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CROSSED PRODUCTS OF LOCALLY C*-ALGEBRAS
MARIA JOITA

ABSTRACT. The crossed products of locally C*-algebras
are defined and a Takai duality theorem for inverse limit
actions of a locally compact group on a locally C*-algebra
is proved.

1. Introduction. Locally C*-algebras are generalizations of C*-
algebras. Instead of being given by a single C*-norm, the topology on
a locally C'*-algebra is defined by a directed family of C'*-seminorms.
In [9], Phillips defines the notion of action of a locally compact group G
on a locally C*-algebra A whose topology is determined by a countable
family of C*-seminorms, and also defines the crossed product of A by
an inverse limit action

a = lima™
—
as being the inverse limit of crossed products of A, by a(™. In this
paper, by analogy with the case of C*-algebras, we define the concept
of crossed product, respectively reduced crossed product of locally C*-
algebras.

The Takai duality theorem says that if o is a continuous action
of an Abelian locally compact group G on a C*-algebra A, then we
can recover the system (G, A,«a) up to stable isomorphism from the

double dual system in which G = G acts on the crossed product (A X,
G) x> G by the dual action of the dual group. In [3], Imai and Takai
prove a duality theorem for C*-crossed products by a locally compact
group that generalizes the Takai duality theorem [12]. For a given
C*-dynamical system (G, A, ), they construct a “dual” C*-crossed
product of the reduced crossed product A X4, G by an isomorphism
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B from A X., G into L(H), the C*-algebra of all bounded linear
operators on some Hilbert space H and show that this is isomorphic to
the tensor product A ® K(L?(G)) of A and K(L*(G)), the C*-algebra
of all compact operators on L?(G). If G is commutative, the “dual”
C*-crossed product constructed by Imai and Takai is isomorphic to the
double crossed product (A x, G) X~ G. Katayama [6] shows that a
nondegenerate coaction 3 of a locally compact group on a C*-algebra A
induces an action 3 of G on the crossed product A xgG and proves that
the C*-algebras (A x5 G) X5, G and A® K(L*(G)) are isomorphic. In
[13], Vallin shows that there isa bijective correspondence between the
set of all actions of a locally compact group G on a C*-algebra A and the
set of all actions of the commutative Kac C*-algebra C*K¢, associated
with G on A. A coaction of G on A is an action of the symmetric
Kac C*-algebra C*K¢, associated with G. If G is commutative, we

~

can identified C}(G) with Cy(G) via the Fourier transform, whence it
becomes clear that a coaction of G is the same thing as an action of
G. Thus, we can regard the coactions of a locally compact group G as
“actions of the dual group even there isn’t any dual group.” Also, Vallin
shows that an action « (coaction ) of G on A induces a coaction &
(action ,/8\) of G on the crossed product A X, G (respectively A xg G)
and proves a version of the Takai duality theorem showing that the
double crossed product (A X o » G) X~ G is isomorphic to A®K(L*(G)).
‘We propose to prove a version of the Takai duality theorem for crossed
products of locally C*-algebras.

The paper is organized follows. In Section 2 we present some basic
definitions and results about locally C*-algebras and Kac C*-algebras.
In Section 3 we define the notion of crossed product (reduced crossed
product) of a locally C*-algebra A by an inverse limit action « of a
locally compact group G and prove some basic properties of these.
Section 4 is devoted to actions of a Kac C*-algebra on a locally C*-
algebra. We show that there is a bijective correspondence between the
set of all inverse limit actions of a locally compact group G on a locally
C*-algebra A and the set of all inverse limit actions of the commutative
Kac C*-algebra C*K¢ on A, Proposition 4.4. As a consequence of this
result, we obtain: for a compact group G, any action of the Kac C*-
algebra C*K¢ on A is an inverse limit of actions of the Kac C*-algebras
C*K% on A, p € S(A). In Section 5, using the same arguments as in
[13], we show that any inverse limit action « (coaction ) of a locally
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compact group G on a locally C*-algebra A induces an inverse limit
coaction & (action () of G on the crossed product A x, G (respectively
A x5 @), Proposition 5.5. Finally, we prove that if « is an inverse limit
action of a locally compact group G on a locally C*-algebra A, then
there is an isomorphism of locally C*-algebras from (A x4, G) x~ G

onto A ® K(L?(G)) and the inverse limit actions a and o ® ad p are
equivalent, Theorem 5.6.

