CURVES IN BANACH SPACES—
DIFFERENTIABILITY VIA HOMEOMORPHISMS

JAKUB DUDA AND LUDEK ZAJICEK

ABSTRACT. We prove several results on curves f : [0,1] —
X, where X is an arbitrary real Banach space. They general-
ize theorems which were proved by Zahorski, Tolstov, Choquet
and Bari in the case X = R"™. First we give a complete charac-
terization of those f that admit an equivalent parametrization
which has a continuous derivative (respectively with continu-
ous derivative which is non-zero everywhere or almost every-
where). Further we establish theorems characterizing curves
allowing boundedly or finitely differentiable parametrizations
(with almost everywhere nonzero derivative). As a tool, we
prove versions of the aforementioned theorems for metric ana-
logues of derivatives. Finally, we discuss the case of curves al-
lowing almost everywhere differentiable parametrizations. We
also answer several questions posed by Bruckner.

1. Introduction. We prove several results on curves f : [0,1] — X,
where X is an arbitrary real Banach space. Our results give a complete
characterization of several situations when there exists an equivalent
parametrization of a curve possessing various differentiability proper-
ties. They generalize theorems which were known (to our knowledge)
for the case X = R” only. For some proofs we need, besides the known
methods used in the case X = R™ and results on metric differentia-
bility of Lipschitz (and pointwise-Lipschitz) mappings (from [10, 14]),
also some new ideas.

Our result on C'-parametrizations (Theorem 3.1) generalizes a the-
orem of Tolstov [17] for curves with values in the Euclidean space
R". Note that in [17], only curves, which are non-constant on any
interval, are considered, and that the result for real functions (possibly
constant on an interval) was proved independently by Bruckner and
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tangentially smooth. (A related notion of one-sidedly smooth curves
was studied in [1] for X = R"™ and in [9] in the general case.) In
our proof we use a result from [9] on this notion, see Lemma 2.5, and
the (simplified) method from [13]. Following [17], we also characterize
those curves, which allow a parametrization with a continuous deriva-
tive that is nonzero almost everywhere, respectively everywhere, see
Theorem 3.3, respectively Theorem 3.4.

A simple characterization for X = R"™, namely boudedness of vari-
ation, of those f that allow boundedly differentiable parametrizations
was proved by Zahorski [19] and Choquet [8] (and independently in
[6], cf. [5, page 87]). This result clearly holds (with the “same” proof)
if (and only if) X has the Radon-Nikodym property. We give in The-
orem 4.3 a more complicated characterization which holds for an ar-
bitrary X. The proof is an application of a result on metric differen-
tiability of Kirchheim [14]. We also consider (following [8, 17, 19])
the case when the bounded derivative can be taken almost everywhere
nonzero.

Zahorski [19] and Choquet [8] (see also Tolstov [17]) also proved
a (more difficult) result characterizing curves (with X = R™) that
allow a differentiable parametrization as those curves having the V BG,
property. In Section 5 we also generalize this result. Theorem 5.6,
which characterizes the situation when a vector-valued function allows
a differentiable parametrization with an almost everywhere nonzero
derivative, is the deepest result of this paper. In the proof, we combine
ideas from [8, 17] together with a new idea. As a consequence,
we prove the generalization of Zahorski’s theorem on differentiable
parametrization of a curve having a tangent at all points except a
countable set.

The results mentioned above are proved via analogues of these the-
orems for the notions arising in the theory of metric differentiabil-
ity, see Definition 2.1. These analogues are formulated for mappings
f:[0,1] = X, where X is a real Banach space. However, every metric
space (M, p) embeds into a suitable ¢, (T"), (see, e.g., [7, Lemma 1.1]),
and thus all the results involving the notion of md (f,-) (and metric dif-
ferentiability) are true for mappings f : [a,b] — (M, p) and are direct
consequences of our theorems.
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and Theorem 2.11.

We also observe that in several situations the obtained homeomorphic
changes of variables can be taken Lipschitz and differentiable, and thus
answer three question posed by Bruckner in [5].

Finally, we show that each continuous f : [0,1] — X allows a
parametrization, which is differentiable at all points of a prescribed
first category set. This improves a result of Bari [2] who proved the
existence of an almost everywhere differentiable parametrization in the
case X = R, cf. [4], where also discontinuous f are considered in the
scalar case.

2. Auxiliary results. By X we shall denote a real Banach space.
By A we shall denote the Lebesgue measure on R, and by #! we denote
the one-dimensional Hausdorff measure. If z,» € R, r > 0, then
B(z,r):={yeR:|z—y| <r} Let f:[a,b] = X. By Osc(f, M) we
mean the oscillation of f on a set M. The symbol VZf stands for the
variation of f on [¢,d] C [a,b]. We say that f has bounded variation on
[a,b] provided Vb f < co. We will denote vs(z) := VZf for = € [a,b].
For E C [a,b], we define V(f, E) to be the supremum of the set of the
sums

Z 1 £(d:) — f(e)ll

over sequences ¢; < dy < ¢cg < -+ < ¢, < d, with ¢;,d; € FE for all
i=1,...,n. (Weput V(f,E) =0 provided card (F) < 1.)

We say that f : [a,b] — X is VBG, provided [a, b] = Upen Er, where
E,, n € N, are closed sets such that for all n € N, V(f,E,) < oo,
and Y, ., Osc(f,I;) < oo, where I, (i € I, C N) are all (closed)
intervals contiguous to FE,. (Note that these properties are trivially
satisfied provided card E,, < 1.) For a formally different but equivalent
definition, see Remark 2.15.

We say that f : [a,b] — X is pointwise Lipschitz at x € [a, b], provided

(2.1) limsup —————— < o0
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1f(@) = f)| <C-|z—y| forall z,y€a,b],
for some C' > 0, then we say that f is Lipschitz (or C-Lipschitz) on
[a, b].
If z € [a,b], then we define the derivative f'(z) as

oy @) = f(@)
f'(z):== lim Y

t—0
z+t€la,b]

provided the limit exists.

An important tool for us will be Kirchheim’s theory of “metric
differentiation” developed in [14]. For our purposes (we deal with
the one-dimensional domain only) it is sufficient to define (instead of
MD(f,z)(v) in [14]) the simpler notion md (f, z).

Definition 2.1. Let I be an interval, X a Banach spaceand f: I — X
be given. Then we put

for zel,

nd(f0) — 1 M@ D = F@)]
t—0 |t]
t+xel
whenever the finite limit exists. We say that f ¢s metrically differen-
tiable at x provided md (f, z) exists and

g )= 0]~ md () = y] = offz ~ sl + Iy = al),
(4,2) = (z,2), yzel

Let us remark that md (f,z) exists if and only if MD (f,z)(1) =
MD (f,z)(—1); in that case all three numbers coincide. The above
notion of metric differentiability clearly coincides with that of [14]. It
is easy to see that if f'(z) exists, then md (f,z) = ||f'(z)]|, and f is
metrically differentiable at x.

Let f : [0,1] — X and A C [0,1]. By N(f|a,y) we will denote
the number of elements (possibly co) of the set f~1({y}) N A and set
(f) == f([0,1]). We will use the following version of Sard’s theorem:
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H'(f({z € [0,1]:md (f,z) = 0})) = 0.

