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THE REAL GENUS OF GROUPS OF ODD ORDER

COY L. MAY

ABSTRACT. Let G be a finite group. The real genus ρ(G)
is the minimum algebraic genus of any compact bordered
Klein surface on which G acts. Here we consider groups of
odd order acting on bordered surfaces. First we show that
if G is a group of odd order, then the real genus ρ(G) is
even. We also obtain a stronger result for p-groups. Let p
be an odd prime, and let G be a p-group with ρ(G) ≥ 2;
then the real genus ρ(G) ≡ p + 1 mod 2p. We also examine
“large” automorphism groups of odd order. If the odd order
group G acts on a bordered Klein surface of genus g ≥ 2,
then |G| ≤ 3(g − 1). If G acts with the largest possible order
3(g − 1), then we call G an O∗-group. In general, a quotient
Q of an O∗-group G is again an O∗-group, and a surface X on
which G acts is a full covering of a surface of lower genus on
which Q acts. Thus, it is natural to consider the notion of an
O∗-simple group, that is, an O∗-group with no O∗-quotient.
We classify the O∗-simple groups.

1. Introduction. Let G be a finite group. The real genus ρ(G) is
the minimum algebraic genus of any compact bordered Klein surface
on which G acts. A real genus action of G is an action of G on a
bordered surface of (algebraic) genus ρ(G). There are now several
results about the real genus parameter. The groups with real genus
ρ ≤ 8 have been classified [7, 12, 13, 16], and genus formulas have
been obtained for several families of groups [13 16]. In particular,
McCullough determined the real genus of each finite abelian group [21].

Here we consider groups of odd order acting on bordered Klein
surfaces. Our main result is the following.

Theorem 1. If G is a group of odd order, then the real genus ρ(G)
is even.

We also obtain a stronger result for p-groups.
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Theorem 2. Let p be an odd prime, and let G be a p-group with
ρ(G) ≥ 2. Then the real genus

ρ(G) ≡ p + 1 mod 2p.

Next we examine “large” automorphism groups of odd order. If the
odd order group G acts on a bordered Klein surface of genus g ≥ 2,
then |G| ≤ 3(g − 1). If G acts with the largest possible order 3(g − 1),
then we call G an O∗-group. We start by presenting several examples
of infinite families of O∗-groups.

In general, a quotient Q of an O∗-group G is again an O∗-group, and
a surface X on which G acts is a full covering of a surface of lower genus
on which Q acts. Thus, it is natural to consider the notion of an O∗-
simple group, that is, an O∗-group with no O∗-quotient. We classify
these O∗-simple groups; in addition to the abelian group Z3×Z3, there
are two infinite families of groups. In one family, each group has order
3p, where p is a prime such that 3 | p− 1. In the other, each group has
order 3q2, where q is a prime such that 3 | q + 1.

Finally, we complete the determination of the real genus of all groups
with odd order less than 100.

We use the standard representation of a group G as a quotient of a
non-Euclidean crystallographic group Γ by a bordered surface group
K; then G acts on the Klein surface U/K, where U is the open upper
half-plane.

2. Preliminaries. We shall assume that all surfaces are compact. A
bordered surface X can carry a dianalytic structure and be considered
a Klein surface or a nonsingular real algebraic curve (with real points).
Thus the surface X has an algebraic genus g. The algebraic genus
is the rank of the fundamental group of X, and this number appears
naturally in bounds for the order of its automorphism group. The real
genus of a group is defined in terms of the algebraic genus.

Associated with the NEC group Γ is its signature, which has the form

(1) (p;±; [λ1, . . . , λr]; {(ν11, . . . , ν1s1), . . . , (νk1, . . . , νksk)}).
The quotient space X = U/Γ is a surface with topological genus p
and k holes. The surface is orientable if the plus sign is used and
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nonorientable if the minus sign is used. The integers λ1, . . . , λr, called
the ordinary periods, are the ramification indices of the natural quotient
mapping from U to X in fibers above interior points of X. The integers
νi1, . . . , νisi , called the link periods, are the ramification indices in fibers
above points on the ith boundary component of X.

