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GENERALIZED PRESCRIBED
SCALAR CURVATURE TYPE EQUATION
ON A COMPACT MANIFOLD
OF NEGATIVE SCALAR CURVATURE

MOHAMMED BENALILI AND YOUSSEF MALIKI

ABSTRACT. This paper deals with the problem of the so-
called generalized prescribed scalar curvature type equation
on a compact Riemannian manifold with negative scalar cur-
vature. We give the existence of a positive solution which is
the subject of the first theorem. In the second one, we prove
the multiplicity of solutions of the subcritical quasilinear el-
liptic equation.

1. Introduction. Let (M,g) be a Riemannian n-manifold. For
n >3 if ¢ = ut/"Ag u c C®°(M), u > 0, on M, is a metric
conformal to g, the scalar curvatures R and R of g and ¢’ respectively
satisfy the equation

n—2 o om—=2 X gy
At iy T oy ™

where 2* = (2n/n — 2) and Aju = —divy(Vu) is the Laplacian of u.

A smooth function f on M will be the scalar curvature of a conformal
metric ¢’ if there exists a function u € C*° (M), u > 0, solution of the
equation

n

—2 _ o271
(1) Agu+ (n = 1)Ru— fu® 7.

Such equation has been intensively studied in the past two decades: as
examples, we can refer to the works of Aubin [1], Bahri-Coron [2],
Escobar-Schoen [4], Hebey [6], Kazdan-Warner [7], Schoen [9] and
Druet [3].
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In the case where R is a negative constant and f is a changing sign
function, Rauzy [8] states the following results:

Letting f be a C*®function on M, we denote by f~ = —inf(f,0),
fT =sup(f,0), H(M) the standard Sobolev space and

A—{uer(M),uZO,u;‘éO such that /fudvg—(]}.
M

Put )
Vul®d

A = it VL 4%

wea [, u?dvug

and
A = +o0 if A=¢.

Theorem 1’ (Critical Case). There is a constant C > 0 which
depends only on f’/fM fdvg such that if f € C®on M fulfills the
following conditions:

(1) [R] < (4(n = 1))/(n = 2)As

(2" (supf*/fM [ dvy) < C.

Equation (1) admits a positive solution. (R is a negative constant
and f is a changing sign function).

Theorem 2’ (Subcritical Case). For every f C™ function on M,
there exists a constant C > 0 which depends only on f’/(fM [ dvg)
such that if f satisfies the following conditions

(1") IR < (4(n —1)/n — 2Xf)

(27) sup £+ /([ §~dvg) < C

(3") sup f > 0.

Then the equation Aju + Ru = fu?™', q¢ € ]2,2*[ (R is strictly
negative and f is a changing sign function) admits two nontrivial
distinct solutions.

In this work we try to extend the results cited above to the quasilinear
elliptic equation. To achieve this task, we let (M,g) be a compact
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Riemannian manifold of dimension n > 3, p € (1,n) and let HY (M)
be the Sobolev space defined as the subspace of functions from L? (M)
whose gradients are also in LP(M) endowed with the norm [|ul|, , =
Vull, + ||ull,,, where ||.||, denotes the norm in LP(M).

We consider the following generalization of equation (1)
(2) Apu+auP™t = fuP

where p* = np/(n—p) and Apu = —div(|Vul’">Vu) is the p-
Laplacian operator on the manifold M, u € HY(M) is a positive
function, f is a changing sign C'*® function on M and a is a negative
constant. Following the terminology used in [3], we refer to equation
(2) as the generalized scalar curvature type equation. Merely speaking,
we state

Theorem 1 (Critical Case). There is a constant C > 0 which
depends only on f~ /([ f~dvg) such that if f € C™ on M fulfills the
following conditions:

(i) lal < Af
(ii) sup fH/([ fdvy) < C
(iii) sup f > 0.

Then equation (2) admits a positive solution of class C* (M), for some
a € (0,1).

Theorem 2 (Subcritical Case). For every C™ function f on M,
there exists a constant C' > 0 which depends only on [~ /([ f~dvg)
such that if f satisfies the following conditions:

(i) lal < Ay
(ii) (sup fH/[ f~dvy) < C
(iii) sup f > 0.
Then the equation
(3) Apu+auPt = ful™t g €lp,p*|

admits two nontrivial distinct positive solutions of class C»*(M), for
some o € (0,1).
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2. The critical case. In this section we are going to prove Theo-
rem 1. For this task we use the following theorem from minimization
theory.

Theorem 3. Let V be a reflevive Banach space, and let X be a
weakly closed subset of V. Let f: X — RU{+o0} be such that

1. f is coercive

2. f is weakly lower semi-continuous, that is, u, € X, u, — u implies
f(w) < liminf f(uy,).
Then

a) B=infyex f > —00

b) There exists xg € X such that f(xo) = 5.