_Proof. Extend f to R by taking f(z) = 0 for z € R\ [0,1]. Let
A={zeR:md(f,z) =0}. For m,n € N, let

Apn ={z €R:||f(x+h) = f(z)]| <m k| for |b] <n '}

Each A, is closed by, e.g., [3~, Lemma 1]. Note that A= Uy Amn,
and so A (and thus also A := AN[0, 1]) is Borel. By [10, Theorem 2.12]
we obtain that

0= [ mad(f,0)do - [ N dt @) 2 W), o

Theorem 2.5 from [10] has the following:

Corollary 2.3. Let X be a Banach space and f : [a,b] — X pointwise
Lipschitz. Then f is metrically differentiable at almost all x € [a,b].

The following lemma is simple:

Lemma 2.4. Let f :[c,d] = X, x € [¢,d]. Then the following hold.
(i) If md (f,z) = 0, then f is metrically differentiable at z.

(ii) If b : [a,b] — [c,d] is differentiable at w € [a,b], h(w) = z, and
f is metrically differentiable at x, then foh is metrically differentiable
at w, and md (f o hyw) = md (f, z) - |h'(w)|.

Proof. Without any loss of generality, we can assume that w = 0,
z = 0, f(0) = 0. Concerning (i), consider an arbitrary € > 0. There
exists 6 > 0 such that for y,z € B(0, ) N [c,d] we have

1) = FEI < [F I+ IR < eyl + 12]),

and the conclusion follows.
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|||f(h(y))— F(R(2))]| = md (f, )-Ih'( )I-Iy—ZH
< [IIF (h(y)) = F(R(2))]| = md (£,0) - [A(y) — R (2]

+ |md ( f, 0) - |h(y) — (= )\—md(f, )-Ih'(O)\-Iy—ZH
< o(|h(y)| + |h(2)]) +md (£,0) - [k(y) — h(z) = B (0)(y — 2)|
< o(lh(y)] + [h(2)]) +md (£,0) - (|A(y) — B'(0) - y| + |h(2) — 1'(0) - 2[)
= o(ly| + |z]),

when (y,2) — (0,0), y, 2z € [a, b]. o

Let now X be a Banach space, I C R an arbitrary interval, and
f:1 — X given. The unit tangent vector of f at © € I is defined as

the limit
fl@z+1t) - f(z)
1f(z+1t) = f(z)]I’

A continuous function f : I — X is said to be tangentially smooth if
7(f, ) exists and is continuous on I. We will frequently use the obvious
fact that 7(f,z) = (f'(z)/||f'(x)||) whenever f'(z) # 0. It is easy to
see that if f'(z) # 0 for all € I and f’ is continuous on I, then f
is tangentially smooth on I. Note that if h is a homeomorphism of an
interval J onto I and z € J, then

()= lim sgn(t)-
x+tel

(2.3) 7(foh,x) existsif and only if 7(f,h(z)) exists.

[9, Theorem 3.5] implies that tangentially-smooth curves are one-
sidedly smooth in the sense of [9]. Note that if f is tangentially smooth
in an interval I, then f has finite variation on any compact subinterval
of I (this follows from [9, Corollary 3.4]). Thus, the following result
follows from [9, Theorem 3.5 and Proposition 3.6]. (In case when
X = R"™ we can use [1, Theorem 3.3.3] or [17, Lemma 1] instead.)

Note that if I is an interval and f : I — X is tangentially smooth,
then f is not constant on any subinterval of I.

Lemma 2.5. Let X be a Banach space, f : (¢,d) = X tangentially
smooth and k : (c,d) — (c*,d*) a homeomorphism such that VYf =
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Proof. Choose any [a,b] C (c*,d*). It is clearly sufficient to prove
that the function g(z) := fok '(z), z € [a,b], is C'. We see that
g is not constant on any interval and by [9, Theorem 3.5] we obtain
that g is one-sidedly smooth in the sense of [9]. Put £ = Vbg. Since
g*(y) = g(y + a), y € [0,4], is the arc-length parametrization of
fle=1((a,0])> by [9, Proposition 3.6] we clearly get that (g*)" is continuous
and nonzero on [0,4] (as (¢%)'(z) = 7(g*,z) for all z € [0,¢]). Thus
g = (f o k1) is continuous and nonzero on [a,b]. O

Several times we will need the following easy consequence of Sard’s
theorem.

Lemma 2.6. Let X be a Banach space and suppose that for
f :[0,1] — X there exists a homeomorphism h of [0,1] onto itself
such that f o h has derivative everywhere in [0,1]. Then

H(f({x €[0,1]:7(f,z) does not exist})) = 0.

Proof. We define
A:={z €[0,1]: 7(f o h,z) does not exist},
and
D :={x€10,1] : 7(f, ) does not exist}.

Since

Ac{ze€l0,1]:(foh)(xz)=0}=:B,
by Lemma 2.2, we have H((foh)(B)) = 0. By (2.3), f(D) = (foh)(A),
and thus #}(f(D))=0. o

We shall need the following lemma.
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V=2 V1
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where I; = (c¢;,d;), (i € Z C N) are all (pairwise different) components

of [0,1]\ B.

Proof. Using the vector version of Banach indicatrix theorem ([12,
Theorem 2.10.13]) and the obvious equality N (f,y) = > ;c; N(fl5,y)
for y € (f) \ f(B), we obtain

= [ N(f,y)dH'(y) = N(f,y)dH!
Yfﬂﬁuw ) / (f,) dH (1)

(PNF(B)

=3[ Nl VI

iez Y (N\F(B) i€l c

Lemma 2.8. Let X be a Banach space and g : [a,b] — X. Suppose
that
H (g({z € [a,b]: 7(g,z) does not exist})) = 0,

and md (g,z) ezists for almost all © € [a,b]. Then ¢'(x) ezists for
almost all z € [a,b].

Proof. Suppose that md (g,z) exists for all z € [a,b] \ N with
A(N) = 0. Denote

A ={z € [a,b]: (g, ) does not exist},
M={zec A\ N:md(g,z) > 0}.

We shall prove that A(M) = 0. To see this, for j € N write
Mj :={x € M:||g(z) — g(2)[| = (1/)|z — 2| for z € B(x,1/j)}

and write M; = UgM;, where diam (M) < 1/j for each k € N.
Then M = U, M and g(M; ) C g(A) for all j,k € N. It is easy to
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Now, we prove that ¢'(z) exists for all € [a,b] \ (M UN). First,
consider z € [a,b] with md (g,2) = 0. Then, obviously,

§/(z) = lim gz +t) —g@) _

t—0 t

Second, consider z € [a,b] \ A with md(g,z) > 0. Then

oy ot ) () o+t~ g(@)]
4y @ =l () e T @) ]
=71(g,z) - md(g, ).

Thus ¢'(x) exists for all z € [a,b] \ (M UN). o

Lemma 2.9. Let X be a Banach space. Suppose that f : [c,d] — X is
continuous, has bounded variation, and is not constant on any interval.
Let p(z) = v;l(w) for © € [0,v(d)], and g = fop. Then g is 1-
Lipschitz and, for almost all x € [0,vs(d)], g is metrically differentiable
at z with md (g,z) = 1.

