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CONVOLUTION SUMS
OF SOME FUNCTIONS ON DIVISORS

HEEKYOUNG HAHN

ABSTRACT. One of the main goals in this paper is to
establish convolution sums of functions for the divisor sums
os(n) = X:dln(fl)d’ldS and os(n) = Zd|n(71)("/d)7lds’
for certain s, which were first defined by Glaisher. We first
introduce three functions P(q), £(q), and Q(q) related to
(n), a(n), and o3(n), respectively, and then we evaluate
them in terms of two parameters z and z in Ramanujan’s
theory of elliptic functions. Using these formulas, we derive
some identities from which we can deduce convolution sum
identities. We discuss some formulae for determining r.(n)
and 85(n), s = 4, 8, in terms of (n), o(n), and 53(n), where
rs(n) denotes the number of representations of n as a sum of
s squares and ds(n) denotes the number of representations
of n as a sum of s triangular numbers. Finally, we find
some partition congruences by using the notion of colored
partitions.

1. Introduction. In his famous paper [21], [22, pages 136-162],
Ramanujan introduced the three Eisenstein series P(q), @(q) and R(q)
defined for |g| < 1 by

(1.1) P(g):=1-24 i a(n)q”,
(1.2) Q(g) :=1+240 i": o3(n)q”,
(1.3) R(q) :=1-504 Z os(n)q”,

where, for s,n € N,

os(n) = Z d.
d|n
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As usual, we set 01(n) = o(n) and os(n) = 0 if n ¢ N. Ramanujan
also proved that (1.1)—(1.3) satisfy the differential equations [21, (30)]
and [22, page 142]

4P@ _ P9~ Qo)

(1.4) p = ’
(1.5) qd?qu) _P (Q)Q(qg) ~ R(a)
(1.6) qd’jl;q) _ PR Q)
After rewriting (1.4) as

(17) PY(o) = Qo) + 12002,

and equating the coefficients of ¢" on both sides, we obtain the arith-
metic identity

(1.8) 12 Z o(m)o(n —m) = 5os(n) — (6n — 1)o(n).

m<n

Likewise, from (1.5), we obtain

(1.9) 240 Z o(m)os(n —m) = 21los(n) — (30n — 10)os(n) — o(n).

m<n

Ramanujan recorded nine identities of the type (1.8) and (1.9) in his
notebooks. The history of the convolution sums involving the divisor
function o (n) goes back to Glaisher [8, 9, 10]. A most comprehensive
treatment of these identities is given in the paper [12]. In their paper
[12], Huard, Ou, Spearman and Williams prove many such formulae
in an elementary manner by using their generalization of Liouville’s
classical formula given in [17]. Recently, Cheng and Williams [5] found
further convolution sums of the type

Z o(dm — 3)o(4n — (4m — 3)) = 4dos(n) — 4os(n/2).

m<n
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Now define two functions on which we focus in this paper by, for
s,m €N,

(1.10) Fa(n) =Y (-1)* e,
d|n

(1.11) Ga(n) =Y _(~1)"/D-1ge,
d|n

where we set o1(n) = o(n), o1(n) = d(n) and os5(n) = o5(n) = 0 if
n ¢ N. The origin of these functions goes back to Glaisher. In his paper
[9], Glaisher defined seven quantities which depend on the divisors of
n, including (1.10) and (1.11), and studied the relations among them.
He also found expressions for all seven functions in terms of o5(n). For
instance, the functions os(n) and o5(n) have the formulae [9]

(1.12) 7s(n) = os(n) — 2°Tloy(n/2),

(1.13) os(n) = os(n) — 205(n/2).

From the relations (1.12) and (1.13), it is clear that, for all n > 0,
(1.14) gs(2n+1) =0,(2n+1) =0,(2n + 1).

One of our goals in the present paper is to establish convolution sums
involving o, and &, for certain s. So we need to define three functions
related to (1.10) and (1.11) by, for |g| < 1,

(1.15) Plg) :=1+8) 5(n)q",

(1.16) E(q):=1+24) F(n)q",
n=1

(1.17) Qq):==1-16 Y G3(n)q".

Analogous to (1.4)—(1.6), our three functions (1.15)—(1.17) satisfy the
differential equations [11, 19, 20]

qu(q) ~ P*(q) — 2(q)

(1.18) 2= ; 7
(1.19) qdfng) _ S(q)P(q2) - Qo)
(1.20) (22 _ P(0)0(a) — £(0)2a)

dq
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If we define the related series analogues to [5]

(1.21) Praq) = > 52n+71)¢™", r=0,1,
n=0

(1.22) Era(g) =) 5(2n+1)g*" ™", r=0,1,
n=0

(123) Qng(q) = Z 53(271 —+ ,r)q2n+r’ r= O’ ]_,
n=0

then we find many identities involving the series P, 2(q), &r2(q),
Q,,2(q), and the functions P(q), £(g), and Q(q).