Associated with the signature (1) is a presentation for the NEC group
Γ, although the form of the presentation depends upon whether the plus
or minus sign is present. These presentations are in the monograph [1],
for instance.

Let Γ be an NEC group with signature (1), and assume k ≥ 1 so that
the quotient space U/Γ is a bordered surface. The non-Euclidean area
μ(Γ) of a fundamental region for Γ is given by [24, p. 235]:

(2)
μ(Γ)
2π

= γ − 1 +
r∑

i=1

(
1 − 1

λi

)
+

k∑
i=1

si∑
j=1

1
2

(
1 − 1

ν ij

)
,

where γ is the algebraic genus of the quotient space U/Γ. If Λ is a
subgroup of finite index in Γ, then

(3) [Γ : Λ] =
μ(Λ)
μ(Γ)

.

An NEC group K is called a bordered surface group if the quotient
map from U to the quotient space U/K is unramified and further, U/K
has a nonempty boundary. Bordered surface groups contain reflections
but no other elements of finite order.

Let X be a bordered Klein surface of algebraic genus g ≥ 2. Then
X can represented as U/K, where K is a bordered surface group with
μ(K) = 2π(g−1). Let G be a group of dianalytic automorphisms of the
Klein surface X. Then there are an NEC group Γ and a homomorphism
φ : Γ → G onto G such that kernel φ = K. The group G ∼= Γ/K, so
that from (3) the algebraic genus g of the bordered surface X on which
G acts is given by

(4) g = 1 + |G| · μ(Γ)
2π

.

Thus (2) and (4) give the relationship between the genera g and γ of
X and U/Γ, respectively. This relationship is sometimes given as the
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Riemann-Hurwitz formula for the quotient mapping X → X/G = U/Γ;
see [6, 9], for example.

The following is basic and quite easy to prove.

Proposition 1. Each period divides |G|. If |G| is odd, then, further,
all period cycles of Γ are empty.

The general upper bound 12(g−1) [9] for the size of an automorphism
group of a surface of genus g ≥ 2 can be improved considerably for
groups of odd order.

Theorem 3. Suppose the odd order group G acts on a surface X of
genus g ≥ 2. Then |G| ≤ 3(g − 1). The bound 3(g − 1) is attained if
and only if G ∼= Δ/K, where Δ is an NEC group Δ with signature

(5) (0; +; [3, 3]; {()})

and K is a bordered surface group. Further, the surface X = U/K on
which G acts is orientable, and the action of G on X is orientation-
preserving.

Proof. If G is not cyclic, then the bound was obtained in [16, Theorem
2]. Assume that G is cyclic. Then, just applying the old bound for the
order of a cyclic group of automorphisms, we have |G| ≤ 2g + 2 if
g is even and X is orientable; otherwise, |G| ≤ 2g [10, Theorem 1].
Immediately, |G| ≤ 3(g − 1) in all cases except g = 2, X is orientable,
and |G| = 5. But it is not hard to see that there is no action of Z5 on
an orientable surface of genus 2. Hence the bound 3(g− 1) also applies
to odd order cyclic groups.

Now represent X as U/K, where K is a bordered surface group. Then
the bound 3(g−1) is attained if and only if G is a quotient Δ/K, where
μ(Δ)/2π = 1/3. Using Proposition 1, it is easy to see that Δ must have
signature (5). Here see [1, Theorem 4.4.7, p. 130] and [2].

Further, the surface X = U/K on which G acts is orientable, since
the index of K in Δ is odd [1, p. 39]. Finally, since |G| is odd, G
has no subgroup of index 2 and thus the action of G on X cannot be
orientation-reversing.
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This bound for groups of odd order agrees with the corresponding
bound for 3-groups. There are infinite families of 3-groups for which
this bound is attained. See [1, pp. 130, 131], [2, Section 5] and [13,
Section 4]. We shall see examples of odd order groups that are not
3-groups in Section 4.

The group Δ has presentation

x3 = y3 = c2 = [e, c] = xye = 1.