Proof. 1t is easy to see that ¢ is an increasing homeomorphism
of [0,vf(d)] onto [c,d] such that g = f o ¢ is 1-Lipschitz (see [12,
Section 2.5.16]). By [14, Theorem 2] we obtain that g is metrically
differentiable for almost all € [0,v(d)]. Further,

vg(d)
wd(g,0)de= [ Nlglowp ) 1@ = \/ 9= 0,(@),
(0,07 (d)] g([0,07 (d)]) 0

where the first equality follows from [14, Theorem 7] and the second
equality from [12, Theorem 2.10.13]. The third equality is obvious since
¢ is a homeomorphism. Thus md (g, z) = 1 for almost all z € [0, v¢(d)]
(as md (g, z) < 1 where it exists) and the claim follows. o

Lemma 2.10. Let f : [0,1] — X be continuous and VBG.. Then
there exists a Lipschitz homeomorphism 6 of [0, 1] onto itself such that
f 00 is pointwise Lipschitz.
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such that f,(z) = f(z) for € E,, and f, is linear on each component
of [0,1] \ E,, and f, is constant on the (at most) two components of
[0,1]\ E;, which contain 0 or 1 as an endpoint.

Let v, (2) = VE fn, let pn(z) =, Osc(f, I%), where I are all (pair-
wise different) components of [0,z] \ E,, and ¢, (z) = >, Osc(f, J5),
where J! are all (pairwise different) components of [z, 1]\ E,,. It follows
that vy, ¢n, —, are continuous and nondecreasing on [0,1]. Let

(25) = Z + San ) ¢n($)) *En,

where ¢, > 0 (n € N) are taken such that v(x) is finite for z = 0 and
z = 1. Then clearly v is continuous and strictly increasing on [0, 1].
Let [a,b] := v(]0,1]) and consider arbitrary points p,q € [a,b], p # q.
Denote s = v~!(p) and t = v~!(g), and choose n € N such that s € E,,.
We easily obtain

(2.6) [IF(t) = f(3)I < |vn(t) =vn(s) + @n(t) = @n(s) = (¥n(t) —¢Pn(s))].
Indeed, suppose first ¢ > s. If t € E,, then 1f (@) — f(s)l| = [|fa(t)
fa(9)]] < Jon(t) —vn(s). It € I, =: (as,b;), then |[f(¢) — f(ai)|l
| (t) — ¢n(ai)l, and therefore || f(¢) — f(s)[| < [|f(as) — f(s)[| + |7 (2)

F(a)|l < |vn(ai) — vn(8)| + |@n(t) — @n(a;)|, which easily implies (2.6
In case t < s we proceed symmetrically using —1,, instead of ¢,,.

<
).

Since all the terms in the definition of v are nondecreasing, it follows
that

(2.7)
[0(5) = ()] > [on(5) = va(t) + @u(s) — Pn(t) — (Bu(s) — Yu(t))]
-en+ s —t,
and we obtain
(2.8) 1/ (@) - F @) < im .

This shows that fov~! is pointwise Lipschitz. Since (2.7) implies that
v~! is Lipschitz, §(z) = v™'(z(b— a) + a) is clearly a homeomorphism
with the desired properties. ]
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Theorem 2.11. Let X be a Banach space and suppose that f :
[0,1] — X is continuous and VBG,. Then f is metrically differentiable
at almost all z € [0,1].

Proof. Lemma 2.10 applied to f yields a Lipschitz homeomorphism
6 of [0,1] onto itself such that f o 6 is pointwise Lipschitz. By
Corollary 2.3, f o6 is metrically differentiable at all points of [0, 1]\ NV,
where A(N) = 0. Since 6 is Lipschitz, we have A(6(N)) = 0, and
since 6! is monotone, we have A(M) = 0 for M := {z € [0,1] :
(=1 () does not exist}. Thus, A(#(N)U M) = 0 and, by Lemma 2.4,
f = (fo0)o0~1 is metrically differentiable at all z € [0, 1]\ (§(IN)UM).
O

The following lemma is an easy consequence of a lemma of Zahorski
[19], which was independently proved by Choquet [8], and in a slightly
weaker form already by Tolstov [18]. Note that Zahorski proved his
lemma in May 1940 (by [19, page 7]), after submission of [18]. However,
Tolstov in [18] does not consider absolute continuity of h~! (where h
is as in the proof of the following lemma).

Lemma 2.12. Let X be a Banach space, and let g : [a,b] — X be
pointwise Lipschitz.

(i) There exists a boundedly differentiable homeomorphism h of [a, b]
onto itself such that g o h is metrically differentiable at all x € [a,b].

Further, if md (g, -) is bounded (where it exists), then md (g o h,-) is
bounded everywhere in [a,b]. If md (g,z) # 0 for almost all x € [a,b],
then md (g o h,z) # 0 for almost all x € [a,b].

(il) If g is differentiable almost everywhere, then there exists a
boundedly differentiable homeomorphism h of [a,b] onto itself such that
g o h is differentiable everywhere in [a,b).

Further, if g' is bounded (where it exists), then (g o h)' is bounded
everywhere in [a,b]. If ¢'(x) # 0 for almost all x € [a,b], then
(goh) (x) # 0 for almost all x € [a,b].
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z € (a,b) \ M with A(M) = 0. By Zahorski’s theorem [19] (for a proof
see, e.g., [13, pages 25-27]) there exists a differentiable homeomorphism
h of [a, b] onto itself such that for M = {z € [a,b] : h'(z) = 0} we have:
e A\(M)=0,h Y(M)C M,
e 1/ is bounded and A~! is absolutely continuous.
Now we shall prove that F' = g o h is metrically differentiable every-

where. If © ¢ M, then F is metrically differentiable by Lemma 2.4 (ii).
If z € M, then

o lalh(e 1) — g(hi))| A +) — h(a)
& T 165

=0,

as g is pointwise Lipschitz and h'(z) = 0. Thus F is metrically
differentiable at by Lemma 2.4 (i).

We have that either md (F,z) = 0 or md (F, z) = md (g, h(z))-|h/(z)|.
Consequently, if md (g, -) is bounded (where it exists), then md (F,-) is
bounded as well (because |h'| is bounded).

Suppose that md (g, z) # 0 for all € [0,1]\ N, with A\(N) = 0. Then
for any = ¢ h~1(IN) U M, we have that md (g o h,z) # 0. To finish
the proof, note that A(h™!(N) U M) = 0 because h™! is absolutely
continuous (see e.g. [16, Theorem 6.1, Chapter VII]). O

Lemma 2.13. Suppose that X is a Banach space and g : [a,b] = X
is pointwise Lipschitz. Then there exist closed sets Ej ., j,k € N, with
diam (E; ) < 1/j such that

(i) UE'ij = [a,b],

(ii) we have ||g(z) — g(y)|| < jlz —y| for x € Ej and y € [a,b] such
that |x —y| < 1/7,

(iil) V(g, E; 1) < 00,

(iv) 32, Osc(g,I3*) < oo where IP* are all (closed) intervals con-
tiguous to Ej .

In particular, g is VBG,.



B, = { € [a,b]: |g() —g(=)]| < jlw—2] if = € [a,5] and |z —a]| < 1/5}.

