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COUNTING THE NUMBER OF SOLUTIONS
OF LINEAR CONGRUENCES

G. SBURLATI

ABSTRACT. We analyze some known formulas which con-
cern counting the number of solutions of linear congruences
and we find two important related numerical values which give
an answer to interesting questions in elementary number the-
ory related to distributions of sums modulo an integer. Two
different ways to obtain good approximations of such values
are discussed.

1. Introduction. Starting from known formulas giving the number
of solutions of linear congruences with conditions on the greatest com-
mon divisor of each variable, in this paper a number of mathematical
properties are derived which give an answer to questions like these: a
finite set E of prime numbers being fixed, what are the integers favored
as possible results of a sum having, for each prime p lying in E, a given
number of addenda which are not multiples of p? If one also fixes a
number v ∈ N, how much can each single integer m ∈ N be favored or
not favored if, for each p, in the sum there are at least v addenda not
multiples of p? To answer the second question, we analyze from a qual-
itative and quantitative point of view two important values depending
on v and related to linear congruences and, by proving two theorems
and properties, we obtain their numerical expressions and two possible
ways to calculate good approximations of them.

2. Some known results on linear congruences. We consider
the problem of finding the elements (x1, x2, . . . , xk) ∈ Zk

r which satisfy
the congruence equation

(1)
k∑

j=1

hjxj ≡ a (mod r),

and the constraining equalities

(2) (xj , r) = dj ; j = 1, 2, . . . , k,
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where r and k are fixed positive integers, h1, h2, . . . , hk and a are fixed
residual classes in Zr and d1, d2, . . . , dk are k divisors, not necessarily
distinct, of r. (Compare this problem with the problems treated in [1].)

Formulas are presently known which give the total number of solu-
tions of (1) and (2) (we remark that these formulas, however, are not
constructive, i.e., they do not allow explicitly finding such solutions).
Calling Na the number of solutions, it is known for example that, when
h1 ≡ h2 ≡ · · · ≡ hk ≡ 1 (mod r), the following equality is satisfied:

(3) Na =
1
r

∑
d|r
c

(
r

d
;
r

d1

)
c

(
r

d
;
r

d2

)
· · · c

(
r

d
;
r

dk

)
c(a; d),

where, for all m,n ∈ N, c(m;n) is the integer
∑n

j=1, (j;n)=1(e
2πi/n)jm

(see [2, p. 138]).

Let us pose, for each prime divisor p of r, bp = �({j, 1 ≤ j ≤ k : p �
hjdj}) and let us assume that, for each p, bp ≥ 1.

We now pose, for each j with 1 ≤ j ≤ k, gj = (hjdj , r) and we
apply formula (3) to the problem given by equation

∑k
j=1 yj ≡ a

(mod r) and by constraints (yj , r) = gj for j = 1, 2, . . . , k. Then
in the expression obtained for Na we replace the c(m;n) by their
values as given by Hölder’s equalities (for all m,n ∈ N, c(m;n) =
(ϕ(n)/ϕ(n/(n;m))) · µ(n/(n;m)), ϕ and µ being, respectively, Euler’s
and Moëbius’ functions, see [3]). Successively we multiply the obtained
value of Na by the integer

ν =
ϕ(r/d1)
ϕ(r/g1)

· ϕ(r/d2)
ϕ(r/g2)

· · · ϕ(r/dk)
ϕ(r/gk)

,

which is the ratio of the number of (x1, x2, . . . , xk) ∈ Zk
r satisfying

constraints (2) to the number of (y1, y2, . . . , yk) ∈ Zk
r satisfying con-

straints (yj , r) = gj for j = 1, 2, . . . , k. νNa is the number of solutions
of (1) and (2). Finally we manipulate the expression of such a number
by using basic properties of functions ϕ and µ and by applying, pro-
ceeding in reverse order, the distributive property of the product with
respect to the sum. We obtain instead of (3) the following equality,
holding for generic h1, h2, . . . , hk:

(4) Na =
ϕ(r/d1)ϕ(r/d2) · · ·ϕ(r/dk)

r
· Pa,
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where

(5) Pa =
∏
p|r
p� |a

[
1− (−1)bp

(p− 1)bp

]
·
∏
p|r
p|a

[
1− (−1)bp−1

(p− 1)bp−1

]
.