Since G has odd order, c ∈ K, and e is clearly redundant. Hence G is
generated by two elements of order 3.

We call a noncyclic group of odd order that is generated by two
elements of order 3 an O∗-group. These groups will be of special interest
here. We record the following.

Proposition 2. A finite group G of odd order is an O∗-group if and
only if G is not cyclic and acts as a group of 3(g − 1) automorphisms
of a surface of genus g ≥ 2.

We are excluding Z3 from the O∗-groups, even though Z3 clearly acts
on a bordered surface of genus 2 (a sphere with three holes or a torus
with one hole). But these are not genus actions of Z3, since Z3 acts
on the disk and ρ(Z3) = 0. Further, no other group of real genus 0
or 1 except Z3 is generated by elements of order 3 [13]. Thus, an O∗-
group has a genus action of a surface of genus g ≥ 2, and we have the
following.

Corollary 1. If G is an O∗-group, then ρ(G) = 1 + |G|/3 and G
has even genus.

3. Reductions. Let G be a finite group of odd order with
ρ(G) ≥ 2. Then there are an NEC group Γ with signature (1) and a
homomorphism φ : Γ → G onto G such that K = kernelφ is a bordered
surface group. By Proposition 1, all period cycles in the signature of
Γ are empty, and we may also assume that the ordinary periods are
in increasing order, that is, λ1 ≤ λ2 ≤ · · · ≤ λr. The group G acts
on X = U/K, a surface of genus g, where g is given by (4). We want
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to minimize g or, equivalently, μ(Γ). A series of “reductions” shows
that if G has odd order, we only need to consider NEC groups with a
single type of signature. A similar approach was successfully employed
in [18].

Lemma 1. Suppose Γ has signature

(p; +; [λ1, . . . , λr]; {()k})
with p > 0 and k > 0. Then there exist an NEC group Γ′ with signature

(6) (p − 1; +; [ν1, ν2, λ1, . . . , λr]; {()k})
and a homomorphism α : Γ′ → G onto G such that kernel α is a
bordered surface group and μ(Γ′) < μ(Γ).

Proof. Let ν1 = o(ap), ν2 = o(bp), and let Γ′ be an NEC group with
signature (6). Most generators of Γ′ correspond in a general way to
generators of Γ; the two elliptic generators y1, y2 are “new.” Write
z = (bpap)−1.

We define a homomorphism α : Γ′ → G by defining α(y1) = φ(ap),
α(y2) = φ(bp), α(x′

i) = φ(zxiz
−1) and α(e′1) = φ(ze1); otherwise, each

generator in Γ′ is mapped to the image of its corresponding generator
in Γ, e.g., α(ai) = φ(ai) for i < p. Then α is clearly surjective, and the
defining relations for Γ′ are satisfied in G. Thus α is a homomorphism
of Γ′ onto G. Further, kernelα is a bordered surface group. Finally,
using (2) we calculate

μ(Γ′)
2π

=
μ(Γ)
2π

− 1
ν1

− 1
ν2

<
μ(Γ)
2π

.

The proofs of the following three lemmas are quite similar to the
proof of Lemma 1. Since these proofs present no special difficulties, we
omit them.

Lemma 2. Suppose Γ has signature

(p;−; [λ1, . . . , λr]; {()k})
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with p > 1 and k > 0. Then there exist an NEC group Γ′ with signature

(7) (p − 1; +; [ν, λ1, . . . , λr]; {()k})

and a homomorphism β : Γ′ → G onto G such that kernel β is a
bordered surface group and μ(Γ′) < μ(Γ).

Lemma 3. Suppose Γ has signature

(1;−; [λ1, . . . , λr]; {()k})

with k > 0. Then there exist an NEC group Γ′ with signature

(8) (0; +; [λ1, . . . , λr]; {()k+1})

and a homomorphism α : Γ′ → G onto G such that kernel α is a
bordered surface group and μ(Γ′) = μ(Γ).

