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NEAR CONVEXITY, METRIC CONVEXITY
AND CONVEXITY

FRED RICHMAN

ABSTRACT. It is shown that a subset of a uniformly
convex normed space is nearly convex if and only if its closure
is convex. Also, a normed space satisfying a mild completeness
property is strictly convex if and only if every metrically
convex subset is convex.

1. Classical and constructive mathematics. The arguments in
this paper conform to constructive mathematics in the sense of Errett
Bishop. This means roughly that they do not depend on the general
law of excluded middle. More precisely, the arguments take place in
the context of intuitionistic logic. Arguments in the context of ordinary
logic will be referred to as classical. As intuitionistic logic is a fragment
of ordinary logic, our arguments should be valid from a classical point
of view, although some of the maneuvers to avoid invoking the law of
excluded middle may seem puzzling.

I had intended to write this paper primarily to be read classically,
at least in its positive aspects, allowing constructive mathematicians
to see for themselves that the arguments were constructively valid.
But for those classical mathematicians who want to follow some of the
constructive fine points, I include here (at the suggestion of the referee)
two constructive principles about real numbers that are used instead
of the classical trichotomy, a < b or a = b or a > b, which is not
constructively valid.

• To deny a > b is to affirm a ≤ b. Note that “a ≤ b” is not an
abbreviation for “a < b or a = b”; in fact, it is defined to be the
negation of a > b. Moreover, a �= b is defined to be a < b or a > b (a
positive notion), and a = b is the denial of a �= b.

• If a < b, then for any c, either a < c or c < b. This is sometimes
called cotransitivity. The argument for it is that if you have close
enough rational approximations to a, b, and c, you can figure out either
that a < c holds or that c < b holds.
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2. Strict and uniform convexity. We will be working in real
normed spaces, denoting the closed ball of radius r centered at x by
Br(x).

Following [1] we say that a normed space (or its norm) is uniformly
convex if for each ε > 0 there exists q < 1 so that if u and v are unit
vectors, and ‖u − v‖ ≥ ε, then ‖(u + v)/2‖ ≤ q. The spaces Lp with
1 < p < ∞ are uniformly convex [1, VII.3.22]. However, R2 equipped
with either of the norms ‖(x, y)‖ = |x|+|y| or ‖(x, y)‖ = sup (|x| , |y|) is
not. It will be convenient, see Lemma 3, to allow u and v to be arbitrary
vectors in B1(0) and to state the defining property of uniform convexity
in terms of Br(0) with r > 0.

Lemma 1. Let V be a uniformly convex normed space. For all ε > 0
there exists q < 1 such that if u and v are in Br(0), for some r > 0,
and ‖u − v‖ ≥ rε, then ‖(u + v)/2‖ ≤ qr.

Proof. It suffices to prove the lemma for r = 1. Given ε, choose q′ as in
the definition of uniformly convex and let q = (q′ +2)/3, so q′ = 3q−2.
If inf (‖u‖ , ‖v‖) ≤ 2q − 1, then ‖(u + v) /2‖ ≤ (1 + (2q − 1)) /2 = q. If
inf (‖u‖ , ‖v‖) ≥ 2q − 1, then
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so ‖(u + v) /2‖ ≤ 2 − 2q + q′ = q because u/ ‖u‖ and v/ ‖v‖ are unit
vectors. So, in either case, ‖(u + v)/2‖ ≤ q.

For those worried about the constructivity of separating into the two
cases, inf (‖u‖ , ‖v‖) ≤ 2q−1 and inf (‖u‖ , ‖v‖) ≥ 2q−1, note that the
conclusion ‖(u + v)/2‖ ≤ q is the denial of ‖(u + v)/2‖ > q, and use
the theorem of intuitionistic propositional logic that
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((P ∨ ¬P ) =⇒ ¬Q) =⇒ ¬Q.

(Can we somehow take q = q′ in this proof?)