Clearly each E; is closed and UE; = [a,b]. Write E; = UgenEj i,
where each Ej is closed and diam (E;) < 1/j. The conditions (i)
and (ii) are clearly satisfied. By (ii), g is Lipschitz on each E; j, which
implies (iii).

Let j, k be fixed and [c, d] be an interval contiguous to E; . Choose
z,y € [c¢,d] such that Osc (g, [c,d]) = |lg(z) — g(y)||- By (ii) we have

Osc(g,[c,d]) < [lg(x) —g(e)ll + llg(y) — g(e)ll < 24(d - ),

which immediately implies (iv). O

Lemma 2.14. Suppose that X is a Banach space and f : [a,b] — X.
Further, suppose that for each x € (a,b) there exists an open interval
U such that x € U, U C (a,b), and an increasing homeomorphism
hy of U onto itself such that f o hy is pointwise Lipschitz on U,
and md (f o hy,y) # 0 for almost all y € U. Then there exists an
increasing homeomorphism h of [a,b] onto itself such that f o h is
pointwise Lipschitz on (a,b), md (f o h,z) # 0 for almost all z € (a,b),
and

(2.9) [1f(2) = f(h(x))|| < dist (z, {a,b})
for all z € (a,b).

Proof. For an interval J = [c,d] C (a,b), choose an increasing
homeomorphism w; of J onto J such that

(i) f owy is pointwise Lipschitz on J,
(ii) md (f o wy,z) # 0 for almost all z € J,
(iii) || f(z) = (f owy) ()| < dist (z,{a,b}) for all z € J,
whenever such a homeomorphism exists.

Now observe that, for each = € (a,b), we can choose an open interval
I, C (a,b) containing x such that wy is defined for each J = [¢, d] C I,.
Indeed, for each x, choose U, := U by the assumptions of the lemma
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Osc(f,I) < dist (I, {a,b}).

Note that, for any J = [¢,d] C I, there exists an increasing linear
homeomorphism [; from J onto h;!(J). Define w; := h, ol; and
observe that it satisfies (i)—(iii).

Now we will show that w; is defined for each I = [¢,d] C (a,b). To
this end, find a partition {to = ¢ < t1 < --- < t,, = d} of [¢, d] such that
each interval [t;_1, ;] is contained in an interval I, (for some z € [¢, d]).
We can choose any partition such that max{t; —t; 1 : i = 1,...,n}
is smaller than the Lebesgue number of the open cover C := {I, :
z € [e,d]} of [¢,d]. (We could also proceed by choosing a minimal
finite subcover of C.) Now define w(zx) := wy,_, +,)(x) for 1 < i < n,
x € [ti—1,t;], and observe that w is an increasing homeomorphism of 1
onto itself having the properties (i)—(iii).

Finally, choose points {z } ez with z;, < zgyq for k € Z, limg_, o0 21, =
b, limg_, o zx = a, and put h(z) = wy;,_, ,)(z) for each integer k and
* € [2x—1,2k|. Then h is clearly an increasing homeomorphism of [a, b]
onto itself, satisfying the conclusion of our lemma. a

Remark 2.15. Let X be a Banach space, f : [0,1] — X, and A C [0,1].
Following [16], we say that f is V B, on A provided the set of the sums
>; Osc(f, as, bi]), where ([a;, b;]) is a finite sequence of nonoverlapping
intervals with a;,b; € A, is bounded.

Since the proofs of [16, Theorem 7.1, Chap VII] and [16, Theorem
8.5, Chap VII] work also for X-valued functions, we obtain that f is
VBG,, if and only if there exists a sequence of (arbitrary) sets (A,,)
such that [0,1] = U, A, and f is V B, on each A,.

Using this remark, we can easily prove the following version of a
lemma from [19].

Lemma 2.16. Let X be a Banach space and let f : [0,1] — X
be continuous. Suppose that 7(f,x) exists for all z € [0,1] except a
countable set. Then f is VBG,.
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tors (z})ien' C X* which is a norming sequence for X (ie., ||z| =
sup;en Z; (z) for every # € X). Denote C = {z € [0,1]
7(f,x) does not exist} and, for n,m € N,

A = { € 0,115 0 < J1 )= 11)] < sign (y-2):25,(10)~1 )
whenever y € [0,1],0 < |y — z| < l/n}

We have C' U (Up,nAmn) = [0,1]. Indeed, let z € [0,1] \ C be given.
Since 7(f, x) exists, we can choose n € N such that

7(f,z) —sign (y — z)

1f(y) = f(@)]
whenever y € [0,1], 0 < |y — 2| < 1/n. Since ||7(f,z)|| = 1, we can
choose m € N such that z}, (7(f,z)) > 3/4. Now it is easy to see that

0< 717) — £(@)] < sign (v — 2) - 25, (F0) — £(2),

whenever y € [0,1], 0 < |y — 2| < 1/n, and therefore € A,,,. For
each k € N, choose Ap,ni C Ay such that diam (Ap,nk) < 1/n and
Amn = Uk:Amnk:-

Since C' is countable, by Remark 2.15 it is sufficient to show that f
is VB, on A for each m,n,k € N.

Let [ai,b;], © € F, be a finite system of nonoverlapping intervals
with the endpoints in A,,,,. Take ¢;,d; € [a;,b;], ¢; < d;, such that
II1f(d;) = f(ci)ll = Osc(f, [ai, bi]). Observe that the definition of A,k
easily gives that =}, (f(b;)) > «},(f(a;)) and that

{[er(f(@), 2}, (f(b:)] i€ F}

is a system of nonoverlapping intervals. Moreover, zX, (f(c;)) €

[27.(f (i), 27, (f(0:))], and @7, (f(di)) € [7,(f(ai)), 27, (f(:))]. Con-



Z Osc(f, [ai, b)) = Z 1 f(di) = f(ci)l

ier ien
< ;(Hf(ai) = f(di)ll + [ f(ai) = £ (e3)ll)
<4 ; (@3 (f(di) = f(ai)) + 23, (f(ci) = f(a)))
<8 ; (25, (£(bi) — f(a:))) < 80sc(x}, o £,0,1]),
which completes the proof. 0O

3. C'-parametrizations. For f : [0,1] — X, define By as the set
of all points = € [0, 1] such that there is no neighborhood U of z such
that f is either constant or tangentially smooth on U. Clearly By is
closed and {0,1} C By.

Theorem 3.1. Let X be a Banach space, and let f : [0,1] — X.
Then there is a homeomorphism h of [0,1] onto itself such that f o h
is C' if and only if f is continuous, has bounded variation, and

M (f(By)) = 0.

Proof. To prove the necessity of our condition, note that from the
existence of h, it easily follows that f is continuous and has bounded
variation (observe that foh is Lipschitz by [12, Section 2.2.7]). Notice
that f(Byf) = (f o h)(Bfon), and denote g := f o h. Since g is C*, we
easily obtain

B, c {zx€0,1]:¢'(z) =0} U{0,1} =: D.

Now by the Morse-Sard theorem [12, Theorem 3.4.3] (or alterna-
tively by Lemma 2.2) we obtain that H!(g(D)) = 0, which implies
H(f(By)) = H'(9(By)) = 0.