Lemma 4. Suppose Γ has signature

(0; +; [λ1, . . . , λr]; {()k}),

with k > 1. Then there exist an NEC group Γ′ with signature

(9) (0; +; [ν, λ1, . . . , λr]; {()k−1})

and a homomorphism α : Γ′ → G onto G such that kernel α is a
bordered surface group and μ(Γ′) < μ(Γ).

Therefore, in order to minimize μ(Γ), we only need to consider one
type of signature. We record this result in the following.

Proposition 3. Let G be a finite group of odd order. Let SG be
the set of all NEC groups Γ such that G is a quotient group of Γ with
the kernel a bordered surface group. If Γ is an NEC group in SG with
minimal non-Euclidean area, then the signature of Γ has the form

(10) (0; +; [λ1, . . . , λr]; {()}).
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Proof. By Proposition 1, all period cycles are empty, and thus we
may assume the signature of Γ has the form

(p;±; [λ1, . . . , λr]; {()k}),

with k > 0.

If the minus sign occurs, then p ≥ 1. Apply Lemma 2 (if p > 1),
Lemma 3, and Lemma 4 (at least once) to obtain a group Δ in SG with
signature (10) such that μ(Δ) < μ(Γ).

If the plus sign occurs, use Lemma 1 (if p > 0) and then Lemma 4 (if
k > 1).

4. The main results. It is now easy to establish Theorems 1 and
2. We begin with an easy, but interesting, result about the real genus
action of a group of odd order.

Theorem 4. Let G be a group of odd order with real genus action
on the bordered Klein surface X of genus ρ(G) ≥ 2. Then the quotient
space X/G is the discD, that is, X/G has algebraic genus 0.

Proof. Represent X as U/K, where K is a bordered surface group.
Then by Proposition 2 there is an NEC group Γ with signature (10)
and a homomorphism φ : Γ → G onto G such that kernel φ = K. Then
X/G = U/Γ is the disc D, the only bordered surface with algebraic
genus 0.

This result is interesting, in part, because the corresponding results
for two related parameters, the symmetric genus and the strong sym-
metric genus, do not hold, that is, the quotient space under a genus
action need not have genus zero [20, Proposition 4]. In connection with
our approach in Section 3, we note that the reductions of the lemmas
are not possible without connecting generators. With Proposition 3
the proof of Theorem 1 is now easy.

Proof of Theorem 1. First, no group of real genus 1 has odd order
[13, Theorem 4], and 0 is even, of course. Consequently, we only need
to consider groups with genus 2 or more.



GROUPS OF ODD ORDER 1259

Let X be a bordered Klein surface of genus g = ρ(G) ≥ 2 such that
there is a genus action of G on X. Represent X as U/K, where K is a
bordered surface group. Then by Proposition 3 there is an NEC group
Γ with signature (10) and a homomorphism φ : Γ → G onto G such
that kernelφ = K.

Then from (2) we have

μ(Γ)
2π

= − 1 +
r∑

i=1

(
1 − 1

λi

)
.

Now by (4)

g = 1 − |G| +
r∑

i=1

(
|G| − |G|

λi

)
.

Each period divides |G|, and each term |G|/λi is odd. Now each term
inside the summation sign is even, and g is even.

The same approach yields Theorem 2, a stronger result for finite p-
groups with positive real genus.

Proof of Theorem 2. Write |G| = pn and continue the notation of the
proof of Theorem 1. The periods are powers of p; denote the exponents
m1, . . . , mr, that is, λi = pmi . Each mi < n since G is not cyclic. Now
(2) and (4) give

g = 1 + pn

[
− 1 +

r∑
i=1

(
1 − 1

pmi

)]
,

and then

g = 1 − pn +
r∑

i=1

pn−mi(pmi − 1).

Each term inside the summation sign is even (since p is odd) and
divisible by p (since n−mi is positive). Hence the sum is congruent to
0 mod 2p. Since p is odd, pn ≡ p mod 2p and −pn ≡ −p ≡ p mod 2p.
Therefore g ≡ p + 1 mod 2p.
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It is possible to give a shorter proof of Theorem 2, using Theorem 1
together with the complex double of a bordered surface and an impor-
tant result of Kulkarni [8, p. 199].

