_c(G)\}$, where λ is the left regular representation of $L^1(G)$.

Proof. Let $p \in S(A)$. By [13, Remark 5.2.1.1], the map Φ_p from the C^* -subalgebra of $M(A_p \otimes \mathcal{L}(L^2(G)))$ generated by $\{\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f)); a_p \in A_p, f \in C_c(G)\}$ to $A_p \times_{\alpha^{(p)}, r} G$, that applies $\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f))$ to $\widetilde{f} + I_p$, where $\widetilde{f}(t) = f(t)a_p$, $t \in G$, see the proof of Lemma 3.19, is an isomorphism of C^* -algebras.

If π'_{pq} , p, $q \in S(A)$, $p \geq q$ are the connecting maps of the inverse system $\{M(A_p \otimes \mathcal{L}(L^2(G)))\}_{p \in S(A)}$ and $\widehat{\pi}_{pq}$, $p, q \in S(A)$, $p \geq q$ are the connecting maps of the inverse system $\{A_p \times_{\alpha^{(p)},r} G\}_{p \in S(A)}$, then we have

$$\begin{split} (\Phi_q \circ \pi'_{pq})(\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f))) \\ &= \Phi_q(\alpha^{(q)}(\pi_{pq}(a_p))(1_{M(A_q)} \otimes \lambda(f))) \\ &= \pi_{pq}(a_p) \otimes f + I_q = \widetilde{\pi_{pq}}(a_p \otimes f) + I_q \\ &= \widehat{\pi}_{pq}(a_p \otimes f + I_q) \\ &= (\widehat{\pi}_{pq} \circ \Phi_p)(\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f))) \end{split}$$

for all a_p in A_p , for all f in $C_c(G)$ and for all $p, q \in S(A)$ with $p \geq q$. Therefore, $\{\Phi_p\}_{p \in S(A)}$ is an inverse system of isomorphisms of C^* -algebras and the lemma is proved. \square

Definition 5.2. A coaction of G on A is an action β of $C^*\mathbf{K}_G^s$ on A. We say that a coaction β of G on A is an inverse limit coaction if it is an inverse limit action of $C^*\mathbf{K}_G^s$ on A.

The reduced crossed product of A by the coaction β , denoted by $A \times_{\beta} G$, is the locally C^* -subalgebra of $M(A \otimes \mathcal{L}(L^2(G)))$ generated by $\{\beta(a)(1_{M(A)} \otimes f); a \in A, f \in C_c(G)\}.$

Remark 5.3. Let

$$\beta = \lim_{\stackrel{\leftarrow}{\delta \in \Delta}} \beta^{(\delta)}$$

be an inverse limit coaction of G on A such that the connecting maps of the inverse system $\{A_{\delta}\}_{{\delta}\in\Delta}$ are all surjective. Then, by [10, Theorem 3.14],

$$M(A \otimes \mathcal{L}\left(L^{2}\left(G\right)\right)) = \lim_{\substack{\leftarrow \ \delta \in \Delta}} M(A_{\delta} \otimes \mathcal{L}\left(L^{2}\left(G\right)\right))$$

up to an isomorphism of locally C^* -algebras, and by [7, Lemma III 3.2],

$$A\times_{\beta}G=\lim_{\stackrel{\leftarrow}{\delta\in\Delta}}A_{\delta}\times_{\beta^{(\delta)}}G$$

up to an isomorphism of locally C^* -algebras.

Remark 5.4. Let G be a commutative locally compact group. Exactly as in the proof of Proposition 5.1.6 of $[\mathbf{13}]$, we show that if β is an inverse limit coaction of G on A, then $\beta'=(\mathrm{id}_A\otimes\mathrm{ad}\,\mathcal{F})\circ\beta$, where \mathcal{F} is the Fourier-Plancherel isomorphism from $L^2(G)$ onto $L^2(\widehat{G})$, is an inverse limit action of \widehat{G} on A and conversely, if α is an inverse limit action of \widehat{G} on A then $\alpha'=(\mathrm{id}_A\otimes\mathrm{ad}\,\mathcal{F}^*)\circ\alpha$ is an inverse limit coaction of G on G. Therefore, an inverse limit coaction of G can be identified with an inverse limit action of G and G and G and G is an isomorphism between G and G and

The following proposition is a generalization of [13, Theorem 5.2.6] for inverse limit actions of a locally compact group on a locally C^* -algebra.