In Section 2, we evaluate (1.15), (1.16), (1.17), (1.21), (1.22) and
(1.23) in terms of two parameters  and z in Ramanujan’s theory of el-
liptic functions. Using these formulas, we derive some identities involv-
ing Ramanujan’s theta functions. In Section 3, we find representations
for certain infinite series related to P(g), £(g), and Q(g). In Section 4,
using the evaluations we obtained in Section 2, we derive convolution
sums of (1.10) and (1.11). In Section 5, we discuss some formulae for
determining r5(n) and ds(n) in terms of 75(n) and 7s(n), where r4(n)
denotes the number of representations of n as a sum of s squares and
ds(n) denotes the number of representations of n as a sum of s trian-
gular numbers. Finally, we find some partition congruences connected
with 75(n) and &5(n) by using the notion of colored partitions.

2. Evaluations and identities involving Ramanujan’s theta
functions. To derive the desired identities, we need to use evaluations
of theta functions [3, pages 122-138] to determine the quantities P(q"),
g(qr), Q(qr)a P(_q)a g(_q)a and Q(_q)a r= 172

If
_ oR((1/2),(1/2)5 51 2)

2F1((1/2),(1/2);152)
where 3 F} denotes the Gaussian hypergeometric function, the evalua-
tions are given in terms of, in Ramanujan’s notation,

11
2.2 =P (=, =51
( ) < 2 1(2725 ,£l7>

(2.1)

z| <1,
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and z. The derivative 3’ is given by

dy 1

2. -
(2:3) dz z(l — x)22’

see, for example, Berndt’s book [2, page 87]. The function z :=
2F1 ((1/2),(1/2); 1; z) satisfies the differential equation [3, page 120]

d?z z (1-2z)dz
(24) dz?  4z(1—z) =z(1—z)dz’

From now on, we will denote

qg:=e Y.

Ramanujan’s theta functions ¢(q), ¥(q), and f(—q) [3, Entry 22, page
36] are defined, for |¢| < 1, by

R S G I UL
(2.5) ©(q) := n;mq P i)
— = n(n+1)/2 _ (q2;q2)oo
(2.6) (q) : ;q TTI
(2.7) fl=g) == D (-1)"¢"C"/2 = (g5 ¢)ee,

where, as usual, for any complex number a, we write

(oo}

(4:9)0 := [T (1 — ag™).

n=0

Here, the product representations arise from the Jacobi triple product
identity [3, Entry 19, page 35]. In the following lemma, we list the
evaluations of the theta functions in terms of « and z [3, Entries 10-12,
pages 122-124], which we will employ in a majority of our proofs.

Lemma 2.1. Ify and z are defined by (2.1) and (2.2), respectively,
and ¥(q), ¢(q), and f(—q) are defined by (2.5), (2.6) and (2.7),
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respectively, then

(2.8) v(9) =V,

(2.9) o(—q) = (1 2)/*/z,

(2.10) q1/8¢(q) 9-1/2 1/8\/—

(2.11) (%) =272 /4/z,

(2.12) g/ f(—q) = 27/6(1 — z)M/6z1/24 /.

Using these evaluations, we obtain formulas for P(q), £(g), and Q(q).

Theorem 2.2. Ify and z are defined as in (2.1) and (2.2), respec-
tively, and q := e~ Y, then

(2.13) P(q) = 2*(1 — x) + 4z(1 - m)zj—z,
(2.14) E(q) = 2*(1 +z),
(2.15) Q(q) = 2*(1 — z)2.

Proof of (2.13). In the derivation below, we find that, by using (2.10),

oo (7l)n71n
q):l—}-SZ—eny_l
n=1

=1- 8di > (=1)"Log(1—e™™)
Yy n=1

—2ny

1—
_I_S_LOgH ezn Dy

_ _S%Log {e™v/3y(e)},

where we use the infinite product representation of ¢¥(e¥) in (2.6). If
we employ (2.10) and (2.3), then we find that