Now suppose that our condition is satisfied. First observe that By is

nowhere dense in [0,1]. Indeed, if not, then there exists a nonempty
interval (¢,d) C By. Then H!(f((c,d))) = 0, but, since clearly f is not
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the (open) set [0,1] \ By. Let U = U{l; : f is constant on I;}. For
z € [0,1] define k(z) = v¢(z) + AU N (0,z)) and C := V§f + A\U). If
I; N"U = @, then clearly f is tangentially smooth on I; and therefore
vy is strictly increasing on I;. Therefore k£ : [0,1] — [0,C] is a
homeomorphism (because (¢,d) N (U;1;) # @ for any 0 < ¢ < d < 1).
Clearly f o k~! is Lipschitz.

We will show that A(k(By)) = 0. Note that

)\<k<U )) S+ Y k() - k)

[ I;,CU ILNU=92

0)+ YV 7= A0+ 5

where the last equality follows from Lemma 2.7. Since k(Bj) =
[0,C] \ k(U;I;), it follows that A(k(Bf)) = 0. By a theorem of Za-
horski (see [13, pages 25-27]) there exists a continuously differentiable
homeomorphism [ of [0, C] onto itself such that [~! is absolutely con-
tinuous and !'(z) = 0 if and only if z € [~ (k(By)). Now we shall show
that 9 = f o k! ol is continuously differentiable.

If I; C U, then 9 is constant on (I=' o k)(I;). If I, N U = @, then
foklis C* on k(I;) by Lemma 2.5 and thus 1 is C* on (I~ 1ok)( i)
Now consider z € B* := 17! (k(Bjy)). Then, for any y € [0,C]\ {z}, we
have

(fok™ol)(y) — (fo k™" ol)(2)
y—z
_ (Fo k™) = (Fo k™) (i)  Uy) —I(z)
I(y) — (=) y—x
and because f o k=1 is Lipschitz, it follows that ¢'(z) = 0. Thus %
is differentiable on [0, C]. The continuity of ¢’ at © € B* follows for
example from the equality 1'(y) = (fok 1) (I(y))-I'(y) (y € [0, C]\B*),
the Lipschitz property of f o k!, and continuity of I’. Thus h(z) =
(k= o1)(Cz) is the desired homeomorphism of [0, 1] onto itself. u]

Remark 3.2. Theorem 3.1 for X = R™ was proved in [17]. If X = R,
then By coincides with the set Ky of varying monotonicity (see [13,
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The proof of Theorem 3.1 yields also the following result concerning
the case of an almost everywhere nonzero continuous derivative.

Theorem 3.3. Let X be a Banach space, and let f : [0,1] — X.
Then there is a homeomorphism h of [0,1] onto itself such that f o h
is C1 and (f o h)' (y) # 0 for almost all y € [0,1] if and only if f is
continuous, has bounded variation, is not constant on any interval, and

HY((By)) = 0.

Proof. The necessity follows from Theorem 3.1, and from the fact that
the constancy of f on some interval would easily yield a contradiction
with the fact that (f o h)’ # 0 almost everywhere in [0, 1].

Concerning the sufficiency, let U, k, C, I, 1, h be defined as in the
proof of Theorem 3.1. Note that now U = &, and k = vy. Since
U = @, Lemma 2.5 yields that (fok™')’ is nonzero on [0, C]\ k(By) and
therefore 1’ is nonzero on [0,C] \ [7*(k(By)). Since ™! is absolutely
continuous, A(I"!(k(By))) = 0 and thus h has the desired property.
O

The following theorem characterizes the curves allowing parametriza-
tions with a nonzero continuous derivative.

Theorem 3.4. Let X be a Banach space and f : [0,1] — X be
continuous. Then there exists a homeomorphism h of [0,1] onto itself
such that f o h is C1 with (f o h)'(z) # 0 for all z € [0,1] if and only
if 7(f, z) exists and is continuous on [0, 1].

Proof. Let h be a homeomorphism such that g = foh has a continuous
derivative with ¢'(z) # 0 for all « € [0,1]. Then 7(g,2z) = ¢'(z)/||g'(z)|]
and this function is continuous.

Suppose that 7(f,z) is continuous for all z € [0,1]. Then f is not
constant on any interval. It follows from [9, Theorem 3.5] that f is one-
sidedly smooth in the sense of [9], and thus [9, Proposition 3.6] implies



nx)=v,"(£-2), €[V, 1] 18 the desired homeomorphism. O

4. Parametrizations with bounded derivative. First, we shall
prove a theorem about curves allowing parametrizations which are
boundedly metrically differentiable.

Theorem 4.1. Let X be a Banach space, and let f : [0,1] — X be
continuous. Then the following are equivalent.

(i) There exists a homeomorphism h of [0,1] onto itself such that
f o h is metrically differentiable at all x € [0,1], and md (f o h,-) is
bounded on [0,1].

(ii) There exists a homeomorphism h of [0,1] onto itself such that
md (f o h,-) ezists, and is bounded on [0, 1].

(iii) f has bounded variation.

Proof. Trivially, (i) = (ii). To see that (ii) = (iii), suppose that
h as in (ii) is given. By [12, Section 2.2.7] we obtain that f o h is
Lipschitz, and thus f o h and also f have bounded variation.

To prove that (iii) = (i), define ¢ : [0,1] = [0,1 4+ vf(1)] by
o) =z+v(z), 0<z<1.

It is easy to see that hi(t) := ¢ (t(1 + vf(1))) is an increasing
homeomorphism of [0, 1] onto itself such that g := foh; is Lipschitz (cf.
[13, Proof of Lemma 3.2] or [12, Section 2.5.16]). By [14, Theorem 2]
we obtain that g is metrically differentiable almost everywhere, and
md (g, -) is bounded (where it exists) because g is Lipschitz.

By part (i) of Lemma 2.12, there exists a boundedly differentiable
homeomorphism hg of [0,1] onto itself such that g o hy is metrically
differentiable at all z € [0,1], and md (g o hg, ) is bounded on [0, 1].
Thus h = h; o hs is the desired homeomorphism. m|

Remark 4.2. The proof of Theorem 4.1 shows (since ¢! is clearly

Lipschitz) that in (i) and (ii) we could write that h is a Lipschitz home-
omorphism. Then h is differentiable almost everywhere in [0, 1], and
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edly metrically differentiable by Lemma 2.4. Thus, in parts (i) and (ii)
we could even write that h is Lipschitz and differentiable.

Theorem 4.1 easily implies the following result.

Theorem 4.3. Let X be a Banach space and f : [0,1] — X be
continuous. Then there exists a homeomorphism h of [0,1] onto itself
such that f o h has a bounded derivative if and only if f has bounded
variation and

(4.1) H (f({z €[0,1]: 7(f,z) does not exist})) = 0.

Proof. To prove the necessity of the condition suppose that h is given.
Then f has bounded variation by Theorem 4.1 and (4.1) follows from
Lemma 2.6.

To prove the sufficiency of our condition, by Theorem 4.1 there exists
a homeomorphism hy of [0, 1] onto itself such that md (f o hq,-) exists
and is bounded on [0, 1]. Let g := f o h;. By (2.3) and Lemma 2.8, we
obtain that ¢’(x) exists for almost every x from [0, 1].