2. Preliminaries. A locally C*-algebra is a complete complex
Hausdorff topological *-algebra A whose topology is determined by a
family of C*-seminorms, see [1, 2, 4, 9, 10]. If S(A) is the set of all
continuous C*-seminorms on A, then for each p € S(A), A, = A/ ker(p)
is a C*-algebra with respect to the norm induced by p, and

A= 1131 Ap.

pES(A)

The canonical maps from A onto A,, p € S(A) are denoted by m,,
the image of a under 7, by a, and the connecting maps of the inverse
system {Ap}pes(4) bY Ty, Pyg € S(A) with p > g.

A morphism of locally C*-algebras is a continuous *-morphism & from
a locally C*-algebra A to a locally C*-algebra B. An isomorphism
of locally C*-algebras is a morphism of locally C'*-algebras which is
invertible and its inverse is a morphism of locally C*-algebras. An
S-morphism of locally C*-algebras is a morphism ® : A — M(B),
where M (B) is the multiplier algebra of B, with the property that for
any approximate unit {e;}; of A the net {®(e;)}; converges to 1 with
respect to the strict topology on M(B). If ® : A — M(B) is an S-
morphism of locally C*-algebras, then it extends to a unique morphism
®: M(A) — M(B) of locally C*-algebras, see [5].

A Kac C*-algebra is a quadruple K = (B, d, j,¢), where B is a C*-
algebra, d is a comultiplication on B, j is a coinvolution on B, and ¢
is a semi-finite, lower semi-continuous, faithful weight on B, see [13].

Let A and B be two locally C*-algebras. The injective tensor product
of the locally C*-algebras A and B is denoted by A ® B, see [2], and
the locally C*-subalgebra of M (A ® B) generated by the elements z
in M(A ® B) such that (1 ® B) + (1 ® B)Jx C A ® B is denoted
by M(A,B). If G is a locally compact group, then M(A,Cy(G))
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may be identified with the locally C*-algebra Cj(G, A) of all bounded
continuous functions from G to A.

Let G be a locally compact group. C*K%& = (Co(G),d%,j&,ds)
is the commutative Kac C*-algebra associated with G and C*K}, =
(CHG),d%, j&, pc) is the symmetric Kac C*-algebra associated with
G, see [13].

An action of a Kac C*-algebra K = (B, d, j, ¢) on a C*-algebra A is
an injective S-morphism « from A to M (A, B) such that (¢ ® id)oa =

(ida ® o o d) o a, see [13].

3. Crossed products. Let A be a locally C*-algebra, and let G be
a locally compact group.

Definition 3.1. An action of G on A is a morphism « from G to
Aut (A), the set of all isomorphisms of locally C*-algebras from A to
A. The action « is continuous if the function (¢,a) — a;(a) from G x A
to A is jointly continuous.

Definition 3.2. A locally C*-dynamical system is a triple (G, 4, a),
where G is a locally compact group, A is a locally C*-algebra and « is
a continuous action of G on A.

Definition 3.3. We say that {(G, As,a®))}sca is an inverse system of
C*-dynamical systems if {As}sca is an inverse system of C*-algebras

and for each t in G, {agé)}ge A is an inverse system of C*-isomorphisms.
Let

A=1limAs; and o;=Ilim ai‘s)
— —

deA deA

for each t € G. Then the map « : G — Aut (A) defined by a(t) = oy is
a continuous action of G on A and (G, A, @) is a locally C*-dynamical
system. We say that (G, A, &) is the inverse limit of the inverse system
of C*-dynamical systems {(G, As,a'®)}sca.
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Definition 3.4. A continuous action « of G on A is an inverse limit
action if we can write A as inverse limit

lim A5
—

sfeA

of C*-algebras in such a way that there are actions (%) of G on As
such that )

oy = lim oy
—

deA

for all ¢ in G [9, Definition 5.1].

Remark 3.5. The action a of G on A is an inverse limit action if
there is a cofinal subset of G-invariant continuous C*-seminorms on A
(a continuous C*-seminorm p on A is G-invariant if p(o(a)) = p(a) for
all ¢ in A and for all ¢ in G).

The following lemma is Lemma 5.2 of [9].

Lemma 3.6. Any continuous action of a compact group G on a
locally C*-algebra A is an inverse limit action.

Let (G, A, a) be a locally C*-dynamical system such that « is an
inverse limit action. By Remark 3.5, we can suppose that S(A)
coincides with the set of all G-invariant continuous C*-seminorms on

A.

Let C.(G, A) be the vector space of all continuous functions from G
to A with compact support.

