ON ABSOLUTE SUMMABILITY FACTORS

E. SAVAŞ

Abstract

The purpose of this paper is to determine the conditions for which $\sum a_{n} \lambda_{\nu}$ is summable $|T|_{s}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$ where T is a lower triangular matrix with positive entries and row sums one. As special cases we obtain inclusion theorems for pairs of weighted mean matrices.

In [5], Sarigöl obtained necessary and sufficient conditions for $\left|N, p_{n}\right|_{k}$ $\Rightarrow\left|N, q_{n}\right|_{s}$ for the case $1 \leq k \leq s$.

The concept of absolute summability of order k was defined by Flett [3] as follows. Let $\sum a_{n}$ be a given infinite series with partial sums s_{n}, and let σ_{n}^{α} denote the nth Cesaro means of order $\alpha, \alpha>-1$, of the sequence $\left\{s_{n}\right\}$. The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, $\alpha>-1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta \sigma_{n-1}^{\alpha}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

where, for any sequence $\left\{b_{n}\right\}, \Delta b_{n}=b_{n}-b_{n+1}$.
In defining absolute summability of order k for weighted mean methods, Bor [1] and others used the definition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta u_{n-1}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

where

$$
u_{n}:=\sum_{\nu=0}^{n} p_{\nu} s_{\nu}
$$

In using (2) as the definition, it was apparently assumed that the n in (1) represented the reciprocal of the nth main diagonal term of $(C, 1)$.

But this interpretation cannot be correct. For, if it were, then the Cesaro methods (C, α) for $\alpha \neq 1$ would have to satisfy the condition

$$
\sum_{n=1}^{\infty}\left(n^{\alpha}\right)^{k-1}\left|\Delta_{n-1}^{\alpha}\right|^{k}<\infty
$$

However, Fleet [3] stays with n for all values of $\alpha>-1$.
Let T denote a lower triangular matrix with nonzero entries and row sums 1. Define

$$
\bar{t}_{n \nu}=\sum_{i=\nu}^{n} t_{\nu i}, \quad n, \nu=0,1, \ldots
$$

and

$$
\hat{t}_{n \nu}=\bar{t}_{n \nu}-\bar{t}_{n-1, \nu}, \quad n=1,2, \ldots
$$

It is the purpose of this paper to prove the following generalization of the necessary part of the theorem in [5], using definition (1).

Theorem 1. Let $1<k \leq s<\infty$. Suppose that $\left\{p_{n}\right\}$ is a positive sequence such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}=O\left(\frac{1}{P_{\nu}}\right)^{k} \tag{3}
\end{equation*}
$$

If $\sum a_{n} \lambda_{\nu}$ is summable $|T|_{s}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$, then
(i) $t_{\nu \nu} \lambda_{v}=O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right) \nu^{1 / s-1 / k}\right)$
(ii) $\sum_{n=\nu+1}^{\infty} n^{s-1}\left|\Delta_{\nu}\left(\hat{t}_{n \nu} \lambda_{v}\right)\right|^{s}=O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{s-s / k}\right)$.

Proof. Let $\left\{t_{n}\right\}$ denote the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n}$. Then

$$
\begin{align*}
& t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{\nu} \\
& X_{n}=t_{n}-t_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=1}^{n} P_{\nu-1} a_{\nu} ; \quad P_{-1}=0 \tag{4}
\end{align*}
$$

and

$$
T_{n}=\sum_{\nu=0}^{n} \sum_{i=\nu}^{n} t_{n \nu} \lambda_{\nu} a_{\nu}=\sum_{\nu=0}^{n} \bar{t}_{n \nu} \lambda_{\nu} a_{\nu}
$$

and

$$
\begin{equation*}
Y_{n}=T_{n}-T_{n-1}=\sum_{\nu=0}^{n}\left(\bar{t}_{n \nu}-\bar{t}_{n-1, \nu}\right) \lambda_{\nu} a_{\nu} \tag{5}
\end{equation*}
$$

since $\hat{t}_{n 0}=0$.
We are given that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{s-1}\left|Y_{n}\right|^{s}<\infty \tag{6}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|X_{n}\right|^{k}<\infty \tag{7}
\end{equation*}
$$