By part (ii) of Lemma 2.12, there exists a homeomorphism hy of
[0, 1] onto itself such that (gohs)’ exists and is bounded on [0, 1]. Thus
h = hy o hy is the desired homeomorphism for which (f o h)’" exists and
is bounded on [0, 1]. o

Remark 4.4. In the proof of Theorem 4.3, both hy (see Remark 4.2)
and ho could be chosen Lipschitz and differentiable. Thus in Theo-
rem 4.3, we could ask for the homeomorphism h to be Lipschitz and
differentiable.

Remark 4.5. The condition (4.1) can be removed in Theorem 4.3 if
and only if X has the Radon-Nikodym property.

If X has this property, then (in the proof of Theorem 4.3) g = foh; is
Lipschitz and therefore (see, e.g., [7, Theorem 5.21]) almost everywhere
differentiable. Thus we do not need (4.1).
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[0,1] — X. For this f there exists no such h, since otherwise f =
(f o h) o h=! would be differentiable almost everywhere.

Theorem 4.6. Let X be a Banach space and f : [0,1] — X be
continuous. Then the following are equivalent.

(i) There exists a homeomorphism h of [0,1] onto itself such that
[ oh is metrically differentiable at all x € [0,1], md (foh,-) is bounded
on [0,1], and md (f o h,y) # 0 for almost all y € [0,1].

(ii) There exists a homeomorphism h of [0,1] onto itself such that
md (foh,-) exists and is bounded on [0,1], and such that md (foh,y) #
0 for almost all y € [0,1].

(iii) f has a bounded variation, and is not constant on any interval.

Proof. Trivially, (i) = (ii). To see that (ii) = (iii), let h be as in
(ii). By Theorem 4.1, f has bounded variation. Since md (foh,z) #0
for almost every x, we obtain that foh, and thus also f, is not constant
on any interval.

To prove that (iii) = (i), denote ¢(z) = vs(x) for z € [0,v4(1)], and
g = fop~l. By Lemma 2.9 we obtain that md (g,z) = 1 for almost
all ¢ € [0,vy(1)].

By part (i) of Lemma 2.12 we obtain a homeomorphism hs of [0, v¢(1)]
onto itself such that g o ho is metrically differentiable everywhere in
[0,vf(1)], such that md (g o hg,-) is bounded, and md (g o hy,z) is
nonzero for almost all z € [0,v¢(1)]. Thus h(z) = ¢~ ' o hy(vs(1)-z) is
the desired homeomorphism of [0, 1] onto itself. O

As a corollary of Theorem 4.6, we obtain

Theorem 4.7. Let X be a Banach space and f : [0,1] — X be
continuous. Then there exists a homeomorphism h of [0,1] onto itself
such that f o h has a bounded almost everywhere nonzero derivative if
and only if f has bounded variation, f is not constant on any interval,



(4.2) HY(f({z €[0,1]: 7(f,x) does not exist})) = 0.

Proof. The necessity of our condition immediately follows from
Theorem 4.6 and Theorem 4.3.

To prove the sufficiency of our condition, Theorem 4.6 supplies a
homeomorphism h of [0, 1] onto itself such that md (f o hy,-) exists,
is bounded on [0,1], and nonzero almost everywhere in [0,1]. Let
g = foh;. Lemma 2.8 together with (2.3) and (4.2) imply that ¢'(z)
exists for almost every z from [0, 1], and (2.4) implies that ¢'(z) # 0
for almost every z in [0, 1].

By part (ii) of Lemma 2.12 we obtain a homeomorphism hz of [0, 1]
onto itself such that (g o ha)' exists everywhere, is bounded, and
(g o he)" # 0 almost everywhere. Thus h := hy o hy is the desired
homeomorphism of [0, 1] onto itself. u]

5. Finite derivative.

Theorem 5.1. Let X be a Banach space and f :[0,1] — X. Then
the following are equivalent.

(i) There exists a homeomorphism h of [0,1] onto itself such that
f o h is metrically differentiable at x for all x € [0, 1].

(ii) There exists a homeomorphism h of [0,1] onto itself such that
md (f o h,x) exists for all x € [0, 1].

(iii) f is continuous, and V BG,.

Proof. Trivially, (i) = (ii). To see that (ii) = (iii), let g = f o h.
Using Lemma 2.13, we obtain that g, and thus also f, is continuous
and VBG,.

To prove that (ili) = (i), by Lemma 2.13 we obtain a homeomor-
phism 6 so that g = f o 6 is pointwise Lipschitz.

By part (i) of Lemma 2.12 there exists a homeomorphism k4 of [0, 1]
onto itself such g o hy is metrically differentiable at all € [0,1]. Thus,



Remark 5.2. The proof of Theorem 5.1 yields that the homeomor-
phism A in (i) and (ii) can be taken Lipschitz (see Lemma 2.10 and
Lemma 2.12). Then h is differentiable almost everywhere and thus
Lemma 2.12 yields a boundedly differentiable homeomorphism h so
that h o h is differentiable and Lipschitz. Thus, we could require h in
(i) and (ii) to be differentiable and Lipschitz.

As a corollary of Theorem 5.1, we obtain:

Theorem 5.3. Let X be a Banach space and f : [0,1] — X.
There exists a homeomorphism h of [0,1] onto itself such that f o h
is differentiable if and only if f is continuous, VBG,, and

(5.1) H (f({x €[0,1]: 7(f,z) does not exist})) = 0.

Proof. The necessity of our condition immediately follows by Theo-
rem 5.1 and Lemma 2.6.

For sufficiency, Theorem 5.1 supplies a homeomorphism h; of [0, 1]
onto itself such that md (fohy,z) exists for all z € [0,1]. Let g = foh;.
Lemma 2.8 with (5.1) and (2.3) yield that ¢’(z) exists for almost every
z € [0,1]. By part (ii) of Lemma 2.12 there exists a homeomorphism
ha of [0,1] onto itself such that (gohq)’(z) exists for all € [0,1]. Thus
h = hy o hy is the desired homeomorphism of [0,1] onto itself. o

Remark 5.4. In the proof of Theorem 5.3, both hy (see Remark 5.2)
and hs can be chosen differentiable and Lipschitz. Thus, in Theo-
rem 5.3, we can require the homeomorphism A to be differentiable and
Lipschitz.

Theorem 5.5. Let X be a Banach space and f : [0,1] — X. Then
the following are equivalent.

(i) There exists a homeomorphism h of [0,1] onto itself such that
f o h is metrically differentiable at all x € [0,1], and md (f o h,y) # 0



(ii) There exists a homeomorphism h of [0,1] onto itself such that
md (f o h,z) exists for all x € [0,1] with md (f o h,y) # 0 for almost
all y € [0,1].

(iii) f is continuous, VBG., and is not constant on any interval.

Proof. Trivially, (i) = (ii). To prove that (ii) = (iii), let h be as
in (ii) and g := f o h. By Theorem 5.1, f is continuous and V BG,. If
g is constant on some interval, then md (g,-) = 0 on that interval, and
we have a contradiction. Thus g (and also f) is not constant on any
interval.