We will also consider a weaker condition: A normed space is strictly
convex if the convex hull of {x, y} is contained in the boundary of
B1(0) only when x = y. Classically this is equivalent to requiring that
‖(x + y) /2‖ < 1 whenever x and y are distinct unit vectors. For finite-
dimensional spaces, strict convexity is classically equivalent to uniform
convexity because the set U of unit vectors is compact, as is the subset
Sε = {(x, y) ∈ U × U : ‖x − y‖ ≥ ε}, so the function ‖(x + y)/2‖ on a
nonempty Sε achieves its supremum q, whence q < 1.

The condition that ‖(x + y) /2‖ < 1 whenever x and y are distinct
unit vectors is stronger, from a constructive point of view, than what
we have called “strict convexity.” One has a choice here of calling this
condition “strict convexity” and the other “weak strict convexity,” or
calling this one “strong strict convexity.” Although the stronger notion
has a better feel to it, because it is more positive, I suspect that it takes
a back seat to uniform convexity. In any case, it plays no role in this
paper, so I’m not going to call it anything.

Uniform convexity is stronger than strict convexity, even classically.
Let Vn be R2 with the �n-norm ‖(x, y)‖n =

√
[n]|x|n + |y|n and equip

the (algebraic) direct sum V of the Vn with the norm ‖(v1, v2, . . . )‖ =∑∞
i=1 ‖vn‖n. Then V is strictly convex but not uniformly convex.

Uniform convexity is constructively stronger than strict convexity
even for R2. To establish that, we will show that the equivalence
of these two notions implies Markov’s principle: if a binary sequence
cannot be all zeros, then it must contain a one.

Theorem 2. If every strictly convex norm on R2 is uniformly
convex, then Markov’s principle holds.

Proof. Let an be an increasing binary sequence that can’t be all zeros,
and equip V = R2 with the norm

‖(x, y)‖ = lim bn



1308 F. RICHMAN

where bn is defined inductively as

bn = ‖(x, y)‖n = (|x|n + |y|n)1/n if an = 0
bn = bn−1 if an = 1.

The limit exists because (|x|n + |y|n)1/n converges to sup (|x| , |y|), so
forms a Cauchy sequence, whence bn is also a Cauchy sequence.

To see that V is strictly convex, suppose the convex hull of {u, v} is
contained in the boundary of the unit ball. If an = 1 for some n, then
u = v because the norms ‖(x, y)‖n are strictly convex. So if u �= v,
then an = 0 for all n, a contradiction.

Now suppose V is uniformly convex. Then there exists q < 1 so that
if u and v are unit vectors with ‖u − v‖ ≥ 1, then ‖(u + v)/2‖ ≤ q.
Let u = (1, 1)/ ‖(1, 1)‖ and v = (1,−1)/ ‖(1,−1)‖. Then u − v =
(0, 2)/ ‖(1, 1)‖ and ‖(1, 1)‖ ≤ 2 so ‖u − v‖ ≥ 1. Now (u + v)/2 =
(1, 0)/ ‖(1, 1)‖ so ‖(u + v) /2‖ = 1/ ‖(1, 1)‖ ≤ q whence ‖(1, 1)‖ ≥ 1/q.
So if an = 0, then 21/n ≥ 1/q. This puts an upper limit on n such that
an = 0, so we can find n such that an = 1.

3. Near convexity. In [2], Mandelkern defined a subset S of a
metric space to be nearly convex if, for each pair of elements x, y ∈ S,
and positive real numbers λ and μ such that d(x, y) < λ + μ, there
exists z ∈ S such that d(x, z) < λ and d(z, y) < μ. Note that near
convexity is a metric notion; it does not refer to any linear structure
the space may have. Convexity, on the other hand, is purely linear; it
makes no reference to a metric. In [3], Schuster gave a simple example
of a closed connected subset of the Euclidean plane that is not nearly
convex. We will show that a subset of a uniformly convex normed space
is nearly convex if and only if its closure is convex. This theorem fails
for the supremum norm on R2.

First we show that, as you pull intersecting balls apart in a uniformly
convex normed space, the diameter of their intersection goes to zero.