Lemma 3.7. Let f € C.(G,A). Then there is a unique ele-
ment fG f(s)ds in A such that for any nondegenerate x-representation

(‘PaHap) of A

(o [ reas)en) = [ otsnen as

for all &, in H,. Moreover, we have:
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p([o f(s)ds) < Msup{p(f(s)); s € supp (f)} for some positive
number M and for all p e S(A);

) (Jg f(s)ds) a—fG adsforallaeA

([, f( = [, ®(f(s))ds for any morphism of locally C*-
algebms D A —> B

4) (Jg f(s)ds)* = [ f(s)* ds

Proof. Let p € S(A). Then 7, o f € C.(G,A,) and so there is a
unique element [, (7, o f)(s)ds in A, such that for any nondegenerate

*-representation (y,, H, ) of A,

(ool [ o n61as)en) = [ onllmyo Do) ds

for all £,n in H,; see, for instance, [11, Lemma 7].

To show that ([ (m,0f)(s)ds),, is a coherent net in A, let p,q € S(A)
with p > ¢. Then we have

([ (70 161 ds) = [ 7((m o £)(9)ds using Lemma 7 of [11]

_ /G(wq o )(s)ds

Therefore, ([ (mp0 f)(s)ds), € A, and we define [, f(s)ds = ([5(mp
f)(s)ds)p.

Suppose that there is another element b in A such that for any
nondegenerate *-representation (¢, H,) of A

(o(B)Em) = /G (@ (f ()&, ) ds

for all {,n in H,. Then for any p € S(A) and for any nondegenerate
*-representation (p,, H,,) of 4,

(ol (B)E, 1) = /G (ep((myp 0 F)())E, ) dis
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for all §,n in H,,. From these facts and [11, Lemma 7], we conclude
that

7p(b) = /G (my 0 £)(s) ds

for all p € S(A). Therefore, b = [, f(s)ds and the uniqueness is
proved.

Using [11, Lemma 7] it is easy to check that [ f(s)ds satisfies the
conditions (1)—(4). O

Let f,h in C.(G,A). It is easy to check that the map (s,t) —
f(t)ai(h(t™1s)) from G x G to A is an element in C.(G x G, A) and
the relation

(f % h)(s) = /G F(Hae(h(t1s)) dt

defines an element in C.(G, A), called the convolution of f and h.
Also it is not hard to check that C.(G, A) becomes a *-algebra with
convolution as product and involution defined by

FH) =) (£ )

where 7y is the modular function on G.
For any p € S(A), define N, from C.(G, A) to [0,00) by

N,(f) = /G p(f(s)) ds.

Straightforward computations show that N,, p € S(A), are submulti-
plicative *-seminorms on C.(G, A).

Let L'(G, A, a) be the Hausdorff completion of C..(G, A) with respect
to the topology defined by the family of submultiplicative *-seminorms
{Np}pes(a)- Then by [7, Theorem III 3.1]

LYG,A Q) = lim (LY(G, A, ),

pPES(A)

where (L'(G,A,a)), is the completion of the xalgebra C.(G,A)/
ker(IN,) with respect to the norm || - ||, induced by N,.
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Lemma 3.8. Let (G, A,a) be a locally C*-dynamical system such
that o s an inverse limit action. Then

(Ll(Ga Aa a))p = Ll(Ga Apa a(p))

for all p € S(A), up to a topological algebraic x-isomorphism.
Proof. Let p € S(A) and f in C.(G, A). Then

1f + ker(Np)llp = /Gp(f(S))dS =/G||7rp(f(s))||pds = llmp o £l

Therefore we can define a linear map ¢, from C.(G, A)/ker(N,) to
C.(G, A,) by
¥p (f +ker(Np)) = mp 0 f.
It is not hard to check that i, is a *-morphism, and since ¥, is an
isometric *-morphism from C.(G, A)/ker(N,) to C.(G, A,), it can be

uniquely extended to an isometric *-morphism v, from (L'(G, 4, a)),
to LY(G, A,,a®).