If f is a Gateaux differentiable in zg, then dg f(z,) = 0.

Since it is possible to solve equation (2) for f or af where a is a
constant, we consider the functional

Fyfa) = [Vulf + alull) - [ futdey, qelpp'l
M
and, first, we show that Fj is weakly lower semi-continuous. Letting
Buyan(0,p) = {u e HY(M) s w20, |ul,, < p}, we state

Lemma 1. There exists p > 0 such that Fp- is weakly lower semi-

continuous on the closed ball By (ar)(0, p).

Proof. Let (u;) C HY(M) with u; — w weakly in H{ (M) and
|ujll; , < p, up to a subsequence we have

(4) uj —»u in L*(M) for s<p”
(5) [y p < liminf fJugll, ,
(6) uj(z) = u(x) fora.e. xe€ M.

It suffices to show that

(7) / \Vu,;|P dug, 7/ |Vul? dv, 7/ f(ug-’* fup*)dvg > o(1).
M M M
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Thanks to the Bresis-Lieb lemma, we have

[ 1V, = [ vul dv, = s = ulf, + o)
and
/M fluf — uP") dvy = /M fluj —ul” dvg + o(1).

On the other hand, the Sobolev inequality gives us
/M fluj —ul’ dv, < S}\ldp f(z) max [K (n,p)? + ¢, AP /p llu; — u||11’7p

where ¢ is any positive number and K (n, p) and A are the best constants
in the Sobolev imbedding. So the righthand side of the inequality (7)
is greater or equals to

llu; — “Hip (1 - S}\l/Ip f(z) max [K (n,p)? +¢, A" /p llu; — u||11’7pp>
+o0(1)
> flu; —ullf, <1 — sup f(z) max [K (n,p)’ + ¢, AP /P 20" P
: M

x max(fusly, , ully ) 7) + o(1).

We choose the radius of the ball By (0, p) small enough so that it
satisfies our claim. o

As in [8], we define the quantities

IVl

m D
weA(ma) lully

fima =
with

(8) A(m,q)={ue HY(M)su>0, |ulg =1,

and /M Fuldv, =17 /M Fo dvg}
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forareal n > 0, p < ¢ < p*, and

(9) N — inf w
Fma ™ e drn.q) H“”Z

with

A (n,q) = {u e HY(M) w0, Jufd =1

and/ffuqdvggn/ fdvg}.
M M

The following facts which are proven in [8], for p = 2, remain valid in
the general case p € (1,n): A}, is a decreasing function with respect
to 1, and it is bounded by Af for any fixed n > 0 and Ay, 4 = Xf,n,q’
S0 Afp.q is also a decreasing function with respect to n, and bounded
by Ay, for any fixed n > 0.

Also the following lemmata which are established in [8], for p = 2,
are still valid in the case p € (1,n).

Lemma 2. For any q € |p,p*[, Asnq goes to Xy whenever n goes to
zero.

Lemma 3. Let e > 0. There exists 1, such that for any n < n,,
there is q, such that \¢nq > Ay — €, for any q > qy.

Lemma 4. There exists 0, such that for any n < n,, there is g, such
that for any q > qn, Afn.q > |al.

Denote by K (n,p) and A, as mentioned before, the best constants in
the Sobolev imbedding and € > 0 any fixed real number

Keeping in mind the results given in the above lemmata, we prove
the following

Lemma 5. Suppose that sup,, f+/([ f~dvy) < (nu/8lal), where
p = inf(laf,(6/A + (la] + 6)(K(n, p) +¢)))-

Then for a fixred p > 0, there exists € > 0 and such that for every
u € HY (M) with ||u||1,p = p, we have Fy(u) > &||ul1,, where g € |p,p*].
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Proof. We adapt to our setting the proof in [8]. Let u € HY (M) with
|ull = k and k1=l > 2]a|/n [ £~ dv,.

Putting
Golw) = [ Vull? +alulls + /M Futdv,,
we get
Goy(w) > allull? + / Futdv,.
M
So if
/ fTuldvg = nk:/ £~ dv,
M M
then
Gy(w) > alull” + nk / - dv,
M
> akP/1 +77k/ fdv,
(10) "

= kP/1q| [l + 77fM|fdvg kl(P/Q):|
a

> kP/a la| .