Lemma 3. Let V be a uniformly convex normed space. For any
distinct vectors x and y in V , the diameter of Br(x) ∩ Bs(y) goes to
zero as r + s approaches ‖x − y‖.
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Proof. We may assume that r and s are positive because the diameter
of Br(x) ∩Bs(y) is at most 2 inf(r, s). So we may assume that r + s ≤
‖x − y‖+inf(r, s), in which case sup(r, s) = r + s− inf(r, s) ≤ ‖x − y‖.
Given ε > 0, choose q < 1 as in Lemma 1. Then for u and v
in Br(x) ∩ Bs(y), and ‖u − v‖ ≥ ε ‖x − y‖ ≥ ε sup(r, s), we have
‖(u + v) /2 − x‖ ≤ qr and ‖(u + v) /2 − y‖ ≤ qs. It follows that
‖x − y‖ ≤ q(r + s) so

r + s − ‖x − y‖ ≥ (r + s)(1 − q) ≥ ‖x − y‖ (1 − q).

Thus, contrapositively, if r + s − ‖x − y‖ < ‖x − y‖ (1 − q), then
‖u − v‖ ≤ ε ‖x − y‖ for all u and v in Br(x) ∩ Bs(y).

Theorem 4. A subset of a uniformly convex normed space is nearly
convex if and only if its closure is convex.

Proof. Let S be the subset and S its closure. Suppose that S is
convex, that x, y ∈ S, and that λ and μ are positive real numbers such
that d(x, y) < λ + μ. Define

z′ =
μ

λ + μ
x +

λ

λ + μ
y.

Then z′ ∈ S because S is convex. Moreover

d(x, z′) =
λ

λ + μ
d(x, y)

and

d(z′, y) =
μ

λ + μ
d(x, y).

Choose z ∈ S such that

d(z, z′) < min
(

λ − λ

λ + μ
d(x, y), μ − μ

λ + μ
d(x, y)

)
.

Then d(x, z) < λ and d(z, y) < μ.

Conversely, suppose that S is nearly convex, and that we are given
x′, y′ ∈ S and nonnegative real numbers α and β such that α + β = 1.
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We must show that αx′ + βy′ ∈ S, that is, for each ε > 0 we must find
z ∈ S such that d(z, αx′ + βy′) < ε. If d(x′, y′) < ε/2, then simply
choose z within ε/2 of x′. So we may assume that d(x′, y′) > 0.

Choose λ = (β+δ)d(x′, y′) and μ = (α+δ)d(x′, y′), where δ is a small
positive number to be determined later. Choose x, y ∈ S such that
d(x, x′), d(y, y′) < δd(x′, y′). Then d(x, y) < (1 + 2δ)d(x′, y′) = λ + μ,
so there exists z ∈ S such that d(z, x) < λ and d(z, y) < μ. This gives
us d(z, x′) < (β + 2δ)d(x′, y′) and d(z, y′) < (α + 2δ)d(x′, y′). That is,
z ∈ Br(x′)∩Bs(y′) where r = (β+2δ)d(x′, y′) and s = (α+2δ)d(x′, y′).
So r + s − d(x′, y′) = 4δd(x′, y′).

Thus by choosing δ sufficiently small, we can assure, by Lemma 3,
that the diameter of Br(x′) ∩ Bs(y′) is less than ε. But αx′ + βy′ and
z are both in Br(x′) ∩ Bs(y′), so d(z, αx′ + βy′) < ε.

Under the supremum norm in the plane, the balls are squares with
sides parallel to the coordinate axes so are not uniformly convex (or
even strictly convex). Indeed, Theorem 4 fails there as the following
example shows.

Example. Consider the norm on the plane given by ‖(x, y)‖ =
sup(|x| , |y|). Let S be the closure of the union of the line segments
from (0, 0) to (1, 1) and from (0, 0) to (1,−1). The distance between
two points in S is the distance between their second coordinates, so S
is isometric to the interval [−1, 1]. That makes S nearly convex. So S
is closed and nearly convex, but not convex.