5. Examples O∗-groups. Here we present some examples of
groups of odd order that act as large groups of automorphisms. Each
group has order 3p, 9p or 3p2, for some odd prime p. These groups will
also be needed when we consider O∗-simple groups.

First let p be an odd prime such that 3 divides p − 1. Then there is
a single nonabelian group of order 3p. This group has presentation

(11) Xp = Y 3 = 1, Y −1XY = Xr,

where r3 ≡ 1 mod p and r �≡ 1 mod p. We denote this group G3p; it is a
semi-direct product Zp×φ Z3. This group is generated by two elements
(Y and XY ) of order 3 and has real genus

ρ(G3p) = 1 + p.

The real genus of this family of O∗-groups was calculated in [15,
Theorem 4].

It is not hard to see that each direct product Z3 × G3p is also an
O∗-group.

Proposition 4. Let p be an odd prime such that 3 divides p − 1.
Then Z3 × G3p is an O∗-group and

ρ(Z3 × G3p) = 1 + 3p.

Proof. Let G3p have presentation (11), and let A be a generator for
Z3. Then (1, Y ) and (A, XY ) are elements of order 3 that generate
Z3 ×G3p. Thus Z3 ×G3p is an O∗-group, and the genus formula holds.

Let G = Zp × Zp have presentation

(12) Xp = Y p = 1, XY = Y X.
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Now let p be an odd prime such that 3 divides p + 1. Then there is
an automorphism of G of order 3 defined by

X −→ Y, Y −→ X−1Y −1.

Thus there is a nonabelian group of order 3p2 with generators X, Y
and A and relations (12) together with

(13) A3 = 1, A−1XA = Y, A−1Y A = X−1Y −1.

We denote this group H3p2 . It is a semi-direct product (Zp)2×φ Z3 and
is the unique nonabelian group of order 3p2 in case 3 divides p + 1 [3,
p. 80]. This is another family of O∗-groups.

Proposition 5. Let p be an odd prime such that 3 divides p + 1.
Then H3p2 is an O∗-group and

ρ(H3p2) = 1 + p2.

Proof. Let G = H3p2 have presentation (12) and (13). Then it is not
hard to check that AX and AY are elements of order 3 that generate
G. Thus H3p2 is an O∗-group, and 3[ρ(H3p2)−1] = |H3p2 | = 3p2.

Now let p be an odd prime such that 3 divides p − 1. Then there
are four nonabelian groups of order 3p2 [3, Section 59]. These are
Z3×G3p, a semi-direct product Zp2×θZ3, and two semi-direct products
(Zp)2 ×φ Z3; two of these four are O∗-groups.

First we consider the semi-direct product Zp2 ×θ Z3. The cyclic group
of order p2 has an automorphism of order 3, and there is a nonabelian
group of order 3p2 with presentation

(14) Xp2
= B3 = 1, B−1XB = Xr,

where r3 ≡ 1 mod p2 and r �≡ 1 mod p2. We denote this group J3p2 .

Proposition 6. Let p be an odd prime such that 3 divides p − 1.
Then J3p2 is an O∗-group and

ρ(J3p2) = 1 + p2.
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Proof. Let J3p2 have presentation (14). Then BX and BXp are
elements of order 3 (in fact, all elements of the form BXi have order 3).
Further, BX and BXp generate J3p2 .

Let G = Zp×Zp have presentation (12), where p is an odd prime such
that 3 divides p − 1. Then there is an automorphism of G of order 3
defined by

X −→ Xα, Y −→ Y α2
,

where α3 ≡ 1 mod p and α �≡ 1 mod p. Thus there is a nonabelian
group of order 3p2 with generators X, Y and A and relations (12)
together with

(15) A3 = 1, A−1XA = Xα, A−1Y A = Y α2
.

We denote this group K3p2 ; it is a semi-direct product (Zp)2 ×φ Z3.
Again, these are O∗-groups.

Proposition 7. Let p be an odd prime such that 3 divides p − 1.
Then K3p2 is an O∗-group and

ρ(K3p2) = 1 + p2.