To show that (iii) = (i), we can assume that f is pointwise Lipschitz
(even metrically differentiable) on [0,1] (by Theorem 5.1 there exists
a homeomorphism h such that f o h is metrically differentiable; now
take f o h instead of f). We say that a point = € (0,1) is regular
if there exists an open interval U such that = € U, U C (0,1), and
an increasing homeomorphism hy of U onto itself such that f o hy is
pointwise Lipschitz on U and md (f o hy,y) # 0 for almost all y € U.

Let Q = Qy be the set of all regular points, and P = [0,1] \ Q.
Then 2 is open and dense. The openness of 2 is clear. To prove that
Q2 is dense in [0,1], let [¢,d] C [0,1], and Ej be the (closed) sets
from Lemma 2.13 applied to [c,d]. By the Baire category theorem,
there exist j,k € N such that [a,b] C E;; N (¢,d) for some a < b.
Then f is j-Lipschitz on [a,b]. Theorem 4.6 (the implication (iii) =
(i)) yields a homeomorphism of [a,b] onto itself such that f o h is
pointwise Lipschitz (even metrically differentiable) with md (f o h,z)
being nonzero almost everywhere in [a,b]. Thus, (a,b) C ©, and Q is
dense in [0, 1].

Write Q = U;(ai, b;), where (a;,b;) are all open components of the
set Q. An application of Lemma 2.14 to f restricted to [a;, b;] gives an
increasing homeomorphisms h; of [a;,b;] onto itself such that f o h;
is pointwise Lipschitz in (a;,b;), md (f o h;,z) # 0 for almost all
z € (ai, b;), and

(5.2)  f(=) = f(hi(@))]| < dist (z, {as, b:}), @ € (@i, bi).

Define h(z) = hi(z) for = € (a;,b;) and ﬁ(@) =gz forxz € P. If
y € P, then (5.2) easily implies that || f(z) — f(h(2))|| < |y —z| for each
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[0,1].

We will prove P = {0,1}. Since it is easy to see that Q. ; = Qy,
without any loss of generality we can suppose that md (f,z) # 0 for
almost all z € Q (otherwise take f o h instead of f). Now, for a
contradiction suppose that PN (0,1) # &. It is obvious that P N (0,1)
has no isolated points.

Let E; i, be the (closed) sets from Lemma 2.13 applied to f on [0,1].
Since P N (0,1) is a Baire space, at least one set Ej; is not nowhere
dense in P N (0,1). Therefore, there exists an interval (c,d) together
with n € N such that (¢,d) N P # @ and for all z € P N [¢, d] we have
that

(5.3) 1f(z) = f@W) <n-|z—y| forallyelcd.

Since P N (0,1) has no isolated points, we can clearly assume that
c,d e P.

Let (¢;,d;) (¢ € T C N) be the components of QN (¢,d). For each
i €T, let v =v; = (f(ds) — f(ci))/IIf(di) = f(ei)|l if f(ds) # f(ci), and
v € X be an arbitrary unit vector if it is not the case. Further, put
e; = (ci +d;)/2+ || f(d;) — f(ci)|| / 2n and observe that ¢; < e; < d;
by (5.3). Now define (clearly uniquely) g on each [¢;,d;] so that g is
continuous on [¢;, d;], g(¢;) = f(e;),

e g (z)=nvifc <z <e,and

e g (z)=—nvife; <z <d;.

Clearly, g(d;) = f(d:).

Thus, defining g(z) := f(z) for x € P N [c,d], we easily see (using
(5.3)) that g : [¢,d] — X is n-Lipschitz and not constant on any interval
(since P is nowhere dense). Thus v, (where vy(z) := VZg) is strictly
increasing on [c,d]. Further observe that v, is clearly linear on each
(ci,d;) with the slope n.

Define ¢ = v;' : [0,04(d)] = [c,d]. Denote F := fo g, II :=
vg(P N e d]), and (o, B;) := vg((ci, d;)) for ¢ € Z. Clearly

(5.4) ¢ is linear on each (a;, ;) with the slope 1/n.



(5.5) F(z)=gop(z) for zell

Lemma 2.9 (applied to g on [c, d]) implies that g o ¢ is 1-Lipschitz and
md (go ¢, x) =1 for almost all z € [0,v,(d)]. Consequently, (5.5) gives
that F'is 1-Lipschitz on II.

We claim that F' is pointwise Lipschitz. Using (5.4) and properties
of f, we clearly obtain that F' is pointwise Lipschitz at all points of
Ui(as, Bi) and md (F,z) # 0 for almost all € U;(«a;, 8;). Let ¢ € II
and y € (a;,B;) (for definiteness, say z < y). Using (5.3), (5.4) and
1-Lipschitzness of F' on II, we obtain

1F(y) = F@)l| < 1F(y) = Flew)ll + [[F(e:) = F(z)]]
(5.6) <nle(y) —plai)l +oi -
L<y—a;t+a;—Tc=y—z

Since F' is 1-Lipschitz on II, and (5.6) holds, we obtain that F is
pointwise Lipschitz at all points of II.

Because F = gop on I, md (g o p,z) = 1 for almost all € II and
IIN(0,v4(d)) has no isolated points, we clearly have that md (F,z) =1
for almost all z € TI. Putting h(. q)(z) = ¢(vy(d) - (z — ¢)/(d — ¢)), we
see that (c,d) C §, which is a contradiction.

Thus, P = {0,1} and consequently f := foh is pointwise Lipschitz
on [0,1] with md (f, ) # 0 for almost all z € [0,1]. By Lemma 2.12 (i)
we obtain a homeomorphism h; of [0, 1] onto itself such that f ohy is

metrically differentiable on [0, 1] with md (f o hy,y) # 0 for almost all
y € [0,1]. Now it is clearly sufficient to put h := ho hy. O

Theorem 5.5 easily implies the following theorem.

Theorem 5.6. Let X be a Banach space and f : [0,1] — X.
There exists a homeomorphism h of [0,1] onto itself such that f o h
is differentiable with (f o h)'(z) # 0 for almost every = € [0, 1] if and
only if f is VBG,, is not constant on any interval, and

(5.7) HY(f({x €[0,1]: 7(f,z) does not exist})) = 0.
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Now suppose that the conditions hold. By Theorem 5.5 we obtain
a homeomorphism hy of [0, 1] onto itself such that md (f o hq,-) exists
everywhere in [0, 1] and is nonzero almost everywhere. Let g = f o h;.
Using Lemma 2.8 with (2.3) and (5.7), we obtain that ¢'(z) exists and
is nonzero for almost all z € [0,1]. By Lemma (2.12) (ii) there is a
homeomorphism hy of [0, 1] onto itself such that g o hy is differentiable
everywhere with (g o hy)’ being nonzero almost everywhere. Thus
h = hy o ho is the desired homeomorphism. O

Remark 5.7. Quite similar reasoning (using now also the result of [3]
on almost everywhere differentiability of pointwise Lipschitz mappings)
as in Remark 4.5 yields that the conditions (5.1) and (5.7) can be
removed in Theorems 5.3 and 5.6 if and only if X has the Radon-
Nikodym property.

Theorem 5.8. Let f : [0,1] — X be continuous, and suppose that
7(f, ) exists for all x € [0,1] except a countable set. Then there exists
a homeomorphism h of [0, 1] onto itself such that f oh is differentiable,
and (f o h) (xz) # 0 for almost all z € [0,1].