4. Metric convexity. A subset S of a metric space is metrically
convex if, for each pair of elements x, y ∈ S, and nonnegative real
numbers λ and μ such that d(x, y) = λ+μ, there exists z ∈ S such that
d(x, z) = λ and d(z, y) = μ. Note that metric convexity implies near
convexity by decreasing the given λ and μ in the definition of nearly
convex. The example in the preceding section is metrically convex,
not just nearly convex. Convex subsets of a normed space are clearly
metrically convex. For what normed spaces is the convexity of a subset
determined by its metric structure, that is, when does metric convexity
imply convexity?
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Theorem 5. The first five of the following conditions on a normed
space are equivalent and imply the sixth.

1. Osculating balls. Any two closed balls of radii r1 and r2 whose
centers are a distance r1 + r2 from each other intersect at precisely one
point.

2. Nondegenerate osculating balls. Same as (1) but r1 + r2 > 0.

3. Osculating unit balls. Same as (1) but r1 = r2 = 1.

4. Strict convexity.

5. Strict triangle inequality. If ‖x + y‖ = ‖x‖ + ‖y‖ �= 0, then x
and y are linearly dependent.

6. Any metrically convex subset is convex.

Proof. Clearly (1) implies (2) implies (3). To see that (3) implies
(4), suppose the convex hull of x and y is contained in the boundary of
B1(0). If λ ∈ [0, 1], then

‖λx + (1 − λ)y − (x + y)‖ = ‖−((1 − λ)x + λy)‖ = 1

so the convex hull of {x, y} is contained in the intersection of the balls
B1(0) and B1(x + y). Moreover, setting λ = 1/2 in the displayed
equation we see that ‖x + y‖ = 2, so these are osculating unit balls.
Therefore, x = y.

To see that (4) implies (2), first note that (4) implies the strict
convexity of any ball of positive radius. If {x, y} is contained in the
intersection of the osculating balls, then so is the convex hull H of
{x, y}. If t is in the intersection, and the centers of the balls are c1 and
c2, then from the inequalities

r1 + r2 = ‖c1 − c2‖ ≤ ‖t − c1‖ + ‖t − c2‖ ≤ r1 + r2

it follows that ‖t − ci‖ = ri so H must be contained in the boundary
of each ball. One of the balls has positive radius, so x = y by strict
convexity.

To see that (2) implies (1), suppose ‖c1 − c2‖ = r1 + r2 and {x, y} ⊂
Br1(c1) ∩ Br2(c2). Then ‖x − y‖ ≤ 2 inf(r1, r2) ≤ ‖c1 − c2‖. If x �= y,
then ‖c1 − c2‖ �= 0, so x = y by (2), a contradiction. So x = y.
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To prove that (2) implies (5), suppose ‖x + y‖ = ‖x‖ + ‖y‖ �= 0.
Consider the nondegenerate osculating balls B‖x‖(x) and B‖y‖(−y).
Then 0 is the unique element of their intersection, so 0 is on the line
through x and −y. Thus λx + (λ − 1)y = 0 for some λ, whence x and
y are linearly dependent.

To prove that (5) implies (2), suppose v ∈ Br1(c1)∩Br2(c2) where r1+
r2 = ‖c1 − c2‖ > 0. It suffices to show that v lies on the line through c1

and c2, for then v will be unique. Now ‖c1 − c2‖ = ‖c1 − v‖+ ‖c2 − v‖
so c1 − v and c2 − v are dependent. Write λ(c1 − v) + μ (c2 − v) = 0,
that is, λc1 + μc2 = (λ+ μ)v, with either λ �= 0 or μ �= 0. The problem
is to show that λ + μ �= 0. We may assume that μ �= 0. So

|λ + μ| ‖v‖ = ‖λc1 + μc2‖ = ‖(λ + μ)c1 − μ (c1 − c2)‖
≥ |μ| ‖c1 − c2‖ − |λ + μ| ‖c1‖ .