P(q) =8z(1 — x)zZ%Log@_l/Zﬁxl/s}

dz
=22(1—2)+4z(1 — z)2—
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Proof of (2.14). In the derivation below, we employ (2.12) and (2.9)
to find that

n
ey +1

El@=1+24)
n=1

d & .
:1—24@ZL0g(1+e v)

n=1
YR —y/24M}
= 24dyL0g {e ol—e) |

Again using the evaluations (2.9) and (2.12) and applying (2.3), we find
that

€(q) = 24x(1 - w)zzdiLOg{TW(l —z)T/12g1/24y
XL
= Z2(1 + x)7

which completes our proof. |

Proof of (2.15). From (1.18), we have

dP(q)  P*(q) — Q(q)
a9 = 4 ‘

Thus, by the chain rule, we deduce that

PleY) _ Q) PHe)
dy 4 )

Moreover, by (2.3), we derive that

dP(e™) _ 1 dP(eY)
dz Tz(l—x)22  dy
Hence,
(2.16) —a(l - )22 dP(e”?) _ Q(e™¥) —P*(e™Y)
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Thus we see that we can determine Q(e ¥) from (2.13) and (2.16).
Using (2.13) and the hypergeometric differential equation (2.4), we find,
upon direct calculation, that

(2.17) @ =2(1- x)zj—; +4z(1 — z) <Z—z> .

Thus from (2.13), (2.16) and (2.17), we see that
o) = 0(e™) = {1~ 2)2* + tol1 — ) F |

Upon simplifying, we reach the desired conclusion. ]

Before proceeding further, we briefly mention the procedure [3, page
125], called duplication, in the theory of elliptic functions. If

(2.18) Qz,e™¥,2) =0,
and 7', 3, and 2’ is another set of parameters such that
Q= efyl, 2Y=0
and
W'
= TV
then we can deduce the “new” formula

(219) Q <<%> 76723!,%2(1"‘ \/1$)> :Oa

from the “old” formula (2.18). This process is called obtaining a

formula by duplication. We will use this procedure in many proofs.

Applying the process of duplication to (2.13), (2.14) and (2.15), we
obtain

(2.20) P¢?) = 220 —2) +22(1 — )z 2,
(2.21) E(q®) = 2*(1 - %x),

f\
©
o
[\

N

{®)
=

)

[\v]
=
Il

21— z).
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Berndt [3, page 126] has also described the process of obtaining a new
formula from (2.18) by changing the sign of ¢. If (2.18) holds, then the
formula

(2.23) Q <% —q, zﬂ) —0

also holds. This result is attributed to Jacobi by Berndt [3, page 126].

Applying Jacobi’s change of sign procedure to (2.13), (2.14) and
(2.15), we deduce that

(2.24) P(—q) = 2°(1 — 2z) + dz(1 — x)zj—;,
(2.25) £(~q) = (1 - 20),
2.26) O(-q) = &

(2.27) Po.2(q) 2%6( —2+P(q) +P(—0q)),
(2.28) P12(q) 2%6(7’(61) - P(~q)),

(2.29) &o,2(q) :4%( —2+&(q) + £(-9)),
(2.30) &12(q) :4%(5 (@) — €(=0)),

(2.31) Qo.2(q) :3%( —-2-9(q) — Q(—9)),
(2.32) Q12(q) 23%( ~9(g) + 9(—9))

Using (2.13)—(2.15) and (2.24)—(2.26), we obtain the evaluations of the
series Pr2(q), Er2(q) and Q. 2(q) as follows:
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Theorem 2.3. We have that

(2.33)

Po,2(q) =% < — 24 (2 —3z)2% + 8z(1 — m)zj—i),
(2.34)

P1,2(q) %9022,
(2.35)

&o0,2(q) =18 (—2+(2—2)2?%),
(2.36)

&1,2(q) %3322,
(2.37)

Qo2(a) =55 (2~ (2~ 2+ 2%)2"),
(2.38)

Q1.2(q) :3i2x(2 a)eh,

We note a few results which are used in the next section. Using (2.3)
and ¢ := e~ Y, we have

ldg _ dy 1
gde  dr x(l—x)22

so that

dg q

(2.39) il 2

From (2.4), (2.13) and (2.39), we obtain

dP(q) _ (dP(q)/dz)
dg —  (dg/dz)
(d/dz)(z%(1 — z) + 4a(1 — z)z(dz/dz))
q/(z(1 - x)z?)
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—2% + (6 — 10z)z(dz/dz) + 4z(1 — z)(dz/dz)?
q/(z(1 - z)z?)
+4z(1 — z)2(d?z/dz?)
q/(z(1 - z)z?)
(2 — 2z)z(dz/dz) + 4z(1 — x)(dz/dz)?
q/(z(1 - z)z?) ’

so that
dP(q) _ 2 3d2 2 2 2 d2 ’
(2.40) q i - 2z(1l —z)°z In +4z°(1 —x)*z i)
Similarly, from (2.4), (2.20) and (2.39), we obtain
(2.41)
dP(¢®)  z(1—z)z* 9 3dz 9 5 o (dz\’
q - 5 + 2z(1 m)zdw+2m (1-12)°z i)
In a similar manner, we find that
d
(2.42) q%(;) =2(1— )2t +2z(1 — 2)(1+ x)z3£,
d¢(¢®) z(l—x)2* 3dz
(2.43) q a0 5 +z(l—2)(2—2)z Ir

Next, using Lemma 2.1 and using (2.13), (2.14), (2.15), (2.20), (2.21),
(2.22), (2.24), (2.25) and (2.26), we obtain the following identities.

