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ABSTRACT. Intuitively obvious theorems which are hard
to prove are nothing new in topology. The most celebrated
case is certainly the Jordan curve theorem. For pedagogical
reasons elementary proofs of such theorems never become
obsolete. During their work with students of mathematics the
following problem has forced itself on the authors of the paper:
to prove in a reasonably elementary fashion that an open
Jordan curve with its endpoints on a closed Jordan curve K,
but otherwise located in the bounded part, divides the closure
of the bounded part into two parts. In this paper we take the
Jordan curve theorem (JCT) for granted and then prove, in
a careful, elementary way, the related fact. Unfortunately, it
seems that, even given the JCT, there is still a whole lot of
work to do. But there are shortcuts. For instance, we do not
need to consider the problem of approximating a general curve
by polygons, or the delicate limit questions arising when going
back from the easy polygon case to the general case.

1. Introduction. The Jordan curve theorem (JCT) claims that a
simple closed curve in a plane divides the plane (excluding the points
of the curve K itself) into two regions in the sense that any broken line
(curve consisting of connected line segments) connecting two points
from different regions intersects the curve, and for any two points from
the same region there exists a broken line connecting them which does
not intersect the curve. Exactly one of these regions is bounded and
called the interior; the other one is called the exterior of the curve. A
(bounded) figure ® determined by a simple closed curve K is usually
defined as the union of the curve I and its interior. Using the fact
that the curve K is the boundary of each of its regions, proved in [1],
one readily obtains that the interior and the boundary of ®, denoted
by In (®) and Bd (®), coincide with the interior of K and the curve K
itself, respectively.
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FIGURE 1. The simple open curve K* divides the figure ® into the figures ®; and
Ds.

If we denote by A and B two points on the curve K and by K* a
simple open curve connecting points A and B which is, excluding its
end-points, entirely situated within the interior of I, then we obtain
two new simple closed curves, each of them formed by K£* and one of
the two arcs of I with end-points in A and B, Figure 1. Therefore, we
obtain two new figures, say ®; and ®,. The fact that the figure ® is
divided into figures ®; and ®2, so that &, UPy; = & and ¢, NP, = ¥,
is intuitively obvious, but it is not a trivial corollary of the JCT.

The Jordan curve theorem itself (and its generalizations) can be
proved using homology theory [2, 3], but the proof can also be carried
out in a reasonably elementary fashion [1, 4, 5]. The theorem described
above, can be derived using homology theory [2], too. The aim of this
work is to present a direct and elementary proof of this statement. Here
is a simple and elementary argument in the spirit of the Filippov proof
[1].

Before we proceed any further, it would be well to adopt some
definitions and notations.

Definition 1. Let m be a ray (or a line) and £ a broken line (open
or closed) in the plane intersecting m. A point or a side of the broken
line £ lying on m is said to be a proper point (side) of the intersection
in each of the following cases:

1) it is a point belonging to a segment of £ whose end-points lie on
opposite sides of m, or

2) it is a vertex of £ whose neighboring vertices on £ lie on opposite
sides of m, or
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FIGURE 2. The proper points and proper sides of the intersection of £ and m are
P, Q, L11 and [L3L4].

3) it is a side of £ whose adjacent sides (excluding the common points)
lie on opposite sides of m.

In Figure 2 the points P, @@ and Lq; are the proper points of
intersection of £L = LyLo---Li3L, and the line m, but the points L3,
Ly, Lg, Lg, R and Lg are not. Also, the segment [L3L4] is a proper
side of this intersection, but the segment [LgLy]| is not.

Besides the notation In(®) and Bd(®) for the interior and the
boundary of a given set ®, we use also the notation Ex (®) and Cp (®)

for the exterior and the complement of ®. The neighborhood of a

point A and radius § is N(A4,d) e {X | d(A,X) < 0}, where d(A, X)

denotes the Euclidean distance between two points. The distance from

a point X to a set ¢ (or between two sets 1 and 2) is defined by

d(X,p) € inf{d(X,Y) | Y € ¢} (dlp1,2) € mf{d(X,Y) | X €

p1 A Y € (pg})

For a given coordinate system Ozy, we denote by r*(Z) and r~(Z)
the half-lines extending from Z in the positive and negative directions
of the y-axis, respectively. Let £ be a broken line and Z a point which
does not belong to £. Then, n(Z, L) denotes the number of all proper
points and proper sides of the intersection of £ and r*(Z). In the case
of self-crossing of the broken line L, i.e., if the broken line is not simple,



1418 BODROZA-PANTIC, DOROSLOVACKI AND DOROSLOVACKI

we are counting each proper point (side) of intersection according to
its multiplicity.