But μ �= 0, so λ + μ �= 0.

To show that (1) implies (6), suppose that S is metrically convex,
{x, y} ⊂ S, and α ∈ [0, 1]. Let λ = α ‖x − y‖ and μ = (1 − α) ‖x − y‖.
As S is metrically convex, there is s ∈ S such that ‖s − x‖ = λ and
‖s − y‖ = μ. Those equations also hold with s replaced by (1−α)x+αy.
So s = (1 − α)x + αy by (1).

The next theorem shows that condition (6) implies the other five
conditions if we put the following mild completeness condition on the
normed space:

(∗) If ‖x‖ + ‖y‖ �= 0, then the closure of the union of the convex
hulls of {x, 0} and {0, y} is complete.

This condition is so mild that it holds classically for any normed space.

Theorem 6. Let V be a normed space satisfying condition (∗). If
every metrically convex subset of V is convex, then V is strictly convex.

Proof. It suffices to show that condition (6) of the preceding theorem
implies condition (5) if V satisfies (∗). Suppose that ‖x − y‖ =
‖x‖ + ‖y‖ �= 0. This is the hypothesis of (5) with y replaced by −y.



NEAR CONVEXITY 1313

Let U be the union of the convex hulls of {x, 0} and {0, y}. We claim
that the closure U of U is metrically convex. We will prove this by
showing that U is isometric to the closed interval [−‖x‖ , ‖y‖] under a
map taking x to −‖x‖ and y to ‖y‖.

Define ϕ : U → [−‖x‖ , ‖y‖] by ϕ(λx) = −‖λx‖ and ϕ(μy) = ‖μy‖
where λ, μ ∈ [0, 1]. We first show that ϕ preserves distance. We have

|ϕ(λx) − ϕ(λ′x)| = | − ‖λx‖ + ‖λ′x‖| = |λ − λ′| ‖x‖ = ‖λx − λ′x‖

and similarly for |ϕ(μy) − ϕ(μ′y)|. Also

(1 − λ) ‖x‖ + ‖λx − μy‖ + (1 − μ) ‖y‖ ≥ ‖x − y‖ = ‖x‖ + ‖y‖

so
‖λx − μy‖ ≥ λ ‖x‖ + μ ‖y‖ ,

from which equality follows. So

|ϕ(λx) − ϕ(μy)| = | − ‖λx‖ − ‖μy‖| = ‖λx − μy‖ .

Condition (∗) says that U is complete, so the isometry ϕ extends
uniquely to an isometry of U with the completion [−‖x‖ , ‖y‖] of ϕ (U).

Thus U is metrically convex, hence convex, and each point of U is
determined by its distance from x. Now if α ∈ [0, 1], then the distance
from αx + (1 − α)y to x is (1 − α) ‖x − y‖. If 1 − α = ‖x‖ / ‖x − y‖,
then this distance is ‖x‖, the same as the distance from 0 to x. But
0 ∈ U ⊂ U , so 0 = αx + (1 − α)y, a linear dependence relation.

We observed that condition (∗) holds classically in any normed space.
However, it is not provable constructively. To see this, let x = (1, 0)
and y = (0, a) in R2 and let V = Rx + Ry with norm inherited from
R2. Let C be the closure of the union of the convex hulls of {x, 0} and
{0, y}. Given ε > 0, we can approximate a point in the completion of
C within ε by y/3 if a > 0 and by 2y/3 if a < ε. If C were complete,
then there would be a point sx + ty ∈ C so that t = 1/3 if a > 0 and
t = 2/3 if a < 0. So if t > 1/3, then a ≤ 0 while if t < 2/3, then a ≥ 0.
That would enable us to say, of any real number a, that either a ≤ 0
or a ≥ 0. But clearly that information need not be available to us if all
we have are arbitrarily close rational approximations to a. Of course
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this argument does not rule out the possibility that Theorem 6 admits
a constructive proof without the hypothesis that V satisfies (∗).
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