To show that v, is surjective, let a € A and f € C.(G). Define f
from G to A by f(s) = f(s)a. Clearly f € C.(G,A) and

Up(f +ker(N,))(s) = f(s)mp(a)
for all s in . This implies that
Ap ®aig Ce(G) C ¥p((LH(G, 4, @)),) € LHG, 4, )

whence, since A, ®a1¢ Cc(G) is dense in L'(G, A, aP) and since (o
is an isometric *-morphism, we deduce that 1, is surjective and the
lemma is proved. ]

Corollary 3.9. Let (G, A, a) be a locally C*-dynamical system such
that o is an inverse limit action. Then
LYG, A ) = lim LY(G,A,,a®)
—

pPES(A)

up to an algebraic and topological *-isomorphism.
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Remark 3.10. If {e;};cs is an approximate unit for A and {f;};cs is
an approximate unit for L!(G), then {ﬁi,j)}(i,j)eIxJa where f(i,j)(s) =
fi(s)ei, s € G, is an approximate unit for L!(G, A, a), see [7, Lemma
XIV.1.2]. Then by [1, Definition 5.1], we can construct the enveloping
algebra of L'(G, A, a).

Definition 3.11. A covariant representation of (G, A, ) is a triple
(p,u, H), where (p, H) is a x-representation of A and (u, H) is a unitary
representation of G such that

p(ar(a)) = up(a)ug
forall t € G and for all a € A.

We say that the covariant representation (¢,u,H) of (G, A, ) is
nondegenerate if the *-representation (¢, H) of A is nondegenerate.

Remark 3.12. (1) If (¢, u, H) is a covariant representation of (G, 4, &)
such that ||¢(a)]| < p(a) for all a € A, then there is a unique covariant
representation (¢, u, H) of the C*-dynamical system (G, A4,, «?)) such
that ¢, o1, = @.

(2) If (pp,u,H) is a covariant representation of the C*-dynamical

system (G, Ap, a(P)), then (o, o mp, u, H) is a covariant representation
of the locally C*-dynamical system (G, 4, «).

If R(G, A, ) denotes the nondegenerate covariant representations of
(G, A, @), then it is easy to check that

R(G,A,a) = U R,(G, A, )
peS(A)

where R,(G,A,a) = {(p,u,H) € R(G, A, a);||¢(a)|| < p(a) for all a €
A}. Also it is easy to check that the map ¢, — ¢, o m, from
R(G, A,,aP) to R,(G, A, a) is bijective.

Proposition 3.13. Let (G, A,a) be a locally C*-dynamical system
such that o is an inverse limit action. Then there is a bijection
between the covariant nondegenerate representations of (G, A, a) and
the nondegenerate *-representations of L'(G, A, a).
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Proof. Let (p,u,H) € R(G,A,a). Then, there is a p € S(A) and
(¢p>u, H) € R(G, Ap,a'P)) such that ¢ = ¢, om,. Since (pp,u, H) €
R(G, A,,aP), there is a unique nondegenerate *-representation (i, x
u, H) of L'(G, A,, a'P)) such that

(g % 0)(f) = /G oo () e dt

for all f € LY(G, 4,, alP)), see, for instance, [8, Proposition 7.6.4].

Let ¢ x u = (pp X u) o Tp, where 7, is the canonical map from
LYG, A, a) to LG, A,,a®), 7,(f) = mp o f for all fin LY(G, A, a).
Then, clearly (¢ xu, H) is a nondegenerate *-representation of L!(G, A,
a) and moreover,

(exu)(f) = (gp xu)(mpo f) = /G ep(mp0 £) (£)ur dt = / o (F(8))u dt

G

for all f € L'(G, A,a). Thus, we have obtained a map (p,u, H) —
(¢ xu, H) from R(G, A, a) to R(L(G, A, «)). To show that this map is
bijective, let (®, H) be a nondegenerate x-representation of L!(G, A, a).
Then, there is p € S(A) and a nondegenerate *-representation (®,, H)
of LY(G, Ap,a®)) such that ® = &, o m,. By [8, Proposition 7.6.4]
there is a unique nondegenerate covariant representation (p,,u, H) of
(G, A,,aP) such that (®,,H) = (p, x u, H). Therefore, there is a
nondegenerate covariant representation (¢,u,H) of (G, A, «), where
© = pp 0 mp, such that (2, H) = (¢ X u, H).

To show that (¢, u, H) is unique, let (1, v, K) be another nondegener-
ate covariant representation of (G, a, A) such that (¢ x v, K) = (®, H).
Then there is a ¢ € S(A) with ¢ > p such that (¢,v,K) € R,(G, 4, a)
and (®,K) € R,(L'(G, A, a)). Therefore & = &, o 7, with (®,, H) €
R(Ll(GaAlba(q))) and '(p = 1/111 © Tq with Wq,U,K) € R(G)Alba(q))
and moreover, (&4, H) = (¢4 x v, K).