Proposition 5.5. Let A be a locally C^* -algebra, and let G be a locally compact group.

(1) If α is an inverse limit action of G on A, then there is an inverse limit coaction $\widehat{\alpha}$ of G on $A \times_{\alpha,r} G$, called the dual coaction associated to α , such that

$$(*) \qquad \widehat{\alpha}(\alpha(a)(1_{M(A)} \otimes \lambda(f))) = (\alpha(a) \otimes 1_G)(1_{M(A)} \otimes d_G^s(\lambda(f)))$$

for all a in A and for all f in $C_c(G)$.

(2) If
$$\beta = \lim_{\substack{\leftarrow \\ \delta \in \Delta}} \beta^{(\delta)}$$

is an inverse limit coaction of G on A such that the connecting maps of the inverse system $\{A_\delta\}_{\delta\in\Delta}$ are all surjective, then there is an inverse limit action $\widehat{\beta}$ of G on $A\times_\beta G$, called the dual action associated to β , such that

$$(**) \widehat{\beta}(\beta(a)(1_{M(A)} \otimes f)) = (\beta(a) \otimes 1_G)(1_{M(A)} \otimes (\overline{\mathrm{id}_{C_0(G)} \otimes j_G^a})d_G^a(f))$$

for all a in A and for all f in $C_c(G)$.

Proof. (1) Since α is an inverse limit action,

$$\alpha = \lim_{\stackrel{\leftarrow}{p \in S(A)}} \alpha^{(p)},$$

where $\alpha^{(p)}$ is a continuous action of G on A_p . By [13, Theorem 5.2.6 (i)], for each $p \in S(A)$ there is a dual coaction $\widehat{\alpha}^{(p)}$ of G on $A_p \times_{\alpha^{(p)},r} G$ such that

$$\widehat{\alpha}^{(p)}(\alpha^{(p)}(a_p)(1_{M(A_p)}\otimes\lambda(f)))=(\alpha^{(p)}(a_p)\otimes 1_G)(1_{M(A_p)}\otimes d_G^s(\lambda(f)))$$

for all a_p in A_p and for all f in $C_c(G)$. It is not difficult to check that $\{\widehat{\alpha}^{(p)}\}_{p\in S(A)}$ is an inverse system of injective S-morphisms and

$$\widehat{\alpha} = \lim_{\stackrel{\longleftarrow}{p \in S(A)}} \widehat{\alpha}^{(p)}$$

is a coaction of G on $A \times_{\alpha,r} G$ which verifies the condition (*).

(2) By Theorem 5.2.6 (ii) of [13], for each $\delta \in \Delta$ there is a continuous action $\widehat{\beta}^{(\delta)}$ of G on $A_{\delta} \times_{\beta^{(\delta)}} G$ such that

$$\widehat{\beta}^{(\delta)}(\beta^{(\delta)}(a_{\delta})(1_{M(A_{\delta})} \otimes f))$$

$$= (\beta^{(\delta)}(a_{\delta}) \otimes 1_{G})(1_{M(A_{\delta})} \otimes (\overline{\mathrm{id}}_{C_{0}(G)} \otimes j_{G}^{a})d_{G}^{a}(f))$$

for all a_{δ} in A_{δ} and for all f in $C_c(G)$. Using this relation and Remark 5.3 it is not difficult to check that $\{\widehat{\beta}^{(\delta)}\}_{\delta\in\Delta}$ is an inverse system of injective S-morphisms. Let

$$\widehat{\beta} = \lim_{\substack{\longleftarrow \\ \delta \in \Delta}} \widehat{\beta}^{(\delta)}.$$

Then $\widehat{\beta}$ is a continuous action of G on $A \times_{\beta} G$ and moreover, it verifies the condition (**). \square

The following theorem is a version of the Takai duality theorem for inverse limit actions of a locally compact group on a locally C^* -algebra.