Now the space of sequences $\left\{a_{n}\right\}$ satisfying (7) is a Banach space if normed by

$$
\begin{equation*}
\|X\|=\left(\left|X_{0}\right|^{k}+\sum_{n=1}^{\infty} n^{k-1}\left|X_{n}\right|^{k}\right)^{1 / k} \tag{8}
\end{equation*}
$$

We also consider the space of those sequences $\left\{Y_{n}\right\}$ that satisfy (6).
This is also a BK-space with respect to the norm

$$
\begin{equation*}
\|Y\|=\left(\left|Y_{0}\right|^{s}+\sum_{n=1}^{\infty} n^{s-1}\left|Y_{n}\right|^{s}\right)^{1 / s} \tag{9}
\end{equation*}
$$

Observe that (5) transforms the space of sequences satisfying (7) into the space of sequences satisfying (6). Applying the Banach-Steinhaus theorem, there exists a constant $K>0$ such that

$$
\begin{equation*}
\|Y\| \leq K\|X\| \tag{10}
\end{equation*}
$$

Applying (4) and (5) to $a_{\nu}=e_{\nu}-e_{\nu+1}$, where e_{ν} is the ν th coordinate vector, we have

$$
X_{n}= \begin{cases}0, & \text { if } n<\nu \\ \frac{p_{\nu}}{P_{\nu}}, & \text { if } n=\nu \\ \frac{-p_{\nu} p_{n}}{P_{n} P_{n-1}}, & \text { if } n>\nu\end{cases}
$$

and

$$
Y_{n}= \begin{cases}0, & \text { if } n<\nu \\ \hat{t}_{n \nu} \lambda_{\nu}, & \text { if } n=\nu \\ \Delta_{\nu}\left(\hat{t}_{n v} \lambda_{\nu}\right), & \text { if } n>\nu\end{cases}
$$

By (8) and (9) it follows that

$$
\|X\|=\left\{\nu^{k-1}\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}+\sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{p_{\nu} p_{n}}{P_{n} P_{n-1}}\right)^{k}\right\}^{1 / k}
$$

and

$$
\|Y\|=\left\{\nu^{s-1}\left|t_{\nu \nu} \lambda_{\nu}\right|^{s}+\sum_{n=\nu+1}^{\infty} n^{s-1}\left|\Delta_{\nu}\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{2}\right\}^{1 / s}
$$

recalling that $\hat{t}_{\nu \nu}=\bar{t}_{\nu \nu}=t_{\nu \nu}$.
Using (10) and (3),

$$
\begin{aligned}
\nu^{s-1}\left|t_{\nu \nu} \lambda_{\nu}\right|^{s} & +\sum_{n=\nu+1}^{\infty} n^{s-1}\left|\Delta_{\nu}\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{s} \\
& \leq K^{s}\left(\nu^{k-1}\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}+\sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{p_{\nu} p_{n}}{P_{n} P_{n-1}}\right)^{k}\right)^{s / k} \\
& \leq K^{s}\left(\nu^{k-1}\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}+\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}\right)^{s / k} \\
& =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)^{s / k}
\end{aligned}
$$

The above inequality will be true if and only if each term on the lefthand side is $O\left(\left(p_{\nu} / P_{\nu}\right)^{k} \nu^{k-1}\right)^{s / k}$. Taking the first term

$$
\begin{aligned}
\nu^{s-1}\left|t_{\nu \nu} \lambda_{\nu}\right|^{s} & =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)^{s / k} \\
\left|t_{\nu \nu} \lambda_{\nu}\right|^{s} & =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{1-s / k}\right) \\
\left|t_{\nu \nu} \lambda_{\nu}\right| & =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{1-s / k}\right)^{1 / s} \\
& =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right) \nu^{1 / s-1 / k}\right),
\end{aligned}
$$

which verifies that (i) is necessary.
Using the second term we have

$$
\begin{aligned}
\sum_{n=\nu+1}^{\infty} n^{s-1}\left|\Delta_{\nu}\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{s} & =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)^{s / k} \\
& =O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{s-s / k}\right)
\end{aligned}
$$

which is condition (ii).