On the other hand, (¢, 0 mgp,u, H) € R(G,Aq,a(Q)) and

(9 © 7gp) X W)(f) = /G (¢p © ) (£ (1) ur e

_ /G oo (T () (1) e dit
= 0, (7 () = (0 Fap) (f) = ()
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for all f € LY(G, A, a9). From these facts and [8, Proposition 7.6.4],
we conclude that the covariant representations (¢g,v,K) and (¢, o
Tgps U, H) of (G, Ay, a(?)) coincide, and so the covariant representations
(¥,v,K) and (¢,u, H) of (G, A, a) coincide. o

Definition 3.14. Let (G, A, a) be a locally C*-dynamical system such
that « is an inverse limit action. The crossed product of A by the
action a, denoted by A X, G, is the enveloping algebra of the complete
locally m-convex *-algebra L'(G, A, a).

Remark 3.15. By Corollary 3.9 and Corollary 5.3 of [2], A X, G is a
locally C*-algebra and

A Xa G = lim Ap X a(p) G
—

pPES(A)

up to an isomorphism of locally C*-algebras.

Proposition 3.16. Let (G, A,a) be a locally C*-dynamical system
such that o is an inverse limit action. Then there is a bijection
between nondegenerate covariant representations of (G, A,a) and the
nondegenerate representations of A X4 G.

Proof. Since A x, G is the enveloping locally C*-algebra of the com-
plete locally m-convex *-algebra L!(G, A, a), there is a bijection be-
tween the nondegenerate representations of A x,, G and the nondegen-
erate representations of L'(G, A, ), [2, pages 37]. From this fact and
Proposition 3.13 we conclude that there is a bijection between the non-
degenerate representations of A X, G and the nondegenerate covariant
representations of (G, 4, a). o

For each p € S(A), we denote by (¢p,., Hp.) the universal represen-
tation of A, and by (¢p, Hp,u) the representation of A associated with

(¢p,us Hp,u), that is, op = ¢4 0 mp.

Lemma 3.17. Let (G, A,a) be a locally C*-dynamical system such
that a is an inverse limit action. Then (gp, A, L*(G, Hp.,)), where

vp(a)(€)(t) = ¢p (ar-1(a)) (£(2))
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and
As(6) (1) = E(s™ ')

for all a in A, € in L?*(G,H,,) and s,t in G, is a nondegenerate
covariant representation of (G, A, a).

Proof. Tt is a simple verification. O

Let p € S(A). The map rp, : L*(G, A, a) — [0,00) defined by

rp(f) = l(ep x ) ()]l
is a C*-seminorm on L'(G, A4, ) with the property that r,(f) < N,(f)
for all f in L(G, 4, a).

Let
I= ﬂ ker(rp).

pES(A)

Clearly I is a closed two-sided ideal of L' (G, A, ) and L' (G, A, ) /I is
a pre-locally C*-algebra with respect to the topology determined by the
family of C*-seminorms {7, }pes(a), 7p(f + I) = inf{r,(f + h);h € I}.

Definition 3.18. The reduced crossed product of A by the action
a, denoted by A X, , G, is the Hausdorff completion of (L'(G, 4, a),
{rp}pes(a)), that is, A X, , G is the completion of the pre-locally C*-
algebra (L*(G, A, a)/I,{Tp}pes(a))-

Lemma 3.19. Let (G, A, a) be a locally C*-dynamical system such
that o is an inverse limit action. Then

(A X,y G)p = Ap Xqw , G

for all p € S(A), up to an isomorphism of C*-algebras.

Proof. Let p € S(A). If f € L}(G, A, ), then we have
I(f + 1) + ker(7p)ll = 7p(f +I) = inf{[[(7p x A) (f + h)[|;h € T}

= inf{[|(¢p x A) ()5 € I}
=1p(f) = If +ker(rp)l],, -
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From this relation, we conclude that (A X4, G), is isomorphic to the
completion of L!(G, A, @)/ ker(r,) with respect to the C*-norm induced
by 7.

On the other hand, A, X ) , G is the completion of LY(G, A,, a(p))/lp,
where I, = {f € LY (G, Ay, a®)/(ppw x A)(f) = 0}, with respect to
the norm | - |/ given by [1f + I, = (@5 X AV(A)I < £l But the
completion of L'(G, A, o)/ ker(r,,) with respect to the norm || - ||, is
isomorphic to the completion of L'(G, A, a(P))/I, with respect to the
norm || - ||', since

1f +ker(rp)ll,., = mp(F) = (@ x A) (F
= [(Ppu x A) (mp 0 F
= 1@ (f) + Ll

for all f € L'(G, A, «a). Therefore, the C*-algebras (A X4, G), and
Ap X 4, G are isomorphic. O

Corollary 3.20. If (G, A, ) is a locally C*-dynamical system such
that o is an inverse limit action, then

A Xa,r G= 1{111 Ap Xa(p)7r G

pPES(A)

up to an isomorphism of locally C*-algebras.