And in the case [, f-u?dvy, < nk [,, f~ dvg, by (9), we get

Gu(w) > (s + ) [l + [ futdn,

and by Lemma 3, we can choose 7, and g, such that for every ¢ < n,
and ¢ > ¢, we have § = Ay, ,+a > 0. The lower boundedness of
Gq(u) will be obtained as follows

Galt) 2 8lully+ [ futdn,

] -
=il + 2 (Va4 [ 5utdog - Gy

+ / [ uldv,
M

where §1, d2 are two positive constants such that §; + d2 = 6.
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So

52) 92 2 _
1+ G > 0y ||Jul|E + = Vup+<l+—>/f u? dvy,.
(1+ 2 )Gutw 2 dulully+ 2 1waly+ (142 [ rruras,

Letting 61 = A/(|a|(K(n,p)P +¢€))d2 where K(n,p) and A are, as
mentioned before, the best constants in the Sobolev imbedding and
¢ > 0 is any fixed real number. We have

(1 + |5—2|>Gq(u)

> iy (K )+ IVl + Al
«(+ |>/ Frutde
> L p e
then we obtain
Gylu) > d kP/a.

~ A+ (Ja| +6) (K (n,p)* +¢)

Letting 1 = inf(|al, (6/A + (Ja] + §)(K (n,p)? +¢€))), we get

Fiw) 2 Gy(w) ~ [ frutds,
M

> pkP/1 — <sup f*) k
M

— lukp/q +gpla B sup £+ ) k1~ @/0
2 2 M
1

> Z kP4

> Su

provided that k < (u/2sup,, f)9/(a-P),

Now, since by assumption we have assumed that (sup,, f*/[ f~dv,)
< (nu/8tlal) (C = (8u/nlal)), it follows that F,(u) > (1/2)ukP/?
provided that k < (2|a|/sup,, £+))%/(@P27“™  Moreover, if we let
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q — p*, u does not go to zero, since by Lemma 4 we can choose 7,
such that for any n < 7, there exists g, such that for every ¢ > gy,
§ = a+Ayq > 0and Fpe(u) = limg,p Fy(u) > (1/2)uk™/ (m=P)
provided that k& < 2%/P(2|a|/n [ f~)"/P. And since k is chosen in the
beginning of the proof as k > (2|a|/n [ f~)%/(4=P) that means that, at
the limit, k& belongs to the interval

- |(2 )”“’ e )"“’ |
nff=) nff-
Finally, fix p > 0, and let u € HY (M) with |ju||;, = p and & > 0 such
that kn/(n—p) > &1 p; it follows that

1 . 1
Fpe(w) > 36 ully, with €= u&y,

and Lemma 5 is proven. u]

Lemma 6. For each t > 0 small enough, infy,|, < Fy(u) < 0,
q € lp,p*].

In fact, Fy(t) = t*(a vol (M) — 977 [}, f dvg), where vol (M) de-
notes the volume of M, and there is ¢, > 0 small enough such that
inf)j )|, ,<¢ Fy(u) <0 for each t € ]0,¢,[.

2.1 Proof of Theorem 1.

Proof. By Lemmas 1, 5 and 6, there exists ui € Byr () (0, p) such
that Fy(u1) = minj, ), <, Fy(u1) <0, for p small enough and it has to
be |lulj1,p < p, otherwise we get by Lemma 5 F,(u1) > 0. In particular,
uy is a weak solution of equation(2).

It remains to show that the solution of equation (2) is regular and
positive. To do so, we use the following theorems adapted by Druet [3]
for the context of manifolds from those of Tolksdorf [10, 11], Guedda-
Veron [5] and Vasquez [12] when dealing with Euclidian context. O

Theorem 4 (C1%-regularity). Let (M, g) be a compact Riemannian
n-manifold, n > 2, p € (1,n), and let h € C°(M x R) be such that, for
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all (z,7) € M x R,
\h(z,r)| < C|rP" " +D

where C' and D are positive constants.
If u € HY(M) is a solution of Apu+ h(z,u) =0, then u € CH*(M).

Theorem 5 (Strong maximum principle). Let (M, g) be a compact
Riemannian n-manifold, p € (1,n), and let u € C*(M) be such that

Apu+f(,u)>0 on M,

f such that
f(z,8) < f(z,7) Vee M,VO0<r<s
If (z,8)] < C<K+\r|p_2> ¥ Y(z,r) €M xR, C >0,

where C' and K are positive constants.

If u>0 on M and u does not vanish identically, then u > 0 on M.
3. The subcritical case.

3.1 The first subcritical solution. Letting By 4 = {u € H{ (M), u >
0, |ull§ =k} and pp g = infuep, , Fy(u), we have

Proposition 1. The subcritical equation (3) admits a positive
solution v with Fy(v) < 0.

Proof. Let (uj) C Bg,4 be a minimizing sequence,
].EIJPOO Fy (uj) = pg

so for j large enough,

Fy(uj) < peyg +1,
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IVl < —alluslf; + sup |f («)| lujllg + pig + 1
= —ak4 + ksup |f (z)| + g +1 < 400
M

and
Jus 2 = ko'

then (u;) is bounded in H} (M) and there exists a subsequence still
denoted (u;) which converges weakly to u in H{ (M).