The latter formula, in the particular case h1 ≡ h2 ≡ · · · ≡ hk ≡ 1
(mod r) and d1 = d2 = · · · = dk = 1 can be found in [3]. Compare
equalities (4) and (5) also with [4].

From (4) and (5) we deduce that, varying only the class a in the
problem given by (1) and (2), the number Na depends only on the value
(a; r). Then for each divisor d of r, denoting by Ngcd=d the number of
(x1;x2; . . . ;xk) ∈ Zk

r satisfying (2) such that (
∑k

j=1 hjxj , r) = d, we
can write Ngcd=d = ϕ(r/d) ·Na, where a is any element of Zr such that
(a; r) = d.

The following example may help to clarify the procedure. Let us
consider the problem given by the following equation and constraints:

x1 + x2 + x3 ≡ a (mod 105);
(x1, 105) = 1, (x2, 105) = 5, (x3, 105) = 7.

From the above definitions, we have r = 105, d1 = 1, d2 = 5, d3 = 7,
b3 = 3, b5 = b7 = 2. Then from (4) we obtain, for each a ∈ Z105,

Na =
ϕ(105)ϕ(21)ϕ(15)

105
· Pa =

48 · 12 · 8
105

· Pa =
1536
35

· Pa.

The Table (following page) shows the values of Pa, Na and Ngcd=(a,105)

corresponding to each value of (a, 105).

We can notice that the values of Pa corresponding to the eight divisors
of 105 are the results of the eight possible products in which the first
factor is either 9/8 or 3/4, the second factor is either 15/16 or 5/4 and
the third factor is either 35/36 or 7/6.

3. Qualitative analysis of the above results. ϕ(r/d1)ϕ(r/d2)
. . . ϕ(r/dk) is the number of the elements in Zk

r (x1, x2, . . . , xk) which
satisfy constraints (2). If we keep the left-hand side of equation (1) and
conditions (2) fixed and we vary a in Zr, it is clear that the arithmetic
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(a, 105) Pa Na Ngcd=(a,105)

1
9
8
· 15
16

· 35
36
=
525
512

45 2160

3
3
4
· 15
16

· 35
36
=
175
256

30 720

5
9
8
· 5
4
· 35
36
=
175
128

60 720

7
9
8
· 15
16

· 7
6
=
315
256

54 432

15
3
4
· 5
4
· 35
36
=
175
192

40 240

21
3
4
· 15
16

· 7
6
=
105
128

36 144

35
9
8
· 5
4
· 7
6
=
105
64

72 144

105
3
4
· 5
4
· 7
6
=
35
32

48 48

mean of the number of solutions of the r problems thus obtained is
(ϕ(r/d1)ϕ(r/d2) . . . ϕ(r/dk))/r. It can therefore be remarked that in
(4) the number Pa, compared with 1, shows us how much the total
number Na of solutions deviates from the mean. The greater Pa, the
more the class a of Zr appears to be ‘favored’ by the expressions at
the left-hand side of (1), the xi satisfying constraints (2). According to
whether Pa > 1 or Pa < 1, we can deduce that those expressions give
as a result in Zr the class a a number of times respectively higher or
lower than the mean.

Let us remark, moreover, that for each prime divisor p of r the integer
bp is exactly the number of addenda at the left-hand side of (1) which
are not multiples of p.

All this being stated, it is possible in view of (5), to deduce the
following qualitative remarks:

Remark 1. For each prime divisor p of r, a sum having an even number
of addenda which are not multiples of p tends to favor as possible results
the multiples of p, while a sum having an odd number of addenda which
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are not multiples of p tends to favor results not multiples of p.