Theorem 2.4. Recall that P, £, and Q are defined by (1.15), (1.16)
and (1.17), respectively, and that ¢(q) and ¥(q) are defined in (2.5)
and (2.6), respectively. Then

(2.44) Qq) = ¢*(—q),

(2.45) 169%(¢%) + ¢"(q) = £(q),

(2.46) 28(¢%) + E(q) = 3¢*(q),

(2.47) 0 (9)€(q) + Q(a%) = 2¢°(q),

(2.48) E(q) — E(¢°) = 24qp*(¢%),

(2.49) P(q) — P(—q) = 16¢v*(¢*),

(2.50) Q(q) + Q(—q) = 32¢(8¢°%(¢*) — ¥*(q)),
(2.51) £%(q) — Q(q) = 64q¢°(q).



1604 HEEKYOUNG HAHN

Proof of (2.44). The result is clear from (2.9) and (2.15).
Proof of (2.45). The equality
169*(¢%) + 0*(q) = x2® + 22 = (1 +2)2% = £(q)
follows from (2.8), (2.11) and (2.14).

Proof of (2.46). Employing (2.14) and (2.21), we have
28(¢%) + E(q) = 32°.

So the proof is completed by using (2.8).

Proof of (2.47). By (2.8), (2.14) and (2.15), we find that

P (0)€(a) + Q(¢°) = 2* (1 +2) + 2*(1 — z) = 22" = 2¢°(q).
Proof of (2.48). By using (2.14), (2.21) and (2.11), we obtain
E(q) — E(¢?) = 522* = 24q0(@P).
Proof of (2.49). From (2.13) and (2.24), we find that
Plg) — P(—q) = (1 — 2)2° — (1 - 22)2% = 22® = 169y (¢°).

Proof of (2.50). By the definition of Q, we obtain

_ 32n1 1 1
Q(g) + Q(—q) = 162 <1_q2n—1+1+q2n—1>
n_132n1 8/ 2 s
— —32§ ——— = 32q9(8¢°(¢*) — ¢°(q)),

where we use Example(ii) in [3, page 139].
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Proof of (2.51). From (2.14) and (2.15), we see that

E%(q) — Q(q) =daz* = <%xz2> (6422)
=(q*(¢")) - (64¢*(q)),

where the last equality follows from (2.8) and (2.10). After employing
the fact [3, Entry 25, page 40],

o(a)v(q®) = ¥*(q),

we achieve the desired result.

3. Representations of certain infinite series. In this section,

we derive some representations of the infinite series connected with the
functions P(q), £(¢) and Q(q).

Theorem 3.1. We have

—~ 2n-—1
n=1

Proof. From (2.14) and (2.21), we find that
(3.2) 26(q%) — £(q) = 2(1 — g)z — (1+2)22 = (1—2z)2>
On the other hand, by the definition of £(g) in (1.16), we know that
26(q%) — E(q) = 2<1+24§: %) - <1+24§: " )
ety + 1 e+ 1

(e o]

= 2 2n 2n—1
:1+24z_:1m—24z:1(62ny+1 + 6(2n_1)y+1>

2n —1
_1_2426(2" 1)y+1 o
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Remark. We can compare this result with some of the results in [3,
Entry 13, page 127]. For example, [3, (viii)], we have

n=1

By using the representations for P(gq), Q(q) and R(g) and their alge-
braic relations, Berndt [3] also lists further representations, such as

n15

(3.3) 1+8 Z — 1 = (1-a)- z%)2°,
(3.4) 17 — 32 Z nyn_ll n! = (1 —x)%(17 — 2z + 172%)28
(3.5) 1+82%:(1—@<1—%m>z6,

e —1)" 7
(3.6) 17—322% = (1 —2)(17 — 17z + 227%)28
n=1

Theorem 3.2. We have
— (-1)"~'n? 1

(3.7) T; sinh(ny) —gfv(l —z)z"%,
(3.8) Z % :éx(l —z)(1 — 2z)2°
(3.9) i (=" tnT — - )@= 172+ 1722) 8

sinh(ny) 16

n=1

Proof. We use the elementary fact
1 I 1

.1 — = =
(3.10) z—1 22-1 z2-1 z-z

.
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To prove (3.7), we simply use the definition of @ and (3.10) to obtain

o n13 1

Z e —e—ny 16 {Q(eiy) - Q(eizy)} = %x(l — :E)z4,

where we used (2.15) and (2.22) in the last equality. For (3.8), by
(3.10), the sum to be evaluated is equal to

