REFINED ARITHMETIC, GEOMETRIC AND HARMONIC MEAN INEQUALITIES

PETER R. MERCER

Dedicated to Mari Mercer, in loving memory

ABSTRACT. We obtain refinements of the arithmetic, geometric, and harmonic mean inequalities. A main ingredient is Hadamard's inequality. In an application, we obtain a refined version of Ky Fan's inequality.

1. Preliminaries. For $n \geq 2$, let x_1, x_2, \ldots, x_n be positive numbers, and let w_1, w_2, \ldots, w_n be positive weights: $\sum w_j = 1$. We denote by

$$A = \sum_{j=1}^{n} w_j x_j, \quad G = \prod_{j=1}^{n} x_j^{w_j}, \quad H = \left(\sum_{j=1}^{n} \frac{w_j}{x_j}\right)^{-1},$$

the (weighted) arithmetic, geometric, and harmonic means of the x_i 's.

It is well known that

$$H \leq G \leq A$$
,

with the inequalities being strict unless all x_j 's are equal.

In this paper we obtain various refinements, including upper and lower bounds for A-G, A-H, A/G and G/H. An important ingredient in our approach is the following.

Hadamard's inequality. Let f be a concave function on [a, b]. Then

$$\frac{f(a) + f(b)}{2} \le \frac{1}{b-a} \int_a^b f(t) dt \le f\left(\frac{a+b}{2}\right).$$

Received by the editors on July 25, 2000, and in revised form on August 15, 2001.

2. Results.

Proposition 1. The following estimates hold, with equality occurring if and only if all x_j 's are equal.

$$\sum_{j=1}^{n} \frac{w_j(x_j - G)^2}{x_j + \max(x_j, G)} \le A - G \le \sum_{j=1}^{n} \frac{w_j(x_j - G)^2}{x_j + \min(x_j, G)}.$$

Proof. For x > 0, we have

$$x - 1 - \log(x) = \int_{1}^{x} \frac{t - 1}{t} dt.$$

The integrand is concave and so Hadamard's inequality yields

$$\frac{(x-1)^2}{2x} \le x - 1 - \log(x) \le \frac{(x-1)^2}{x+1} \quad \text{for } x > 1,$$

and

$$\frac{(x-1)^2}{x+1} \le x - 1 - \log(x) \le \frac{(x-1)^2}{2x} \quad \text{for } 0 < x \le 1.$$

Equalities occur only for x = 1.

Substituting x_i/G for x, multiplying by w_i and summing, we obtain

$$\frac{1}{G} \sum_{x_i > G} \frac{w_j (x_j - G)^2}{2x_j} \le \sum_{x_j > G} w_j \left(\frac{x_j}{G} - 1 - \log\left(\frac{x_j}{G}\right)\right) \le \frac{1}{G} \sum_{x_j > G} \frac{w_j (x_j - G)^2}{x_j + G}$$

and

$$\frac{1}{G}\sum_{x_j\leq G}\frac{w_j(x_j-G)^2}{x_j+G}\leq \sum_{x_j\leq G}w_j\bigg(\frac{x_j}{G}-1-\log\Big(\frac{x_j}{G}\Big)\bigg)\leq \frac{1}{G}\sum_{x_j\leq G}\frac{w_j(x_j-G)^2}{2x_j}$$

respectively.

Taken together, these inequalities read

$$\frac{1}{G} \sum_{j=1}^{n} \frac{w_j(x_j - G)^2}{x_j + \max(x_j, G)} \le \frac{A}{G} - 1 \le \frac{1}{G} \sum_{j=1}^{n} \frac{w_j(x_j - G)^2}{x_j + \min(x_j, G)},$$

as desired. \Box

Remarks 1.1. Observing only that the integral is nonnegative leads to a proof of the arithmetic-geometric mean inequality $0 \le A - G$, cf., [6, Section 6.7]. Also, Proposition 1 improves

$$\frac{1}{2\max(x_j)} \sum_{j=1}^n w_j (x_j - G)^2 \le A - G \le \frac{1}{2\min(x_j)} \sum_{j=1}^n w_j (x_j - G)^2,$$

which is proved in [7]. The lefthand inequality above is due to Alzer [3].

Applying the same technique, but instead substituting x_j/A and H/x_j for x respectively, we obtain the following two results.