Remark 2. If r is odd and if h1, h2, . . . , hk, d1, d2, . . . , dk are fixed in
such a way that, for each prime divisor p of r there are many addenda
at the left-hand side of (1) which are not multiples of p, then for each
class a in Zr, the number Pa is very close to 1. This means that in
this case the distribution in Zr of the values taken by the sum at the
left-hand side of (1), the xi satisfying (2), is very close to the uniform
distribution. For example, the distribution in Zr of the values taken
by the expressions of the form x1+ x2+ · · ·+ xk as x1, x2, . . . , xk vary
in Z∗

r tends to be uniform as k tends to infinity.

4. Numerical properties of Pa. Two important values: lv and
Lv. Assuming once more that for each prime divisor p or r, bp ≥ 1, i.e.,
that for each p at least one addendum in the left-hand side of (1) exists
which is not a multiple of p, the following propositions immediately
derive from (5).

Proposition 1. Once r and a are fixed, the number Pa depends only
on the values taken, for each prime divisor p of r, by the number bp,
i.e., it depends exclusively on the number, for each p, of the addenda
at the left-hand side of (1) which are not divisible by p.

Proposition 2. Let k ∈ N be given; let us fix a finite set of distinct
prime numbers p1, p2, . . . , pt and define r0 = p1p2 . . . pt; let us also fix
k + 1 integers h1, h2, . . . , hk, a and k divisors d1, d2, . . . , dk of r0 in
such a way that for each integer j with 1 ≤ j ≤ t, at least one integer
w exists with 1 ≤ w ≤ k for which we have pj � hwdw. Then the
number Pa is the same for every positive integer r whose prime factors
are exactly p1, p2, . . . , pt.

After fixing a generic positive integer v, let us call Iv the set consisting
of all the problems defined by equation (1) and constraints (2) with r
odd and such that, for every prime divisor p of r, bp ≥ v. Denote
by lv and Lv the lower and upper limit, respectively (the latter being
not necessarily finite) of the set of all the values which Pa may take
in problems in Iv. Let us call s the greatest even integer which is not
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larger than v, and t the greatest odd integer which is not larger than
v. Then the following theorem holds.

Theorem 1. For each positive integer v, in R∪{+∞} the equalities

lv =
∏
p�=2

p prime

[
1− 1

(p− 1)s
]
;(6)

Lv =
∏
p�=2

p prime

[
1 +

1
(p− 1)t

]

are satisfied.

Proof. Let us consider a generic problem in Iv expressed through an
equation like (1) and constraints such as (2). For every prime divisor
p of r it is easy to deduce, since bp ≥ s and s is even, that both the
numbers 1− ((−1)bp/(p− 1)bp) and 1− ((−1)bp−1/(p− 1)bp−1) are not
lower than 1− (1/(p− 1)s). Since s ≥ 0, recalling the expression of Pa

given by (5), we deduce from these latter inequalities that

Pa ≥
∏
p|r

[
1− 1

(p− 1)s
]
≥

∏
p�=2

p prime

[
1− 1

(p− 1)s
]
.

As this is true for every problem in Iv, we shall also have the inequality:

(7) lv ≥
∏
p�=2

p prime

[
1− 1

(p− 1)s
]
.

Now for a fixed generic integer n ≥ 3, let r =
∏

3≤p≤n,p prime p. We
here distinguish the case in which v is even from the case in which v is
odd.

First case: v even. In this case we have s = v. Let us consider the
problem given by equation x1 + x2 + · · · + xv ≡ 1 (mod r) and by
equalities (x1, r) = (x2, r) = · · · = (xv, r) = 1. It is clear that for every
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prime divisor p of r we have bp = v: the problem is therefore contained
in Iv. From equality (5) we deduce that P1 =

∏
p|r[1− (−1)v/(p−1)v],

i.e.,

(8) P1 =
∏

3≤p≤n
p prime

[
1− 1

(p− 1)s
]
.