Proof. 1t is obvious that f is not constant on any interval. It follows
by Lemma 2.16 that f is VBG,, and Theorem 5.6 yields the required
homeomorphism, since (5.7) clearly holds. o

Remark 5.9. (i) Zahorski proved Theorems 5.6 and 5.8 for X = R"
(cf. Remark 5.7) in 1943. Since the manuscript was damaged during the
war, Zahorski found another (much more complicated) proof (published
n [19]) in 1946 (see [19, page 8]).

(ii) For a characterization of those f, which allow a parametrization
having an everywhere nonzero derivative, see [8] (the case X = R")
and [11] (the general case).

6. Parametrizations using differentiable homeomorphisms.
Bruckner [5, pages 89, 90] asked (among other questions) for which
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on [0,1]. In Remarks 4.4 and 5.4 above, we already answered these
three questions. Indeed, in these remarks, we have proved the following
propositions.

Proposition 6.1. Let X be a Banach space, f : [0,1] — X. The
following are equivalent.

(i) There exists a homeomorphism h of [0,1] onto itself such that
f o h is boundedly differentiable.

(ii) There exists a differentiable and Lipschitz homeomorphism h of
[0,1] onto itself such that f o h is boundedly differentiable.

Proposition 6.2. Let X be a Banach space, f : [0,1] — X. The
following are equivalent.

(i) There exists a homeomorphism h of [0,1] onto itself such that
f o h is differentiable.

(ii) There exists a differentiable and Lipschitz homeomorphism h of
[0, 1] onto itself such that f o h is differentiable.

The case of finite summable derivatives follows easily from Proposi-
tion 6.1 because a bounded derivative is certainly summable. Thus, we
can fill the first three empty spaces in the last column of Table 1 in [5,
page 90] (in the same way as it is done in the second column).

Now we observe that the case of continuous differentiability is dif-
ferent, as the following simple lemma shows. (Let us remark that the
classical Pompeiu function (see [15], cf. [5, page 24]) is a strictly in-
creasing differentiable function whose derivative vanishes on a dense
subset of its interval of definition.)

Lemma 6.3. Let f : [0,1] — R be a continuous strictly increasing
function whose derivative (exists and) vanishes on a dense subset of

[0,1]. Then the following hold.

(i) There exists a homeomorphism h of [0,1] onto itself such that
f oh has a continuous derivative on [0, 1].
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Proof. If we denote [c,d] := f([0,1]) and set h(z) = f~1(c+z(d—c)),
then f o h is linear on [0, 1].

To prove (ii), suppose that such h is given. Since f o h is strictly
monotone and (f o h)’ is continuous, there exists an interval (a,b) C
(0,1) such that (f o h)'(z) # 0 for each = € (a,b). Denote (a,f) :=
h((a,b)), choose z € (a,B) with f’(z) = 0 and put w := h71(2).
Since h is pointwise Lipschitz, clearly (f o h)'(w) = 0, and that is
a contradiction. O

Finally note that we know no (interesting) characterization of those
f:[0,1] — R for which there exists a differentiable homeomorphism A
of [0, 1] onto itself such that f o h has a continuous derivative on [0, 1].

7. Almost everywhere differentiability. Bari [2, pages 637-640)]
proved that for each continuous f : [0,1] — R there exists a homeomor-
phism h of [0, 1] onto itself such that (foh)’(z) = 0 almost everywhere.
The same result for continuous f : [0,1] — R"™ was (independently)
mentioned without a proof by Tolstov [17, page 152]. Below, we present
a simple proof which provides a theorem giving a generalization and
improvement of these results.

Our theorem is an easy consequence of the following lemma.

Lemma 7.1. Let w : [0,00] — [0,00] be nondecreasing, w(0) = 0,
lim; 04 w(t) = 0 and let A C [0,1] be a first category set. Then there

exists a nonatomic Radon measure on R such that suppp = [0,1],
p(R) > 1 and

—1 t
(7.1) lim wip(@ =tz +1))) — 0 for each z € A.

t—0+ t

Proof. Let (F,)2° ; be a sequence of closed nowhere dense subsets of
[0,1] such that A C UpenFn.
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Let ri, kK € N, be all rational numbers from (0,1). Now we can
clearly choose sets C), (n € N) such that each C), is homeomorphic to
the Cantor set and

(7.2) Cr C ((re = 1/k,re +1/k) 0 (0, 1))\ | Fu.

neN

Denote py, 1 := dist (F),,Cx) > 0. Now, for each k € N, choose
such that
(7.3)
Ui is a nonzero nonatomic Radon measure on R with supp ux C Cg,

pr(R) < 27%8, foreach k>2 and

7.5
(75) 1§p<1+max{(pn’k)_1:1§n<k},

and put p := Y, . pk- Clearly p is a nonatomic Radon measure with
1< p(R) < 1+ a; and (7.2) clearly implies supp p = [0, 1].

To prove (7.1), consider an arbitrary z € A. Choose n € N with
z € F, and find py € N such that py > (pn )" for each 1 < k < n.
Denote V, :={y € R: (p+1)~! < dist (y,F,,) < p~'} and consider an
arbitrary integer p > po.

By (7.3) and the choice of py clearly px(V,) =0 for each 1 < k < n.
If k > n, then ug(V,) < 27%3,. Indeed, if p < (p,k)~! then it follows
by (7.5) and if p > (pn k)", then uk(V,) =0 by (7.3). Thus we have

oo

(7.6) p(Ve) =D (V) < 27%6, < Bp.
k=2

k=2 =

Now for each 0 < t < (pg)~! consider p € N for which (p+1)7! <t <
p~! (clearly p > pg). By (7.6) we obtain

plle — oz +1) <3 u(vy) < 36 < oy,
Jj=p Jj=p
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Theorem 7.2. Let X be a normed linear space, f : [0,1] — X
continuous and A C [0,1] a first category set. Then there exists a
homeomorphism h of [0,1] onto itself such that (f o h)' (z) = 0 for all
x € A.

Proof. Let w be the modulus of continuity of f, and let p be
a measure which corresponds to w by Lemma 7.1. Denote h(z) =
(w(R))"1- u((0,z)), z € [0,1]. Then h is clearly a homeomorphism of
[0,1] onto itself. For each € A and ¢t # 0 with 2+t € [0, 1], we obtain
(using u(R) > 1)

1f(h(z +1)) = f(h(2))]| < w(lh(z +1) = h(2)]) < w(p((z - [t, 2 +[t]))),

and thus (f o h)'(z) = 0 follows from (7.1). o

Since there exists a residual set of Hausdorff dimension zero, we
obtain the following improvement of Bari’s result mentioned at the
beginning of this section.

Corollary 7.3. Let X be a normed linear space and f : [0,1] — X be
continuous. Then there exists a homeomorphism h of [0,1] onto itself
such that (f o h)'(z) = 0 for all x € [0,1] except those belonging to a
set of Hausdorff dimension zero.

Remark 7.4. 1t is easy to show that, in Theorem 7.2, the assumption
that A is of the first category cannot be relaxed. Indeed, if f o h is
differentiable at all points of a second category set, then (proceeding as
in the proof of Lemma 2.13) we obtain that f o h is Lipschitz on some
interval and consequently f has bounded variation on some interval.
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