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ON ABSOLUTE SUMMABILITY FACTORS

E. SAVAŞ

ABSTRACT. The purpose of this paper is to determine
the conditions for which

∑
anλν is summable |T |s whenever∑

an is summable |N, pn|k where T is a lower triangular
matrix with positive entries and row sums one. As special
cases we obtain inclusion theorems for pairs of weighted mean
matrices.

In [5], Sarigöl obtained necessary and sufficient conditions for |N, pn|k
⇒ |N, qn|s for the case 1 ≤ k ≤ s.

The concept of absolute summability of order k was defined by Flett
[3] as follows. Let

∑
an be a given infinite series with partial sums sn,

and let σα
n denote the nth Cesaro means of order α, α > −1, of the

sequence {sn}. The series
∑

an is said to be summable |C, α|k, k ≥ 1,
α > −1, if

(1)
∞∑

n=1

nk−1|∆σα
n−1|k < ∞,

where, for any sequence {bn}, ∆bn = bn − bn+1.

In defining absolute summability of order k for weighted mean meth-
ods, Bor [1] and others used the definition

(2)
∞∑

n=1

(
Pn

pn

)k−1

|∆un−1|k < ∞,

where

un :=
n∑

ν=0

pνsν .

In using (2) as the definition, it was apparently assumed that the n in
(1) represented the reciprocal of the nth main diagonal term of (C, 1).
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But this interpretation cannot be correct. For, if it were, then the
Cesaro methods (C, α) for α 	= 1 would have to satisfy the condition

∞∑
n=1

(nα)k−1|∆α
n−1|k < ∞.

However, Fleet [3] stays with n for all values of α > −1.
Let T denote a lower triangular matrix with nonzero entries and row

sums 1. Define

t̄nν =
n∑

i=ν

tνi, n, ν = 0, 1, . . .

and

t̂nν = t̄nν − t̄n−1,ν , n = 1, 2, . . . .

It is the purpose of this paper to prove the following generalization
of the necessary part of the theorem in [5], using definition (1).

Theorem 1. Let 1 < k ≤ s < ∞. Suppose that {pn} is a positive
sequence such that Pn → ∞ as n → ∞ and

(3)
∞∑

n=ν+1

nk−1

(
pn

PnPn−1

)k

= O

(
1
Pν

)k

.

If
∑

anλν is summable |T |s whenever
∑

an is summable |N, pn|k, then

(i) tννλv = O

(( pν

Pν

)
ν1/s−1/k

)

(ii)
∞∑

n=ν+1

ns−1|∆ν(t̂nνλv)|s = O

(( pν

Pν

)s

νs−s/k

)
.

Proof. Let {tn} denote the sequence of (N, pn) means of the series∑
an. Then

(4)

tn =
1

Pn

n∑
ν=0

pνsν ,

Xn = tn − tn−1 =
pn

PnPn−1

n∑
ν=1

Pν−1aν ; P−1 = 0
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and

Tn =
n∑

ν=0

n∑
i=ν

tnνλνaν =
n∑

ν=0

t̄nνλνaν

and

Yn = Tn − Tn−1 =
n∑

ν=0

(t̄nν − t̄n−1,ν)λνaν(5)

since t̂n0 = 0.

We are given that

(6)
∞∑

n=1

ns−1|Yn|s < ∞

whenever

(7)
∞∑

n=1

nk−1|Xn|k < ∞.

Now the space of sequences {an} satisfying (7) is a Banach space if
normed by

(8) ‖X‖ =
(
|X0|k +

∞∑
n=1

nk−1|Xn|k
)1/k

.

We also consider the space of those sequences {Yn} that satisfy (6).
This is also a BK-space with respect to the norm

(9) ‖Y ‖ =
(
|Y0|s +

∞∑
n=1

ns−1|Yn|s
)1/s

.