Proof. Let K3p2 have presentation (12) and (15). Then it is not hard
to check that AX and AY are elements of order 3 that generate G.

6. Full covers. There are standard techniques (using the theory of
covering spaces and the fundamental group) that show that there are
infinitely many extensions of abelian groups by each O∗-group that are
also O∗-groups. Our basic reference here is [6, Section 4].

Let X and X ′ be bordered Klein surfaces, and let φ : X → X ′ be an
unramified normal covering without folding of the surface X ′ (so that
X is a covering space in the usual topological sense and the covering
transformations act transitively on fibers). If every automorphism of
X ′ lifts to an automorphism of X, then φ is called a full covering.
In this case, let G′ = A(X ′), and let N be the group of covering
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transformations of X. Then let G be the group of automorphisms
of X generated by N and lifts of elements of G′. We have the exact
sequence

1 −→ N −→ G −→ G′ −→ 1.

Of course, in general G is only a subgroup of A(X).

However, if the group G′ is maximal in some sense, than it may be
that G is as well, and even, perhaps, G = A(X). If G′ is an M∗-group,
then G is too and hence G = A(X) [6, Theorem 5]. For groups of odd
order, we have the following.

Theorem 5. Let G′ be an O∗-group with genus action on the
bordered surface X ′, and let φ : X → X ′ be a full covering of X ′.
If the degree of the covering φ is odd, then there is an O∗-group G with
genus action on the surface X.

Proof. Let g and g′ denote the genera of X and X ′, respectively, and
let r be the degree of φ. Since φ is unramified,

g − 1 = r(g′ − 1).

Since G′ is an O∗-group, |G′| = 3(g′ − 1). Now G is a group of odd
order |G| = r · |G′| = 3(g − 1) acting on X, that is, G is an O∗-group.

The constructions of [6, Section 4] may now be applied to show the
existence of infinite families of O∗-groups. For example, the abelian
group Z3×Z3 has genus 4 and acts on a torus with three holes. Applying
the first construction [6, Theorem 8] yields, for each odd positive integer
n, a surface with

gn = 3n4 + 1, pn = 3n3(n − 1)/2 + 1, kn = 3n3.

The application of this construction to a general O∗-group yields the
following.

Proposition 8. If G is an O∗-group of order 3(g − 1) and n is an
odd positive integer, then G has an O∗-extension Gn of the form

1 −→ (Zn)g −→ Gn −→ G −→ 1.



1264 C.L. MAY

The construction could even be applied to Z3 acting on a surface of
genus 2 (either a torus with one hole or a sphere with three holes) to
produce O∗-groups, although the action of Z3 would not be a genus
action.

7. O∗-simple groups. Now we consider quotients of O∗-groups
and surfaces with “large” odd order groups of automorphisms. First
we show a quotient of an O∗-group is an O∗-group.

Theorem 6. Let G be an O∗-group with genus action on the bordered
surface X of genus g ≥ 2. Let N be a normal subgroup of G of index
r > 3. Set G′ = G/N , X ′ = X/N , let φ : X → X ′ be the quotient map,
and let g′ be the genus of X ′. Then

(1) G′ is an O∗-group with genus action on X ′,

(2) g′ ≥ 2, and

(3) φ is a full covering.

Proof. Since G is generated by two elements of order 3, so is its
quotient group G′. Further G′ is not cyclic since r > 3. Thus G′ is an
O∗-group with ρ(G′) ≥ 2.

The group G′ = G/N acts on the surface X ′ = X/N , and hence
g′ ≥ ρ(G′) ≥ 2 immediately.

Since G′ has odd order, |G′| ≤ 3(g′−1). Then applying the Riemann-
Hurwitz formula to the mapping φ yields g − 1 ≥ |N |·(g′ − 1), with
equality if and only if φ is unramified. Now

|G′| = |G/N | = 3(g − 1)/|N | ≥ 3(g′ − 1).

Hence |G′| = 3(g′ − 1), the action of G′ on X ′ is a genus action, and
φ is unramified. Also, there can be no folding in a covering φ of odd
degree. Thus φ is a full covering.