The compactness of the imbedding of HY(M) in LY(M) and the
uniqueness of the weak limit guarantee the existence of subsequence
which converges strongly to w in LY(M).

Then u fulfills
ully = &

/\Vu|p_2 Vu.Vv—i—a/up*lv— %/fuqflv :/Lk,q/uqflv.

The regularity Theorem 4 shows us that « € C%(M) and the strong
maximum principle, Theorem 5, asserts that u > 0.

To show that F,(u) < 0, it suffices to remark that F,(u) < F,(k'/?) =
kP/%(avol (M) —k'~(®/9 [ f), and we choose k small enough such that
F,(k'/9) < 0. Then Fy(u) <0. O

and

3.2 The second subcritical solution. In this section we seek for a
second subcritical solution to the equation (2); to achieve this task we
use

Theorem 6 (The Mountain Pass theorem). Suppose that f €
CY(V),V Banach space. Assume

1. f(0)=0.

2. There exists r > 0 such that f(u) > a >0 for all ||ul]| =r.
3. There exists w € V such that ||u|| > r and f(a) <O.

Then setting

I'={yeC([0,1],V) : 7(0) =0, f(~(1)) <0}
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and

B = ;relg max f(yv(t)

we have > a > 0, there exists a (PS)p sequence and, if (PS)s holds,
B is a critical level for f.

First we show that Fy, ¢ € |p, p*[ satisfies the Palais-Smale condition.

Lemma 7. FEach Palais-Smale sequence for the functional Fy is
bounded.

Proof. We argue by contradiction. Suppose that there exists a
sequence {u;} such that Fy(u;) tends to a finite limit ¢, F,(u;) goes to
zero and u; to infinite in the HY(M)-norm. More explicitly we have
for each v € HY (M)

/M |Vu;|? dvg + a/M uf dvg — /M fufdvg — ¢

and

/ |Vu; P2 (Vuj, Vo) do, +a/
M

uf_lv dvg — g/ fu‘j-_lvdvg —0
M PJm

so for any ¢ > 0 there exists a positive integer N such that for every
j > N we have

‘/M |Vu; [P dug + a/M uf dvg — /M fuf dvg —c

<e

and

<e.

/ |Vuj|pf2 (Vuj, Vo) dvg + a/
M

u?ilvdvg — g/ fu?ilvdvg
M PJm

In the particular case where v = u;, we get

‘/M |Vu; [P dvg + a/M uf dvg — /M fuf dvg —c

<e
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and

(11) /M |Vu;l? du,g +a/ uf dvg — / fuf dvg| <

Then, we obtain

(12) ‘/ \Vu,; P dvg+a/ ufl dvg — qc §p+q5
M M qa—p
and
(13) ‘(q -p) /M fuf dvg — pe| < 2pe.
By Lemma 5, we can choose k to be an L?(M)-norm such that
inf F,(u) > 0.
lull 2=k a(v)

Letting v; = k*/%(u;/||u;||,), we obtain from (12) and (13) that

kp/a

pckP/4 o
> ape
Tlusly”

(q_p)/vaj dvg — [ J”P

Since ||v;|4 is a bounded sequence, it follows that {v;} is bounded in
HY(M). If ||luj]ly goes to infinity, it follows from (11) and (14) that
Fy(v;) tends to zero. And since [|v;|| = k, we have

(14)

inf F,(u) < Fy(v;)

lullg=r
SO
inf F,(u)<0
lulli=F o) <0,

hence a contradiction. Then the sequence {u;} is bounded in HY(M).
Now, since ¢ < p*, the Sobolev injections are compact, so the Palais-
Smale condition is satisfied. o

3.3 Proof of Theorem 2. To prove Theorem 2, we use the Pass
Mountain theorem. By Lemma 5, there exists p > 0 such that
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Fy(u) > nfor any ||ul|y,, = p. Let u € C*(M) such that [, fu?dv, >0
and |[u[| = 1. It follows

: — im 4P P P _ 1q-p q — o
Jim Fy(tu) = lim ¢ | [Vl + ajul? — ¢ /M fu dvg] 50
then there exists t, > 0 with sup,s, Fy(tu) < 0. Put w = t;u with
t1 > p.

Proof. (Theorem 2). Now setting
I'={y e C([0,1], H{(M)) : 7(0) = 0,7(1) = w},

and
= inf F,(v(t
B = inf max Fy (@),

by the Pass-Mountain theorem we have 5 > a > 0, and there exists
a Palais Smale sequence at level 8. Since by Lemma 7, the Palais-
Smale condition at level 3 is a critical level for Fy, then the subcritical
equation admits a solution us € HY(M). By the regularity Theorem 4,
and the Strong maximal principle, Theorem 5, we have uy € C*®(M)
and us > 0 and Proposition 1 completes the proof. a
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