4. Actions of a Kac C*-algebra on a locally C*-algebra. Let
C*K = (B,d,j,p) be a KacC*-algebra, and let A be a locally C*-
algebra.

Definition 4.1. An action of C*K on A is an injective S-morphism «
from A to M (A, B) such that

(a®idp)oa = (W)oa-

An action o of C*K on A is an inverse limit action if we can write A
as an inverse limit

lim A5

—

sfeA
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of C*-algebras in such a way that there are actions a(®) of C*K on Ay,
é € A such that
o =lima®.
+—

e

Two actions «; and as of C*K on the locally C*-algebras Aj,
respectively As, are said to be equivalent if there is an isomorphism
of locally C*-algebras ® : A; — Ay such that az 0 ® = (‘I> ® idB) oojy.

Proposition 4.2. Let G be a locally compact group. If a is an action
of C*K¢& on A, then the map (o) that applies t € G to a map X(a);
from A to A defined by X(a):(a) = a(a)(t™!), is a continuous action
of G on A.

Proof. Since « is a continuous #-morphism from A to Cy(G, A), (),
is a continuous *-morphism from A to A for each ¢ in G. Using the same
arguments as in the proof of Proposition 5.1.5 of [13], it is not difficult
to see that X(a); is invertible and, moreover, (X(a);) ! = X(a);—1 for
all t in G. Therefore X(a); € Aut (A) for each ¢ in G.

To show that the map (¢,a) — 3(a):(a) from Gx A to A is continuous,
let (to,a0) € G x A, and let W, . = {a € A;p(a — E(a),(ag)) < €}
be a neighborhood of ()¢, (ag). Since a(ag) € Cy(G, A), there is a
neighborhood Uy of ¢y such that

palan)(t™) - alan)(t5) < &

for all ¢ in Uy, and since « is a continuous x-morphism, there is a
neighborhood Vj of ag such that

o (a) = e (ao)ll, = sup{p(a(a) (t) — a(ao) (t)); t € G} < %
for all a in V. Then
p (E (@), (a) — % (oz)t0 (ao)) <p (a (a) (til) —a(ag) (til))
+p(a(ao) (t71) —alao) (1))
< (@) ~a(a)l, +5 <<

for all (¢,a) € Up x V, and the proposition is proved. a
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Remark 4.3. According to Proposition 4.2, we can define a map %
from the set of all actions of C*Kg on A to the set of all continuous
actions of G on A by a — X(a). Moreover, X is injective.

The following proposition is a generalization of [13, Proposition
5.1.5] for inverse limit actions of locally compact groups on locally
C*-algebras.

Proposition 4.4. Let G be a locally compact group. Then the map
defined in Proposition 4.2 is a bijective correspondence between the set
of all inverse limit actions of C*K& on A and the set of all continuous
inverse limit actions of G on A.

Proof. Let a be an inverse limit action of C*K% on A. Then A may
be written as an inverse limit

lim As
—

LYSYAN

of C*-algebras, and there are actions a(?) of C*K¢ on As, 6 € A such
that
a =lima®.
—

seA

According to [13, Proposition 5.1.5], for each § € A there is a contin-
uous action X(a(®)) of G on A; such that ¥(a!?),(as) = ¥ (as)(t™1)
for all as in As and for all ¢ in G. Since {a(®}s¢ A is an inverse system of
morphisms of C*-algebras, it is not difficult to check that {(a(®);}sca
is an inverse system of C*-isomorphisms for each ¢ in G. Also it is easy
to check that

(a); = lim 2(a®),
e
for each ¢t in G.
To show that X is surjective, let 8 be a continuous inverse limit action

of G on A. Then A may be written as an inverse limit

A =lim A5
—

LESPAN
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of C*-algebras and there are continuous actions 8(®) of G on As, § € A,
such that
B, = lim B
—
seA
for each ¢ in G. By [13, Proposition 5.1.5], for each § € A there is an
action a(®) of C*K¢ on Aj; such that $(al®)) = 89, Tt is not difficult
to verify that {a(®)}sca is an inverse system of injective S-morphisms
of C*-algebras. Let
a= liin a9,

seA

Then « is an injective S-morphism of locally C*-algebras and

(a ® ing(G)) oa = hin (04(5) ® ing(G)) oal®

ISYAN

. a 6
— 1}1_11 (ldAp K UC()(G) o dG) o O{( )

feA

= (ldA ® 0Co(G) © dté) o Q.