{ 1+8Z >(1+8i%>}
{1_93 (1 - 22)28 —(1—m)<1—%x>z6}

z(1 —z)(1 - 2z2)2°

e n15
y_

y—e
n=1

00|'—‘00|'—‘ OOlF—‘

where we employ (3.3) and (3.5) to derive (3.8). In a similar manner,
we can deduce (3.9) by using (3.10) and applying (3.4), (3.6). o

Applying the duplication process to (3.7)—(3.9), respectively, gives

& n13 1

(3.11) Z nh ) 3—2\/1 —z(1—v1—1x)%24,

(n15 1

(3.12) =—V1-z(1-vV1—2)%(z—2+6V1—x)2°
nz::l sinh(2ny) 64 2 z) (= + z)z

0 n L7
1
(3:13) ngl s1nh (2ny)

=zl -2~ V1—2)3(76v/1 —z —30(2 — z) + x%)25.

Remark. We can compare the above results with some results in [3,
Entry 15, page 132]. For example, Berndt proved that

e 3

) A
sinh(ny) g

n=1
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4. Some convolution sums of 5,(n) and 75(n). We begin this
section by recalling again the three differential equations satisfied by

P(q), £(q) and Q(q):
dP(q) _ P*(q) — 2(q)

(4.1) o - o),
(4.2) qd“; E}q) _¢ (Q)P(q; — ).
(43) "2~ pg)a() - £

It is then easy to show that the following convolution sums follow from
(4.1)-(4.3).

Theorem 4.1.
(4.4) 4 GF(m)F(n —m) = —53(n) + (2n — 1)5(n),

(45) 24 Z a(m)a(n —m) = —203(n) + (6n — 3)a(n) — o(n),

m<n

(4.6) 16 Z (a(m) — 36(m))os(n —m) = 2nos(n) + o(n) — 35(n).

m<n

Proof. We can rewrite (4.1) as

Then we have
2

(4.7) <1 + 825(70(]”) (1 - 16§5g(n)q"> + 32T§n5(n)q".

Equating the coefficients of ¢" on both sides of (4.7), we obtain (4.4).
In a similar manner, the remaining two convolution sums (4.5) and
(4.6) can be derived from (4.2) and (4.3), respectively. o
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It naturally arises to question the evaluation of the sum

Z o(m)a(n —m),

m<n

which will be mentioned in the following theorem.

Theorem 4.2. We have

(4.8)
5(m)e _ [ —35(n) + 353(n) if n is odd,
36 ";na(m)a(n —m) = { —35(n) — 553(n) +453(n/2) if n is even.

Proof. By using (2.14), (2.15), (2.22) and (2.28), we can easily derive
the identity

£2(q) = 2* (1 +2)?
=24(5(1 —2)? —4(1 — z) + 42(2 — z))
=50(q) — 49(¢*) + 12891 (q)-

Equating coefficients of g™ gives the desired evaluation. o

Remark. We point out that certain of the convolution sums con-
sidered here can be evaluated from known results in an elementary
manner. For example, by using the relation (1.13), we have that

Y 3(m)a(n —m) = (o(m)~20(m/2))(o(n—m)~20((n—m)/2))

m<n m<n
:ZU(m) n—m) 22 (m/2)o(n—m)
—22 (n—m)/2)o(m)

+4> " o(m/2)o((n—m)/2)

m<n

= A(n)—4B(n) + 4A(n/2),

where
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and
B(n) = Z o(m)o(n—2m).
m<n/2

The values of A(n) and B(n) are given in [12].

Theorem 4.3. We have
(4.9) 16 Z m)as(n —m) = —o5(n) + 2(n — 1)3(n) + &(n).

m<n

Proof. From the differential equation (4.3), we find that

dQ(q)

(4.10) 1—1—8205 n)q" = E(q)Q(q) = P(q)Q(q) — ¢ i

where the second equality comes from [11, (2.2.8)]. So we complete the
proof by equating the coefficients of ¢" on both sides of (4.10). a

Remark. Note that the identities (4.4) and (4.9) are analogues of the
identities (1.8) and (1.9), respectively, which we mentioned in Section 1.
The identity (4.4) was also proved by Glaisher [9] by theory of the
elliptic functions.