Now we can define a function, with domain in the set of all points of
the plane excluding the points of £, by

0 for n(Z,L) even ,

N(Z,£) = { 1 for n(Z, L) odd.

We now invoke a lemma used in the Filippov proof [1].

Lemma 1. Let L : L1Ly---L, and M : MMy---M,, be two
disjoint broken lines, not necessarily simple, in the plane Ozxy. If the
broken line L is closed or M lies entirely between the vertical lines
(lines parallel to the y-axis) through the points Ly and L, respectively,
then N(Z, L) is constant, for all Z € M.

Proof. Denote by p1,ps, ... ,pr (kK < n+m) all possible vertical lines
passing through the vertices of LUM in such a way that p; lies between
pi—1 and p;41 (2 < i < k—1). On every segment of the broken line
M between two adjacent vertical lines, including the end points, the
function N(Z, L) is constant. To prove it, consider one such segment
with end-points Zy and Z; (Zy € pi, Z1 € pi+1) and an arbitrary
point Z between Zy and Z;. For every proper point (or proper side) of
the intersection of £ and the ray r*(Zy), there is exactly one segment
of L entirely or in part situated within the strip between the lines p;
and p;41 which contains (adjoins) this proper point (proper side) of
the intersection of £ and r*(Zy). The intersection of this segment and
the ray r*(Z) is a proper point of intersection (first three pictures in
Figure 3), too. Similarly, for every point (or side) of £ on the ray
r*(Zo) which is not a proper point (side) of the intersection, there
is no segment or there are exactly two segments entirely or in part
situated within the strip between the lines p; and p;;; and incident
on this point (or this segment) (the last two pictures in Figure 3). In
the second case, the ray r*(Z) crosses these two segments of £ in two
proper points of intersection. From above, we see that the numbers
n(Zy, L) and n(Z, L) are of the same parity, i.e., N(Zy, L) = N(Z, L).
Similarly, we can obtain that N(Z1, L) = N(Z, L) for every Z € [ZyZ].
Since the function N(Z, £) is constant on any two adjacent segments
of M, it is constant for all Z € M. a
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FIGURE 3. The numbers n(Zy, L) and n(Z, L) are of the same parity.

Besides Lemma 1, the Filippov proof of the JCT [1] consists of the
following steps:

L. The proof that a simple closed curve K in a plane divides the plane
into at least two regions. (The author chooses a y-axis not intersecting
the curve K and constructs a point C' ¢ K which cannot be connected to
the origin O (from the y-axis) by any broken line without intersecting
the curve K.)

II. The proof that a simple open curve in a plane cannot divide the
plane (i.e any two points not belonging to the curve can be connected
by a broken line without intersecting that curve).

III. The proof that the simple closed curve K is a boundary of each
of its regions.

IV. The proof that a simple closed curve K in a plane divides the
plane into exactly two regions. (From the assumption that points B, C
belong to the exterior of an arbitrary region of I the author proves
that the points B and C' can be connected by a broken line without
intersecting the curve K.)

For the purpose of completing the proof of the theorem in question
we invoke the proof of step III in the Filippov proof of the JCT.

Lemma 2. A simple closed curve K is the boundary of each of its
regions.

Proof. Let O1,03,... be the regions determined by XK. Regions
are open sets and In(0;) = O; C Ex(0y), j # 3 4,5 = 1,2,....
Consequently, Uj=1 2 .0, C In(O;)UEx (0;), which implies Bd (O;) C
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IC, for all i = 1,2,.... To prove the opposite inclusion £ C Bd (0;),
for all ¢ = 1,2,..., let us assume that there exist a region O; and
a point A € K\ Bd(O;). There is a neighborhood N(4,¢€) (¢ > 0)
of the point A for which N(A4,¢) NBd(O;) = @. (The boundary of
an arbitrary set is closed.) If we remove an arc of K lying in the
neighborhood and containing the point A, we obtain a simple open
curve which contains the whole set Bd (O;). Now, we can find points
X €In(0;) and Y € Ex (O;) which can be connected by a broken line
without intersecting that open curve. Contradiction. O