Therefore « is an inverse limit action of C*K¢ on A and X(a) = f.
Thus, we showed that X is bijective. ]

Corollary 4.5. If G is compact, then any action of C*K¢ on A is
an inverse limit action.

Proof. Let « be an action of C*KZ on A. By Proposition 4.2, X(«)
is a continuous action of G on A which is a limit inverse action, since
the group G is compact, Lemma 3.6. From this fact and Proposition
4.4, we conclude that « is an inverse limit action. o

5. The Takai duality theorem. Let G be a locally compact group,
and let A be a locally C*-algebra.

Lemma 5.1. Let a be an inverse limit action of G on A. Then
the reduced crossed product of A by the action « is isomorphic to the
locally C*-subalgebra of M(A® L(L*(G))) generated by {a(a)(1rr(a) ®
A(f));a € A, f € Cc(G)}, where X is the left reqular representation of
LY(G).
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Proof. Let p € S(A). By [13, Remark 5.2.1.1], the map ®,, from the
C*-subalgebra of M(A, ® L(L*(G))) generated by {a?)(a,)(1ar(a,) ®
A(f));ap € Ap, f € C(G)} to ApX 4w -G, that applies a(p)(ap)(lM(Ap)
® Mf)) to f + I,, where flt) = f(t)ap, t € G, see the proof of
Lemma 3.19, is an isomorphism of C*-algebras.

If 7rpq, p, ¢ € S(A), p > q are the connecting maps of the inverse
system {M (A, ® L(L*(G)))}pes(a) and Tpq, p,q € S(A), p > q are the
connecting maps of the inverse system {4, X o) r G}pes(a), then we
have

(g 0 ) (@ (ap) (Lar(a, )

®A(f

= By (D (mpq(ap)) (Lar(a,) ® A(f)))

Tpg(ap) ® f + Iq = Tpg(a, ® f) + 1,
(7

pq(ap @ f+ 1)
@) () (ap)(Lar(a,) ® A()))

for all a, in A,, for all f in C.(G) and for all p,q € S(A) with p > gq.
Therefore, {®,},c5(4) is an inverse system of isomorphisms of C*-
algebras and the lemma is proved. o

Definition 5.2. A coaction of G on A is an action 5 of C*K¢ on A.
We say that a coaction 8 of G on A is an inverse limit coaction if it is
an inverse limit action of C*K¢ on A.

The reduced crossed product of A by the coaction (3, denoted by
A xg G, is the locally C*-subalgebra of M (A ® L(L%*(G))) generated
by {B(a)(1r(a) ® f)ia € A, f € Ce(G)}-

Remark 5.3. Let
B = lim 8
—

L ISYAN

be an inverse limit coaction of G on A such that the connecting maps of
the inverse system {As}sca are all surjective. Then, by [10, Theorem
3.14],

M(A®L(L*(G))) = lim M (A; ® £ (L* (@)))

feA
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up to an isomorphism of locally C*-algebras, and by [7, Lemma III
3.2],
A X G = llinAg XB(a) G

L ISYAN

up to an isomorphism of locally C*-algebras.

Remark 5.4. Let G be a commutative locally compact group. Exactly
as in the proof of Proposition 5.1.6 of [13], we show that if 8 is an inverse
limit coaction of G on A, then 8’ = (id4 ® ad F) o 8, where F is the
Fourier-Plancherel isomorphism from L%(G) onto L2(G), is an inverse
limit action of G on A and conversely, if « is an inverse limit action of
G on A then o = (idg ® ad F*) o o is an inverse limit coaction of G
on A. Therefore, an inverse limit coaction of G can be identified with
an inverse limit actior/l\ of G and id 4 ® ad F is an isomorphism between
A X G and A Xp'r G.

The following proposition is a generalization of [13, Theorem 5.2.6]
for inverse limit actions of a locally compact group on a locally C*-
algebra.

Proposition 5.5. Let A be a locally C*-algebra, and let G be a
locally compact group.

(1) If « is an inverse limit action of G on A, then there is an inverse
limit coaction @ of G on A Xo, G, called the dual coaction associated
to o, such that

() ala(a)(Iaa) @ A(f))) = (ala) ® 16)(1a(a) ® d5(A(f)))

for all a in A and for all f in C.(G).