Using the formulas given in Section 2, for r # s and r,s € {1,2},
we determine the products P(q")P(¢°) and P(q")E(¢®) as linear com-
binations of Q(q), Q(¢?) and the derivatives of P(q), P(¢?), £(q), and
£(q)

Theorem 4.4. We have

(4.11) P(@)P(d*) = Qa*) + qu;q) + qupd(f)’
(4.12) P(¢°)€(a) = Qa*) + 3 <qdf1( D dSéf))

+ (L o, P00,

dé(q)
dg

(@13)  P@EW) = 5(32e) - Qa) + 2
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We just give the proof of (4.11), since the remaining proofs are similar.

Proof of (4.11). By (2.22), (2.40) and (2.41), we have

dP(q) dP(q*)
dq dq

dz dz\>
(1 — )t 921 — )28 %F a1 — 22 B
(1—-2)z"+22(1 —2)°z dm+ z°(1—z)°z <d:v>

Q¢*) +¢

+ 2¢q

dz dz\*
_ )4 _ 2,397 201 _ 2,2 8%
z(l—x)z* +4z(l —x)°z +4z(1 —z)°z ( >

2
=(1-z)%* +6z(1 - m)zz?’j—z + 8z2(1 — x)222 (%)

x i
= P(a)P(¢*),

where we simply calculate the product of (2.13) and (2.20). This
completes the proof of (4.11). The remaining formulas can be proved
similarly.

Equating the coefficients of ¢" on both sides in the three identities in
Theorem 4.4, we obtain the next theorem.

Theorem 4.5. We have

(4.14)

8 Y &F(m)&F(n—2m) = —G3(n/2) + (n— 1)5(n) + (2n — 1)5(n/2),
m<n/2

(4.15)
24 ) G(m)3(n—2m) = —253(n/2) + (2n — 3)(n) + 4n5(n/2)

m<n/2
+no(n) — (2n+1)5(n/2),

(4.16)

24 Z o(n—2m) =o3(n) — 353(n/2) + (6n — 3)a(n/2) — 5(n).
m<n/2

The next theorem shows that for r € {0,1} and s € {1,2}, the
products of the form P, 2(q)(—1+P(¢%)) and &, 2(¢)(—1+P(¢%)) can
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€(¢%), Qa),

be expressed as linear combinations of P(q), P(q?), £(q)
2

Q(q?) and the derivatives of P(q), P(q?), £(q) and E(q 5 A MAPLE
program was run to determine the identities.
Theorem 4.6. We have
(4.17)
Pos(a)(~1+P(@) = 5 + 15((a) + Q%)) — 5 (€(a) ~ (%)
19y, 1 dP(g) 1/ E(a)  E()
-gP el - (o5 )
(4.18)
Poala)(~ 14+ P() = g + (") — 3P(¢*) +E(%)
1P, . P\ 1(E&@,, £
e - G )
(4.19)
Paala) (~ 1+ Pla)) = 16(Qla) — Q) ~ 5 (€(a) ~ £(a))
1( &a) &(¢°)
i E( dg ~ "dg >
(4.20)

Prala) (= 1+ P) = 5;(€6) -~ £0) + 55 (a532 - 45102,

Eo2(0)(— 1+ Pg) = 2i + %(Q(qz) ~30(q)) - ip(q)

4
1 1 &(¢?)
,ﬂg(qZ),ﬁq di] ,
(4.22)
£02(0)( ~ 1+ P(¢) = 57 + 2:(Q) ~ P() ~ ()
L &)
241 dg

Again we just give the proof of (4.17), since the remaining proofs are
similar.
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Proof of (4.17). By (2.15) and (2.22), we have
Q(q) + Q(¢°) = 22* — 3x2* + 222*,
and from (2.14) and (2.21),

E(q) — 78(¢%) = —62% + gxf,

and from (2.42) and (2.43)
3dz

£(q) 5(q2)_1 a1 o4 3dz 2
PR Sl LM +4z(l—12)z %—i—m (1-2)z e

dq 1 dq 2
Therefore, by (2.20), (2.40) and the previous three equalities, we finally

obtain

&+ 16(000) + Q%) — 51(E@) — TE@) — 3P(@)

8 16 Y
L )
- é n %(22,4 —3a2t %) - 2—14<—6z2 n gm2>
- % (z2(1 —z)+ 2z(1 — x)zj—i)
+ 5 (20 -0 5 st ><3—>>
— % (%mf — %m2z4 +4x(1 - w)z?’j—; +22(1 - g;)z3;l_z>
= é — %zz + 1—6xz2 —z(l-— w)zj—z
+ éz4 1—6:1724 +z(1 x)z:”;l—;
v a2 3—m+2(x<1x)zj_;>2

=Po2(a)(— 1+ 7P(q)).