Applications.

Corollary 1. Suppose that $\left\{p_{n}\right\},\left\{q_{n}\right\}$ are positive sequences with $\left\{p_{n}\right\}$ satisfying $P_{n} \rightarrow \infty$ and condition (3). If $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, q_{n}\right|_{s}$, whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$, then
(i) $\lambda_{\nu}=O\left(\frac{p_{\nu} Q_{\nu}}{q_{\nu} P_{\nu}}\right)\left(\nu^{1 / s-1 / k}\right)$.
(ii) $\left|\Delta_{\nu}\left(Q_{\nu-1} \lambda_{v}\right)\right|^{s}\left(\sum_{n=\nu+1}^{\infty} n^{s-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{s}\right)=O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{s} \nu^{s-s / k}\right)$.

Proof. Apply the theorem with $T=\left(t_{n \nu}\right)$ a weighted mean matrix $\left(\bar{N}, q_{n}\right)$. It is easy to see that

$$
\hat{t}_{n \nu}=-\frac{q_{n} Q_{\nu-1}}{Q_{n} Q_{n-1}}
$$

and

$$
\Delta_{\nu}\left(\hat{t}_{n \nu} \lambda_{v}\right)=\hat{t}_{n \nu}-\hat{t}_{n, \nu+1}=-\frac{q_{n}}{Q_{n} Q_{n-1}} \Delta\left(Q_{\nu-1} \lambda_{\nu}\right)
$$

Corollary 2. Let $\left\{p_{n}\right\}$ be a positive sequence satisfying $P_{n} \rightarrow \infty$ and (3). If $\sum a_{n} \lambda_{n}$ is summable, $|T|_{k}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, then
(i) $t_{\nu \nu} \lambda_{\nu}=O\left(\frac{p_{\nu}}{P_{\nu}}\right)$
(ii) $\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\Delta_{\nu}\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{k}=O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)$.

To prove Corollary 2, simply set $s=k$ in Theorem 1.

Corollary 3. Suppose that $\left\{p_{n}\right\},\left\{q_{n}\right\}$ are positive sequences with $\left\{p_{n}\right\}$ satisfying $P_{n} \rightarrow \infty$ and condition (3). If $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, q_{n}\right|_{k}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, then
(i) $\lambda_{\nu}=O\left(\frac{p_{\nu} Q_{\nu}}{q_{\nu} P_{\nu}}\right)$
(ii) $\left|\Delta_{\nu}\left(Q_{\nu-1} \lambda_{v}\right)\right|^{k} \sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}=O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k} \nu^{k-1}\right)$.

To prove Corollary 3 , simply set $s=k$ in Corollary 1 .

Acknowledgments. This paper was written while the author was a visiting professor at Indiana University, Bloomington, IN. The author offers his sincerest gratitude to Professor B.E. Rhoades, for his kind interest and valuable advice in the preparation of this paper.

REFERENCES

1. H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 98 (1985), 147-149.
2. - On absolute weighted mean summability methods, Bull. London Math. Soc. 25 (1993), 265-268.
3. T.M. Flett, On an extention of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
4. B.E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. 238 (1999), 82-90.
5. M.A. Sarigöl, On inclusion relations for absolute weighted mean summability, J. Math. Anal. Appl. 181 (1994), 762-767.

YÜzÜncü Yil University, Van, Turkey
E-mail address: ekremsavas@yahoo.com