Theorem 5.6. Let G be a locally compact group, let A be a locally C^* -algebra, and let α be an inverse limit action of G on A. Then there is an isomorphism Π from $A \otimes \mathcal{K}(L^2(G))$ onto $(A \times_{\alpha,r} G) \times_{\widehat{\alpha}} G$ such that

$$\widehat{\widehat{\alpha}} \circ \Pi = (\overline{\Pi \otimes \mathrm{id}_{C_0(G)}}) \circ (\alpha \otimes \mathrm{ad} \, \rho)$$

where ρ is the right regular representation of $L^1(G)$.

Proof. By [10, Proposition 3.2],

$$A \otimes \mathcal{K}(L^2(G)) = \lim_{\substack{\leftarrow \ p \in S(A)}} A_p \otimes \mathcal{K}(L^2(G))$$

up to an isomorphism of locally C^* -algebras.

Since α is an inverse limit action, according to the proof of Proposition 5.5 (1),

$$\widehat{\alpha} = \lim_{\stackrel{\longleftarrow}{p \in S(A)}} \widehat{\alpha}^{(p)}$$

where $\widehat{\alpha}^{(p)}$ is the dual coaction associated to $\alpha^{(p)}$ for each $p \in S(A)$. Then, since the connecting maps of the inverse system $\{A_p \times_{\alpha^{(p)},r} G\}_{p \in S(A)}$ are all surjective, by Proposition 5.5 (2),

$$\widehat{\widehat{\alpha}} = \lim_{\stackrel{\longleftarrow}{p \in S(A)}} \widehat{\widehat{\alpha}}^{(p)}$$

and by Remark 5.3,

$$(A \times_{\alpha,r} G) \times_{\widehat{\alpha}} G = \lim_{\stackrel{\longleftarrow}{p \in S(A)}} (A_p \times_{\alpha^{(p)},r} G) \times_{\widehat{\alpha}^{(p)}} G$$

up to an isomorphism of locally C^* -algebras.

Let $p \in S(A)$. According to [13, Theorem 5.2], there is an isomorphism $\Pi^{(p)}$ from $A_p \otimes \mathcal{K}(L^2(G))$ onto $(A_p \times_{\alpha^{(p)}, T} G) \times_{\widehat{\alpha}^{(p)}} G$ such that

$$\widehat{\widehat{\alpha}}^{(p)} \circ \Pi^{(p)} = (\overline{\Pi^{(p)} \otimes \operatorname{id}_{C_0(G)}}) \circ (\alpha^{(p)} \otimes \operatorname{ad} \rho).$$

Moreover,

$$\begin{split} \Pi^{(p)}(\alpha^{(p)}(a_p)(1_{M(A_p)}\otimes\lambda(f)h)) \\ &= \widehat{\alpha}^{(p)}(\alpha^{(p)}(a_p)(1_{M(A_p)}\otimes\lambda(f)))(1_{M(A_p)}\otimes1_G\otimes h) \end{split}$$

and

$$\begin{split} \Pi^{(p)}((1_{M(A_p)} \otimes \lambda(f)h)\alpha^{(p)}(a_p)) \\ &= \widehat{\alpha}^{(p)}((1_{M(A_p)} \otimes \lambda(f))\alpha^{(p)}(a_p))(1_{M(A_p)} \otimes 1_G \otimes h) \end{split}$$

for all f and h in $C_c(G)$ and for all a_p in A_p . Using these relations and the fact that $A_p \otimes \mathcal{K}(L^2(G))$ is the C^* -subalgebra of $M(A_p \otimes \mathcal{K}(L^2(G)))$ generated by $\{\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f)h), (1_{M(A_p)} \otimes \lambda(f)h)\alpha^{(p)}(a_p); f, h \in C_c(G), a_p \in A_p\}$, see [13, Lemma 5.2.10], it is not difficult to check that $\{\Pi^{(p)}\}_{p \in S(A)}$ is an inverse system of C^* -isomorphisms.