Equating the coefficients of g™ on both sides of the six formulas in
Theorem 4.6, we obtain the following convolution sums.
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Theorem 4.7. We have

(4.23)
8 Z (n — 2m) = —&3(n) — 53(n/2) + 4n5 (n) — 45(n/2)
m<n/2
- (2n+1)a(n)+ (2n+ 7)o(n/2),
(4.24)
8 Y (2m)3(n/2 — m) = —255(n/2) + n/25(n) + (3n — 3)5(n/2)
m<n/2

—n/26(n) — (n — 3)5(n/2),

(425) 8 > F2m-1)5(n-(2m—1))

m<(n+1)/2
= —a3(n) +73(n/2) + (2n — 1)a(n) — (2n — 1)5(n/2),

(426) 8 > F2m-1)3((n+1)/2-m)

m<(n+1)/2

= (n—1)a(n) — (n—1)5(n/2),

(421)8 3 G2m)a(n—2m) = %Gg(n)—53(n/2)+(2n—1)3(n/2),

m<n/2

(4.28) 8 > G(2m)5(n/2—m)
m<n/2

_ _ggg(n/g) - %5(71/2) + (n—1)5(n/2).

5. On the representations of integers as sums of squares and
triangular numbers. It is immediate from the definitions of ¢(q)
and 9(q) in (2.5) and (2.6), respectively, that if

(5.1) ©°(q) = _rs(n)q"
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and
(5.2) ¥ (q) =Y _ ds(n)g",

then rs(n) and 0s(n) are the number of representations of n as a
sum of s squares and s triangular numbers, respectively. Clearly,
rs(0) = §5(0) = 1. Here, for each nonnegative integer n, the triangular
number T;, is defined by

n(n+l)'

T, :=
2

By using the representations and identities derived in Section 2, we find
expressions for rs(n) and d5(n), s = 4,8, as sums of our functions 5 (n),
o(n), and o3(n).

Theorem 5.1. For each positive integer n, we have

(5.3) rq(n) = 165(n/2) 4+ 85(n),

(5.4) da(n) =c(2n +1),

(5-5) rs(n) = 16(~1)""'73(n)

(5.6) 8ds(n) =o3(n+ 1) — o3(2(n + 1)).

Proof of (5.3). The identity (2.46) is equivalent to the identity

(5.7) 3 ra(n)g" =48 G(n)g*" +24 > &(n)q".
n=1 n=1 n=1

The identity (5.7) follows after equating the coefficients of ¢ on both
sides of (5.7).

Proof of (5.4). By (2.28) and (2.49), we have

(5.8) av*(¢%) = P12(q).
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Hence, we have

¢Y  8a(n)g’ = F(2n+1)g™"*,
n=0 n=0

which is the identity (5.4).

Proof of (5.5). It is clear from (2.26) that

oo

(5.9) rs(n)q" = *16253(”)(*(1)n-

n=1

Proof of (5.6). From (2.11), (2.22) and (2.37), we have

1 1

8¢°¢%°(¢*) = 6 1—69((12) — Qo,2(q)-

Hence, we derive

73(2n)g>".

[M]8

(510) 8D ds(n—1)g™" =D Fyln)™ -

1

n

Equating the coefficients of ¢" on both sides of (5.10), we obtain the
desired result.

Remarks. Jacobi [13, 14, 15] showed that ra(n) is 8 times the sum
of the divisors of n that are not multiples of 4, that is,

(5.11) ra(n) = 8(c(n) — do(n/4)).

Many proofs of (5.11) have been given; see for example [1], [4, page
15]. Spearman and Williams [24] gave the simplest arithmetic proof
of this formula. If we use o(n) = o(n) — 20(n/2) from (1.13), then we
note that our expression for r4(n) in (5.3) is the same as (5.11). By
the fact (1.14), we can express (5.4) as

(5.12) 5a(n) = o(2n +1).
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The formula (5.12) is proved in an elementary way [12, Theorem 10],
and in using modular forms [18, Theorem 3]. The evaluation of d4(n)
goes back to Legendre [6, 16]. The formula (5.5) first appeared
implicitly in the work of Jacobi [14] and explicitly in the work of
Eisenstein [7]. Williams [25] gave an arithmetic proof of this formula
by showing that

rg(n) = L6o3(n) — 3203(n/2) + 25603(n/4).

Using the theory of modular forms, Ono, Robins, and Wahl [18,
Theorem 5| derive a formula for dg(n), namely

(5.13) ds(n) =o3(n+1) —o3((n+1)/2).