This result suggests the following definition. An O∗-group is called
O∗-simple if it has no proper O∗-quotient group, or equivalently, if it
has no nontrivial normal subgroup of index larger than 3. If G is an O∗-
group with genus action on the surface X, then G has a quotient group
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G′ that is O∗-simple with a genus action on a surface X ′. Further, X
is a full covering of X ′.

It is not too hard to classify the O∗-simple groups. It is necessary to
consider groups of order 3p2 in case 3 divides p − 1.

Lemma 5. Let p be an odd prime such that 3 divides p − 1. Then
there are no O∗-simple groups of order 3p2.

Proof. There are four nonabelian groups of this order [3, Section 59],
Zp × G3p, J3p2 , K3p2 and the semi-direct product (Zp)2 ×φ Z3 with
presentation (12) plus

A3 = 1, A−1XA = Xβ, A−1Y A = Y β ,

where β3 ≡ 1 mod p and β �≡ 1 mod p.

Obviously, Zp×G3p is not generated by elements of order 3. The O∗-
group J3p2 has a normal subgroup of order p (generated by Xp) and
thus is not O∗-simple. The O∗-group K3p2 has two normal subgroups
of order p (one generated by X, the other by Y ) and is not O∗-simple
either. The other semi-direct product (Zp)2×φ Z3 is determined by the
action

X −→ Xβ, Y −→ Y β,

on (Zp)2. This is a power automorphism of (Zp)2, and it is not hard to
see that the semi-direct product has rank 3 and consequently cannot
be an O∗-group.

Theorem 7. Let G be an O∗-simple group. Then G is isomorphic
to one of the following.

(1) Z3 × Z3.

(2) G3p for some prime p such that 3 | p − 1.

(3) H3q2 for some prime q such that 3 | q + 1.

Proof. A major result about finite groups is that all groups of odd
order are solvable [4].
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First Z3 × Z3 is clearly the smallest O∗-simple group. Any 3-group
with larger order has an O∗-quotient of order 9. Thus Z3 × Z3 is the
only O∗-simple 3-group.

Assume that G is not a 3-group. Since G is solvable, the commutator
subgroup G′ �= G. Since G is O∗-simple, G does not have a normal
subgroup of index larger than 3 and the only possibility is that G/G′ ∼=
Z3. Further, G′ must be a minimal normal subgroup. Otherwise, there
would be a minimal normal subgroup M ⊂ G′ with [G : M ] > 3, and
G would not be O∗-simple, by Theorem 6. But every minimal normal
subgroup of a solvable group is an elementary abelian group [23, p.
117]. Thus G′ is isomorphic to (Zp)m for some odd prime p > 3 and
some positive integer m.

The O∗-group G is generated by two elements of order 3. Assume
G = 〈a, b〉, where o(a) = o(b) = 3. Let μ : G → G/G′ be the natural
quotient mapping. Then a and b are not in the commutator subgroup
G′. In G/G′ ∼= Z3, either μ(a) = μ(b) or μ(a) = μ(b2), that is, either
ab−1 or ab is in G′. We may assume that a = nb for some element
n in the elementary abelian p-group G′ (since a and b−1 are alternate
generators for G). Now G = 〈b, n〉, where o(n) = p.

The elements bnb−1 and b2nb−2 are elements of order p and thus in
the normal Sylow p-subgroup G′. Let M = 〈n, bnb−1, b2nb−2〉. Then
clearly M ⊂ G′ and M is normal in G = 〈b, n〉. Thus M = G′ ∼= (Zp)m,
since G′ is a minimal normal subgroup of G. Now m ≤ 3.

Suppose bnb−1 ∈ 〈n〉. Then M = 〈n〉 and m = 1. Now G is a non-
abelian group of order 3p, and thus G ∼= G3p for some prime p such
that 3 | p − 1.