2. Proof of the theorem. Now, we can state the main theorem:

Theorem 1. Let A and B be two points from the boundary of a
bounded plane figure ® determined by a simple closed curve K = Bd (®),
and let K1 and Ko be the arcs of K determined by the points A and
B. Let K* be a simple open curve connecting A and B which is,
excluding these two points, situated entirely in the interior of K. If
we denote by ®1 and Py the figures determined by the simple closed
curves K' = K1 UK* and K" = Ko UK*, respectively, then the following
equations hold

(2) P =3 UP,y
(3) ;NP =K.

Proof. This proof is involved, since we find it necessary to divide it
into more cases as follows. We begin by choosing a coordinate system
with the y-axis (and thus the origin O) outside a disk covering the
curve K. This disk also covers the region In(®), and consequently,
curves K' and K", and their interiors In(®;) and In(®3). Thus,
O € Ex(®) NEx (®1) NEx (®s).

Step 1. Instead of proving that &; U ®; C &, we will prove its
contrapositive

(4) Ex (@) C Ex (&;) N Ex (®2).

Consider an arbitrary point X from the set Ex (®) and the broken line
connecting X and O which does not intersect the curve K. Since this
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broken line lies entirely in the set Ex (®), it cannot meet the curve
K* (K* C ®). Consequently, X belongs to the same region as O with
respect to both the curve K’ and the curve K", i.e., it is in both Ex ()
and Ez(®,).

Step I1. To prove that ®; N &5 = K*, it is sufficient to prove that

(5) Bd ((1)2) NIn ((1)1) = @,
(and analogously that Bd (®1) NIn (®2) = &, as well), and that
(6) In(@l)ﬂIn(Qz) = .

IT a) Suppose that the relation (5) is not true, i.e., that there exists
a point Y on the curve Ko, different from both A and B, which belongs
to the set In(®;). Since this point does not belong to the curve
K’ = K1 UK*, there is a neighborhood of Y, say NV (Y, d) (6 > 0), which
is disjoint from K’ (6 can be chosen to be less than the distance of the
point Y from K’). Observe that all points of N(Y, ) are in the same
region with respect to K', i.e., in In (®;). But, since Y is a boundary
point of @, every neighborhood of Y, in particular the neighborhood
N(Y,9), intersects Cp (®) = Ex (®) (Lemma 2). From (4) we obtain
that AV (Y, ) NEx (®1) # @. The contradiction just reached shows that
our assumption must be false and hence that the relation (5) holds.

IT b) Suppose that the relation (6) is not true, i.e., that there exists
a point Z € In(®;) NIn(®P3). Consider an arbitrary point S on the
curve Ky distinct from both A and B. Since the point S belongs
to Ex (®2) (just proved in II a), there exists a neighborhood NS, §)
which lies entirely within Ex (®2). In this neighborhood we can find a
point 7" from In (®;) because S € Bd(®;) (Lemma 2). Now, we can
connect the points Z and T, two points from the set In(®;), with a
broken line which will lie entirely in In (®;) (Figure 4). Observe that
this broken line can intersect none of the curves Ky , Ko, K* because
KiUK* = Bd(®) and K2 NIn(®;) = @. Thus, the points Z and
T belong to the same region with respect to the figure ®5, too. But
Z € In(®2) and T € N (S,0) C Ex(®3), a contradiction.

The last contradiction completes the proof for (3).

Step III. In the remainder of the proof we shall establish the relation
® C ®; U Py by proving its contrapositive Ex(®;) N Ex(®3) C
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FIGURE 4. The intersection of ®; and ®3 is just the curve K£*.

Ex (®). For this purpose it suffices to prove that the intersection
Ex (®1)NEx (®2)NIn (®) is the empty set. Again, assume the opposite.
Let there exist a point X such that

(7) X € Ex(®1) NEx (32) NIn(P).