Formula (5.13) is also proved in an elementary way in [12, Theorem
12]. It is not hard to show that (5.13) is the same expression as (5.6).
From (1.12), we deduce that

(5.14) 53(”) = 0'3(7’L) — 160’3(71/2).

Then we have
(5.15)
8s(n) = o3(n+1) —73(2(n + 1))
=o3(n+1) — 1603((n +1)/2) — (03(2(n + 1)) — 1603(n + 1))
=8(o3(n+1) —o3((n+1)/2)),

where, in the last equality, we use the identity
(5.16) o3(2n) = 903(n) — 803(n/2).

The identity (5.16) can be proved by letting n := 2*N, N is odd, and
then by considering the cases a = 0 and a > 0. After dividing both
sides of (5.15) by 8, we have the desired identity (5.13).

6. Some partition congruences. If r is a nonzero integer, we
define the function p,(n) by

(oo}

(6.1) S pe(ma = [L0—a")"

n=1
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Note that p_;(n) = p(n) is the ordinary partition function. A positive
integer n has k colors if there are k copies of n available and all of them
are viewed as distinct objects. Partitions of positive integers into parts
with colors are called colored partitions. For example, if 1 is allowed to
have 2 colors, say r (red), and g (green), then all colored partitions of 2
are 2, 1, +1,, 1, + 14, 1, + 1,. Letting p. ,(n) and p, »(n) denote the
number of r-colored partitions into an even (respectively, odd) number
of distinct parts, it is easy to see that

(62) Dr (’I’l) = pe,r(n) — Po,r (n)a

when r is a positive integer.

We prove a congruence for the function p(n) which is defined by

(6.3) > u(n)g =[] -q"ia—¢)s
n=0 n=1

It follows that

(6.4) (n) = pe(n) = po(n),

where p.(n) and po(n) are the number of 16-colored partitions into an
even (respectively, odd) number of distinct parts, where all the parts
of the latter eight colors are even.

Theorem 6.1. If u(n) is defined by (6.4),

w(3n—1)=0 (mod 3).

We generally denote by J an integral power series in ¢ whose coeffi-
cients are integers.

Proof. 1t is obvious from (1.16) that
£(q) =1+3J.
Also n® —n =0 (mod 3), and so, from (1.15) and (1.17), we obtain

Q(q) =P(q) +3J.
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(£%(q) — Q(9))Q(q) = (E(q)(1 + 3J) — (P(q) + 3J))Q(q)
=&(q)Q(q) —P(9)Q(g) +3J.

By (2.44) and (2.51), we find that
(€%(q) — Q(9)Q(a) = 6499°(9)#*(—q)

H (1-¢")*(1—¢)%,
where the last equality comes from the fact [3, page 39]

o(—)v(q) = F(-a) f(—d*),

where f(—q) is defined by (2.7). On the other hand, observe that, from
(1.17) and (1.20),

(6.5)

(6.6)

— d

(6.7) 16 Znag(n)qn = —q 2(9) =£&(q)Q(q) — P(q)2(q)-
n=1

In summary, by (6.5), (6.6) and (6.7), we conclude that

(6.8) 64 Z p(n)g"tt =16 Z nos(n)q" + 3J.

But the coefficient of ¢ on the right side of (6.8) is a multiple of 3.
So we obtain
u(3n—1)=0 (mod 3). o

Secondly, we prove a congruence for the function v(n) which is defined
by

(6.9) dovm)g = (1 -1 +q")>

Thus v(n) is the number of partitions of n into 16 colors, 8 appear at
most once (say S1), and 8 are even and appear at most once (say S2),
weighted by the parity of colors from the set Ss.
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Theorem 6.2. If v(n) is defined by (6.9), then

v(n—1)=03(n) (mod 3).

Proof. Recall from (2.51) of Theorem 2.4 that

€(g) - Q(q) = 64 ] %

(6.10)
(1—¢*)%(1+4q")%,

18

= 64q

3
II
—

where, in the last equality, we used the fact [3, (22.3)]

ﬁ(1+q"):

Then, by (6.9) and (6.10), we deduce that

(]_ _ q2n—1)—1‘

8

Il
-

n

oo n—1

64 i": v(n)g" Tt =48 i o(n)q" + 576 Z Z a(m)o(n —m)q"

n n=2m=1
+ 16 Z o3(n)q".
n=1

Comparing the coeflicients of ¢ on both sides of the above equation,
we obtain the identity

n—1
dv(n —1) = 35(n) + o3(n) + 36 Z o(m)o(n —m).
m=1
We then deduce that

v(n—1)=03(n) (mod 3). O
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