Second case: v odd. In this case we have s = v − 1. Let us consider
the problem given by equation x1 + x2 + · · · + xv ≡ 0 (mod r) and
by equalities (x1, r) = (x2, r) = · · · = (xv, r) = 1. Here too for every
prime divisor p of r we have bp = v and the problem is once more in
Iv. We have P0 =

∏
p|r[1− (−1)v−1/(p− 1)v−1], i.e.,

(9) P0 =
∏

3≤p≤n
p prime

[
1− 1

(p− 1)s
]
.

From equalities (8), for v even, and (9), for v odd, we deduce that,
whatever the value of v, a problem in Iv exists for which we have
Pa =

∏
3≤p≤n
p prime

[1− (1/(p− 1)s)]. This necessarily implies that

lv ≤
∏

3≤p≤n
p prime

[
1− 1

(p− 1)s
]
.

As the latter inequality holds for every integer n ≥ 3, we can deduce,
passing to the limit for n tending to infinity, that

(10) lv ≤
∏
p�=2

p prime

[
1− 1

(p− 1)s
]
.

The first of (6) follows from (7) and (10).

By adopting a similar procedure one also proves the second equality
in (6).

5. Approximations of lv and Lv. For each positive integer i, let
us denote by qi the ith prime number (we shall have therefore q1 = 2,
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q2 = 3, q3 = 5, q4 = 7, q5 = 11, . . . ). Now let us fix v ≥ 2 and consider
the corresponding numbers s and t. Since for each i ∈ N we clearly
have qi ≤ qi+1 − 1 < qi+1, the following inequalities are satisfied:

1− 1
qs
i

≤ 1− 1
(qi+1 − 1)s < 1−

1
qs
i+1

∀ i ∈ N,(11)

and

1 +
1
qt
i+1

< 1 +
1

(qi+1 − 1)t ≤ 1 +
1
qt
i

∀ i ∈ N.(12)

For each fixed positive integer m, resorting to (11), we can write

∏
i≥m

[
1− 1

qs
i

]
<

∏
i≥m

[
1− 1

(qi+1 − 1)s
]
<

∏
i≥m

[
1− 1

qs
i+1

]
,

i.e.,
∏

i∈N(1− (1/qs
i ))∏

i<m(1− (1/qs
i ))

<
∏
i≥m

[
1− 1

(qi+1 − 1)s
]
<

∏
i∈N(1− (1/qs

i ))∏
i<m+1(1− (1/qs

i ))
,

i.e.,
(13)

[ζ(s)]−1∏
i<m(1− (1/qs

i ))
<

∏
i≥m

[
1− 1

(qi+1 − 1)s
]
<

[ζ(s)]−1∏
i<m+1(1− (1/qs

i ))
,

ζ(s) denoting Riemann’s function.

We pose lv,m =
∏m−1

i=1 [1 − (1/(qi+1 − 1)s)] =
∏

3≤p≤qm,p prime[1 −
(1/(p − 1)s)]. From the first of equalities (6) we have lv =

∏
i∈N[1 −

(1/(qi+1 − 1)s)] = lv,m · ∏i≥m[1 − (1/(qi+1 − 1)s)]. From inequalities
(13), by multiplying all members by lv,m, we can therefore deduce that

(14)
1
ζ(s)

· lv,m∏
i<m(1− (1/qs

i ))
< lv <

1
ζ(s)

· lv,m∏
i<m+1(1− (1/qs

i ))
.

If we calculate the finite product which gives the value of lv,m and
we know the value of ζ(s), then inequalities (14) give us a good
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approximation of lv; indeed, the first member differs from lv by a
multiplicative factor lying in the interval [1; 1/(1 − q−s

m )], i.e., lying
in the interval [1; qs

m/(q
s
m − 1)].