Let L and R be points of the curve K with the smallest and the largest
first coordinates, respectively. (If there exists more than one point with
the property of having the smallest (or the largest) first coordinate, we
can choose any of them.) Further, let ! and r be the vertical lines
passing through the points L and R, respectively, and m a line parallel
to them and situated between them (in the strip determined by [ and
). The points L and R divide K into two curves K3 and K4. Both of
them intersect the line m because the points L and R lie on opposite
sides of m. Let C be a point of I N m with the highest value of the
second coordinate. Without loss of generality, assume that the point C'
belongs to K3, Figure 5. Denote by D the point of intersection 3 Nm
with the lowest second coordinate (the case of coincidence of the points
C and D is not excluded) and by K5 the arc of K3 determined by points
C and D. Now, choose a point E on the ray r— (D), different from D,
situated within a neighborhood of D which is disjoint with 4.

From the fact that the points X and O both belong to the sets Ex (@)
and Ex (®3), we can introduce two broken lines M; and My connecting
these points and for which

(8) MiNK' = M;N(KyUKY)
(9) MonN K" = Myn (Ka UKY)

9,
@.

Note that the point E belongs neither to 3 nor /4. Since K3UK, = K,
we obtain that E belongs either to In(®) or Ex(®). In both cases
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Figure 5. There is no point from the set Ex (®1) N Ex (®2) N1In (®).

1423

we will achieve the contradiction simultaneously. Namely, in the case
E € In(®) we denote by M a broken line connecting F and X
(E, X € In(®)) which does not intersect I; in the case E € Ex (®), we
denote by M a broken line connecting O and E (O, E € Ex (®)) which

does not intersect /C.

Since the y-axis does not cross the curve K, the distance d(r*(0), K)

is a positive number, i.e.,

def

(10) c0 = d(rt(0),K) > 0.

From (8) and (9) we have

(11) e (M, K) = d(Mi, K1 UK*) >0
and

(12) 2 &AMy, K") = d(Ma, Ko UK®) > 0.

From the choice of points D and FE, we get

(13) es X d(r(E),K3) > 0
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and

(14) es & A([ED]UKs Urt(C),K4) > 0.

The broken line M and the curve K are disjoint (for both the cases
E €In(®) and F € Ex (®)), and so we have

(15) s € d(M,K) > 0.

We introduce now a closed broken line £ with vertices on the curve IC,
including the points A, B, L, R, C and D, and with segments (sides)
of lengths less than

« def .
€" = min(eg,€1,€2,€3,€4,€5).

Similarly, we introduce also a broken line £* connecting the points A
and B with vertices on the curve * and with segments of lengths less
than €*. By L1, L2, L3, L4 and L5, we denote the open broken line
formed by the sides of £ whose vertices all lie on K1, K2, K3, K4 and
Ks, respectively. Since the distance of any point of £ from the curve
K is less than €*/2, and the same is true for £* and £*, from (11) and
(12) it follows that

6]

MiNn(LLULr)
and
MaN(LULY) =@.
From the last two relations, using Lemma 1 twice, we obtain
N(O,L,UL*)=N(X,L,ULY)
and
N(O,L,UL*)=N(X,LyULY).
Using this we obtain that

N(O,L)=N(0,L1UL)=N(O,L1UL*)DN(O, LU L")
=N(X,LiULY) D N(X,LULY)
=N(X,L1ULs) =N(X,L),
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where @ denotes the addition modulo 2. Now, we obtain from above
and from (10)

(16) N(X,L)=N(O,L) =0.

Using (15) and the fact that the distance of any point of £ from the
curve K is less than ¢*/2 we achieve M N L = @. By applying the
lemma to the broken lines M and £, and taking into account (16), we
obtain (in both cases E € In(®) and E € Ex (®))

(17) N(E, L) =0.

By similar considerations, we obtain from (13) and (14)

(18) T‘_(E) NL3 =
and
(19) ([EDJULsUrt(C))NLy = 2.

Since the ray r~(F) and the broken line L3 are disjoint, the number
n(E, Ls) is equal to the number of all proper points and proper sides
of intersection of £3 and the line m. This latter number is odd because
the end-points of the broken line £3 are on opposite sides of m and in
going from one end-point of L3 to the other one we change the side of
m as many times as the number of all proper points and proper sides
of intersection of L3 and the line m. Consequently,

(20) N(E, L3) = 1.

Further, applying Lemma 1 to the broken lines [ED]U L5 and £4 and
using (19), we obtain

(21) N(E, L4) = N(C, L4) = 0.
Finally, relation (20) and (21) give us
N(E,L)=N(E,L3ULy) =N(E,L3)®N(E,Ly) =100=1,

which is in contradiction with (17). u]
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