Let

$$\Pi = \lim_{\substack{\leftarrow \\ p \in S(A)}} \Pi^{(p)}.$$

Then, clearly Π is an isomorphism of locally C^* -algebras from $A \otimes \mathcal{K}(L^2(G))$ onto $(A \times_{\alpha,r} G) \times_{\widehat{\alpha}} G$ which satisfies the condition

$$\widehat{\widehat{\alpha}} \circ \Pi = (\overline{\Pi \otimes \mathrm{id}_{C(G)}}) \circ (\alpha \otimes \mathrm{ad} \, \rho)$$

and the theorem is proved. \Box

Since any action of a compact group on a locally C^* -algebra is an inverse limit action, we have:

Corollary 5.7. Let G be a compact group, let A be a locally C^* -algebra, and let α be a continuous action of G on A. Then there is an isomorphism Π from $A \otimes \mathcal{K}(L^2(G))$ onto $(A \times_{\alpha,r} G) \times_{\widehat{\alpha}} G$ such that

$$\widehat{\widehat{\alpha}} \circ \Pi = (\overline{\Pi \otimes \mathrm{id}_{C_0(G)}}) \circ (\alpha \otimes \mathrm{ad}\,\rho)$$

where ρ is the right regular representation of $L^1(G)$.

Acknowledgments. The author is grateful to the referee for several suggestions that improved the presentation of the paper.

REFERENCES

- 1. M. Fragoulopoulou, An introduction to the representation theory of topological *-algebras, Schriftenreihe, Univ. Münster 48 (1988), 1–81.
- **2.** ——, Tensor products of enveloping locally C^* -algebras, Schriftenreihe, Univ. Münster **21** (1997), 1–81.
- $\bf 3.$ S. Imai and H. Takai, On a duality for C^* -crossed products by a locally compact group, J. Math. Soc. Japan $\bf 30$ (1978), 495–504.
- 4. A. Inoue, $Locally\ C^*$ -algebras, Mem. Faculty Sci. Kyushu Univ. ${\bf 25}\ (1971),$ 197–235.
 - **5.** M. Joita, *Locally Hopf C*-algebras*, Stud. Cerc. Mat. **50** (1998), 175–196.
- 6. Y. Katayama, Takesaki's duality for a non-degenerate co-action, Math. Scand. 55 (1984), 141–151.
- 7. A. Mallios, Topological algebras: Selected topics, North-Holland, Amsterdam, 1986.
- 8. G.K. Pedersen, C^* -algebras and their automorphism groups, Academic Press, London, 1979.
- 9. N.C. Phillips, Representable K-theory for $\sigma-C^*$ -algebras, K-Theory 3 (1989), 441–478.
 - 10. ——, Inverse limits of C^* -algebras, J. Operator Theory 19 (1988), 159–195.
- 11. I. Raeburn, On crossed products and Takai duality, Proc. Edinburgh Math. Soc. 31 (1988), 321-330.
- 12. H. Takai, On duality for crossed products of C^* -algebras, J. Functional Anal. 19 (1975), 25–39.
- 13. J.M. Vallin, C^* -algèbres de Hopf et C^* -algèbres de Kac, Proc. London Math. Soc. 50 (1985), 131–174.

DEPARTMENT OF MATHEMATICS, FACULTY OF CHEMISTRY, UNIVERSITY OF BUCHAREST, BD. REGINA ELISABETA NR.4-12, BUCHAREST, ROMANIA Email address: mjoita@fmi.unibuc.ro