(2) If
B =1im ¢

e

s an tnverse limit coaction of G on A such that the connecting maps of
the inverse system {As}sca are all surjective, then there is an inverse
limit action B\ of G on A xg G, called the dual action associated to 3,
such that
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(%) B(B(a)(lM(A) ® f)) = (B(a) ® 1) (1) ® (idcy(a) © 5&)de(f))

for all a in A and for all f in C.(G).

Proof. (1) Since « is an inverse limit action,

a= lim o,
—
pPES(A)

where a(®) is a continuous action of G on Ap. By [13, Theorem 5.2.6
(i)], for each p € S(A) there is a dual coaction a®) of G on A, Xow » G
such that

a® (P (ay)(Lar(a,) ® M) = (@ (ap) ® 16)(Lar(a,) © d&(A(F)))

for all a, in A, and for all f in C.(G). It is not difficult to check that
{a® }pes(a) is an inverse system of injective S-morphisms and

a= lim a®w
—
PES(A)

is a coaction of G on A X, G which verifies the condition (x).

(2) By Theorem 5.2.6 (ii) of [13], for each § € A there is a continuous
action 8%) of G on As X g5y G such that

BB (as)(1ar(ay) ® f))
= (B9(as) ® 1a)(1n(ay) ® (dey(a) @ J&)dE(£))
for all as in As and for all f in C.(G). Using this relation and Remark
5.3 it is not difficult to check that {3(®}sca is an inverse system of
injective S-morphisms. Let
B = lim .
+—

deA

Then B is a continuous action of G on A xg G and moreover, it verifies
the condition (). O
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The following theorem is a version of the Takai duality theorem for
inverse limit actions of a locally compact group on a locally C*-algebra.

Theorem 5.6. Let G be a locally compact group, let A be a locally
C*-algebra, and let a be an inverse limit action of G on A. Then there
is an isomorphism 11 from A ® K(L*(G)) onto (A Xar G) X G such
that N

aoll = (T ®idgy(a)) o (@ ®adp)

where p is the right regular representation of L'(G).

Proof. By [10, Proposition 3.2],

A K(LA(G)) = lim A, ® K(L*(Q))

peS(A)

up to an isomorphism of locally C*-algebras.

Since « is an inverse limit action, according to the proof of Proposition

5.5 (1),
a= lim a®
“—
pPES(A)

where @) is the dual coaction associated to a®) for each p € S(A).
Then, since the connecting maps of the inverse system {A, X, ,
G}pes(a) are all surjective, by Proposition 5.5 (2),

a= lim a®
<+
PES(A)

and by Remark 5.3,

(AXarG)x~G = 1i<£n (Ap X o » G) X2,y G
pES(A)
up to an isomorphism of locally C*-algebras.

Let p € S(A). According to [13, Theorem 5.2], there is an isomor-
phism I from A4, ® K(L*(G)) onto (A, X o, G) X~ G such that

~

a® o 11 = (m) ) (a(p) ® ad p).
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Moreover,

H(p)(a(p)(ap)(lM(A,,) @ A(f)h))
=a® (Oé(p)(ap)(lM(Ap) @A) (Am(a,) ©1le @ h)

and

P ((1ara,) ® A(f)h)aP (a,))
— a(p)((lM(Ap) ® )\(f))a(P)(ap))(lM(Ap) ®R1lg® h)

for all f and h in C.(G) and for all a, in A, Using these re-
lations and the fact that A, ® K(L*(G)) is the C*-subalgebra of
M (A, ®K(L*(G))) generated by {a® (a,)(1ar(a,) @A(£)h), (1ar(a,) ®
MFHR)a® (a,); f,h € Co(G),a, € A}, see [13, Lemma 5.2.10], it is
not difficult to check that {II() }pes(a) is an inverse system of C*-
isomorphisms.
Let
= lim I,
—
pPES(A)

Then, clearly II is an isomorphism of locally C*-algebras from A ®
K(L*(G)) onto (A Xq,» G) X- G which satisfies the condition

éé:OH = (H@ldc(g)) o (a ®adp)
and the theorem is proved. o

Since any action of a compact group on a locally C*-algebra is an
inverse limit action, we have:

Corollary 5.7. Let G be a compact group, let A be a locally C*-
algebra, and let o be a continuous action of G on A. Then there is an
isomorphism II from A ® K(L*(G)) onto (A Xa,r G) X~ G such that

aoll = (@ idgy(c) o (a®adp)

where p is the right regular representation of L'(G).
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