Observe that (5) transforms the space of sequences satisfying (7) into
the space of sequences satisfying (6). Applying the Banach-Steinhaus
theorem, there exists a constant K > 0 such that

(10) ‖Y ‖ ≤ K‖X‖.
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Applying (4) and (5) to aν = eν−eν+1, where eν is the νth coordinate
vector, we have

Xn =




0, if n < ν,
pν

Pν
, if n = ν,

−pνpn

PnPn−1
, if n > ν;

and

Yn =



0, if n < ν,
t̂nνλν , if n = ν,
∆ν(t̂nvλν), if n > ν.

By (8) and (9) it follows that

‖X‖ =
{

νk−1
( pν

Pν

)k

+
∞∑

n=ν+1

nk−1
( pνpn

PnPn−1

)k
}1/k

and

‖Y ‖ =
{

νs−1|tννλν |s +
∞∑

n=ν+1

ns−1|∆ν(t̂nνλν)|2
}1/s

,

recalling that t̂νν = t̄νν = tνν .

Using (10) and (3),

νs−1|tννλν |s +
∞∑

n=ν+1

ns−1|∆ν(t̂nνλν)|s

≤ Ks

(
νk−1

( pν

Pν

)k

+
∞∑

n=ν+1

nk−1
( pνpn

PnPn−1

)k
)s/k

≤ Ks

(
νk−1

( pν

Pν

)k

+
( pν

Pν

)k
)s/k

= O

(( pν

Pν

)k

νk−1

)s/k

.
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The above inequality will be true if and only if each term on the left-
hand side is O((pν/Pν)kνk−1)s/k. Taking the first term

νs−1|tννλν |s = O

(( pν

Pν

)k

νk−1

)s/k

|tννλν |s = O

(( pν

Pν

)s

ν1−s/k

)

|tννλν | = O

(( pν

Pν

)s

ν1−s/k

)1/s

= O

(( pν

Pν

)
ν1/s−1/k

)
,

which verifies that (i) is necessary.

Using the second term we have
∞∑

n=ν+1

ns−1|∆ν(t̂nνλν)|s = O

(( pν

Pν

)k

νk−1

)s/k

= O

(( pν

Pν

)s

νs−s/k

)
,

which is condition (ii).

Applications.

Corollary 1. Suppose that {pn}, {qn} are positive sequences with
{pn} satisfying Pn → ∞ and condition (3). If

∑
anλn is summable

|N, qn|s, whenever
∑

an is summable |N, pn|k, then

(i) λν = O
(pνQν

qνPν

)
(ν1/s−1/k).

(ii) |∆ν(Qν−1λv)|s
( ∞∑

n=ν+1

ns−1
( qn

QnQn−1

)s
)
= O

(( pν

Pν

)s

νs−s/k

)
.

Proof. Apply the theorem with T = (tnν) a weighted mean matrix
(N, qn). It is easy to see that

t̂nν = − qnQν−1

QnQn−1
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and
∆ν(t̂nνλv) = t̂nν − t̂n,ν+1 = − qn

QnQn−1
∆(Qν−1λν).

Corollary 2. Let {pn} be a positive sequence satisfying Pn → ∞
and (3). If

∑
anλn is summable, |T |k whenever

∑
an is summable

|N, pn|k, k ≥ 1, then

(i) tννλν = O
( pν

Pν

)

(ii)
∞∑

n=ν+1

nk−1|∆ν(t̂nνλν)|k = O

(( pν

Pν

)k

νk−1

)
.

To prove Corollary 2, simply set s = k in Theorem 1.

Corollary 3. Suppose that {pn}, {qn} are positive sequences with
{pn} satisfying Pn → ∞ and condition (3). If

∑
anλn is summable

|N, qn|k whenever
∑

an is summable |N, pn|k, k ≥ 1, then

(i) λν = O
(pνQν

qνPν

)

(ii) |∆ν(Qν−1λv)|k
∞∑

n=ν+1

nk−1
( qn

QnQn−1

)k

= O

(( pν

Pν

)k

νk−1

)
.

To prove Corollary 3, simply set s = k in Corollary 1.
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Yüzüncü Yil University, Van, Turkey
E-mail address: ekremsavas@yahoo.com