Suppose bnb−1 /∈ 〈n〉. Then n and bnb−1 generate an abelian group
of order p2 and m ≥ 2. First assume m = 2. Then G is a non-abelian
group of order 3p2, and by Lemma 5, 3 does not divide p − 1. Hence
3 | p + 1 and G ∼= H3p2 , since this is the unique non-abelian group of
this order.

The only remaining case cannot occur. To see this, assume that
bnb−1 /∈ 〈n〉 and m = 3; then b2nb−2 /∈ 〈n, bnb−1〉. Now let x =
n(bnb−1)(b2nb−2) = (nb)3. Then x �= 1, x is in the abelian group M ,
and nx = xn. Also,

bxb−1 = b[n(bnb−1)(b2nb−2)]b−1 = (bnb−1)(b2nb−2) n = x,
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since M is abelian. Thus the subgroup J = 〈x〉 is normal in G = 〈b, n〉,
and |J | = p. Since M is a minimal normal subgroup of G, this is an
obvious contradiction.

For the companion ideas about M∗-groups and a classification of the
solvable M∗-simple groups, see [6].

8. Groups of odd order less than 100. Here we finish the
calculation of the real genus of the non-abelian groups of odd order in
this range. The real genus of each abelian group has been determined
by McCullough [21]. Also, the real genus of each group with order less
than 32 has been determined [16], and all groups with order 81 were
considered in [17]. There is not much left to do; most of the groups
were considered in Section 5.

The table gives ρ(G) for each nonabelian group G with 32 < |G| <
100, |G| �= 81.

TABLE 1. Groups of odd order less than 100.

Group ρ Reference Group ρ Reference
G3·13 14 [15, Theorem 4] Z7 ×φ Z9 48
G5·11 34 [15, Theorem 4] H3·52 26 Proposition 5
G3·19 20 [15, Theorem 4] G3·31 32 [15, Theorem 4]
Z3 × G3·7 22 Proposition 4

The only group that has not already been considered is one of the two
non-abelian groups of order 63, the semi-direct product G = Z7 ×φ Z9

with presentation

X7 = Y 9 = 1, Y −1XY = X2.

The center Z(G) = 〈Y 3〉 contains the only elements of order 3, and G/Z
is isomorphic to the non-abelian group of order 21. Also, the Sylow 7-
subgroup is normal. Thus, any two element generating set for G must
contain at least one element with order larger than 7. The group G is
clearly generated by two elements of orders 7, 9, and ρ(G) = 48.
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9. Comments and open problems. For each integer g ≥ 2, define
ν(g) to be the number of groups with real genus g. Of course, ν(g) is
a finite number for each g. We know that ν(2) = 0 [13], ν(3) = 2 [13],
ν(4) = 4 [12] and ν(5) = 9 [16]. Also, ν(6) = 4 and ν(7) and ν(8) are
known [7]. Further, ν(g) is positive for all odd g ≥ 3 [13, Theorem 9],
and, in fact, the function ν is unbounded.

Mockiewicz has recently obtained the interesting result that there is
no group of real genus 12, that is, ν(12) = 0 [22]. Thus there is a value
besides g = 2 for which ν(g) = 0. It may be that this is only a small
genus phenomenon, however. In any case, general questions remain. Is
ν(g) = 0 for any even integer g > 12? Is ν(g) = 0 for infinitely many
values of g?

These questions are especially interesting because the corresponding
question for the strong symmetric genus, a related parameter, has
recently been settled. If n is a non-negative integer, then there is at
least one group of strong symmetric genus n [19, Theorem 1].

There are similar questions about groups of odd order. For each
integer g ≥ 2, define τ (g) to be the number of groups of odd order that
have real genus g. Then τ (g) = 0 for all odd g ≥ 3, by Theorem 1.
Further, using the bound 3(g − 1) together with Table 1 and known
results from [16, 17, 21], it is easy to determine τ (g) for all g ≤ 34 (and
classify all groups of odd order in the range). We find that τ (g) = 0
for g = 2, 6, 12, 18, 24 and 30; otherwise τ (g) is positive for g in this
range. Here also see [7, 22]. It might be interesting to consider τ (g),
for g = p + 1, where p is an odd prime such that 3 divides p + 1.
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