By adopting a similar procedure and using the equality 1 + (1/nt) =
(1 − n−2t)/(1 − n−t) for generic n ∈ N, if v ≥ 3, we can derive from
(12) for each fixed m ∈ N, the relations:

(15)
ζ(t)
ζ(2t)

· Lv,m∏
i<m+1(1 + (1/q

t
i))

< Lv <
ζ(t)
ζ(2t)

· Lv,m∏
i<m(1 + (1/q

t
i))
,

where Lv,m =
∏m−1

i=1 [1+(1/(qi+1−1)t)] =
∏

3≤p≤qm,p prime[1+(1/(p−
1)t)]. If we calculate Lv,m and we know the values of ζ(t) and ζ(2t),
we have from (15) a good approximation of Lv in which the third
member differs from Lv by a multiplicative factor lying in the interval
[1/(1 + q−t

m ); 1], i.e., in the interval [qt
m/(qt

m + 1); 1].

As an example of what was treated above, by taking v = 2 and
m = 11, we can deduce from (14) that 0.659 < l2 < 0.661.

If we do not know the values of ζ(s), ζ(t) or ζ(2t), we can use the
following theorem:

Theorem 2. For each fixed m ∈ N, we have

(16) lv,m · (s− 1)(qm − 1)s−1

(s− 1)(qm − 1)s−1 + 1
< lv < lv,m

and, if v ≥ 3,

(17) Lv,m < Lv < Lv,m · (t− 1)(qm − 1)t−1 + 1
(t− 1)(qm − 1)t−1

.

Proof. For m fixed, in order to prove inequalities (16) it is sufficient
to show that

∏
i≥m[1 − (1/(qi+1 − 1)s)] > [(s − 1)(qm − 1)s−1]/
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[(s− 1)(qm − 1)s−1 + 1]. Indeed, we have

∏
i≥m

[
1− 1

(qi+1 − 1)s
]
>

∏
i≥m

[
1− 1

qs
i

]
=

1∑
n,[p|n⇒p≥qm](1/ns)

≥ 1
1 +

∑
n≥qm

(1/ns)
>

1

1 +
∫ +∞

qm−1
x−s dx

=
1

1 + (1/(s− 1)(qm − 1)s−1)

=
(s− 1)(qm − 1)s−1

(s− 1)(qm − 1)s−1 + 1
.

To prove inequalities (17) we observe that, for fixed m,

∏
i≥m

[
1 +

1
(qi+1 − 1)t

]
<

∏
i≥m

[
1 +

1
qt
i

]
< 1 +

∑
n≥qm

1
nt

< 1 +
∫ +∞

qm−1

x−t dx =
(t− 1)(qm − 1)t−1 + 1
(t− 1)(qm − 1)t−1

.

This concludes our proof.

As an application of Theorem 2, by taking v = 3 and m = 8 we
obtain from (17) that 1.150 < L3 < 1.153.

We conclude with two final observations about lv and Lv. First let us
fix v ≥ 3 and consider a problem in Iv; letNa be the number of solutions
of such a problem. Let us now modify in this problem only the element
a, say a→ b, keeping unchanged all the other variables and conditions;
let Nb be the number of solutions of the new problem. We consider the
ratio Na/Nb. v being fixed, by resorting to the proof of Theorem 1 it
can be noticed that, whatever the value of v, two successions are built,
say (γn)n∈N and (δn)n∈N, of problems in Iv, where for each n ∈ N the
only difference between γn and δn is the class at the righthand side of
(1). The limit of the value Pa associated to γn when n → +∞ is lv,
while the limit of Pa associated to δn when n → +∞ is Lv. All this
implies that the upper limit of all the possible values Na/Nb which we
can obtain in the way described above is the ratio Lv/lv.

The second observation concerning lv and Lv is qualitative. Being lv
and Lv the lower and upper limit, respectively, of the values which Pa
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may take in problems in Iv, recalling what was observed about Pa at
the beginning of Section 3, we can say that lv and Lv, compared with
1, represent the limits (which can never be exactly reached if v ≥ 2) of
the possible deviations from the mean of the frequencies of the values
taken by a sum in which there are, for each prime number p ≥ 3 lying
in a finite set E, at least v addenda not multiples of p.
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