Proposition 2. We have

$$\frac{1}{A} \sum_{j=1}^{n} \frac{w_j(x_j - A)^2}{x_j + \max(x_j, A)} \le \log(A) - \log(G) \le \frac{1}{A} \sum_{j=1}^{n} \frac{w_j(x_j - A)^2}{x_j + \min(x_j, A)},$$

with equality occurring if and only if all x_j 's are equal.

Proposition 3. We have

$$\sum_{j=1}^{n} \frac{w_j}{x_j} \frac{(x_j - H)^2}{H + \max(x_j, H)} \le \log(G) - \log(H) \le \sum_{j=1}^{n} \frac{w_j}{x_j} \frac{(x_j - H)^2}{H + \min(x_j, H)},$$

with equality occurring if and only if all x_j 's are equal.

Again, using an argument similar to the proof of Proposition 1, but beginning with a different function, we obtain the following.

Proposition 4. The following estimates hold, with equality occurring if and only if all x_i 's are equal.

$$\sum_{j=1}^{n} w_j (x_j - H)^2 \frac{x_j + 2H + \max(x_j, H)}{(x_j + \max(x_j, H))^2} \le A - H$$

$$\le \sum_{j=1}^{n} w_j (x_j - H)^2 \frac{x_j + 2H + \min(x_j, H)}{(x_j + \min(x_j, H))^2}.$$

Proof. For x > 0 we have

$$x-2+\frac{1}{x}=\int_{1}^{x}\frac{t^{2}-1}{t^{2}}dt.$$

The integrand is concave, and Hadamard's inequality yields

$$(x-1)^2 \frac{x+1}{2x^2} \le x-2 + \frac{1}{x} \le (x-1)^2 \frac{x+3}{(x+1)^2}$$
 for $x > 1$,

and

$$(x-1)^2 \frac{x+3}{(x+1)^2} \le x-2 + \frac{1}{x} \le (x-1)^2 \frac{x+1}{2x^2}$$
 for $0 < x \le 1$.

Equalities occur only for x = 1.

Now we proceed as before. Substitute x_j/H , or H/x_j , for x, multiply by w_j , and sum. \square

Remark 4.1. These estimates improve

$$\frac{1}{2\max(x_j)} \sum_{j=1}^n w_j (x_j - H)^2 \le A - H,$$

which is obtained in [7].

3. An application. Here we further restrict the x_j 's to be $\leq 1/2$, and let $y_j = 1 - x_j$. We denote by $A' \ (= 1 - A)$ and G' the (weighted)

arithmetic and geometric means of the y_j 's. The following result is well known, e.g., [4, 9], and Proposition 5 below is a refinement.

Ky Fan's inequality. We have

$$\frac{A'}{G'} \le \frac{A}{G}$$

with equality occurring if and only if all of the x_j 's are equal.

Proposition 5. If not all of the x_j 's are equal, then we have

$$\frac{A'}{G'} < \left(\frac{A}{G}\right)^q,$$

where q < 1 is given by

$$q = \frac{A}{1 - A} \frac{\sum_{j=1}^{n} w_j (x_j - A)^2 / (2 - x_j - \max(x_j, A))}{\sum_{j=1}^{n} w_j (x_j - A)^2 / (x_j + \max(x_j, A))}.$$

Proof. Applying the righthand inequality of Proposition 2 to the y_j 's and the lefthand inequality to the x_j 's, we obtain

$$\log(A'/G') \le \frac{1}{A'} \left(\sum_{y_j \le A'} \frac{w_j (y_j - A')^2}{2y_j} + \sum_{y_j > A'} \frac{w_j (y_j - A')^2}{y_j + A'} \right),$$

and

$$\frac{1}{A} \left(\sum_{x_j > A} \frac{w_j (x_j - A)^2}{2x_j} + \sum_{x_j \le A} \frac{w_j (x_j - A)^2}{x_j + A} \right) \le \log(A/G).$$

Taking the quotient of these estimates together with some manipulations yields

$$\frac{\log(A'/G')}{\log(A/G)} \le q,$$

as desired.

That q < 1 follows from A/(1-A) < 1, together with $x_j + \max(x_j, A) \le 2 - x_j - \max(x_j, A)$, (with at least one of these inequalities being strict).

Remarks 5.1. The argument above clearly implies the weaker refinement

$$\left(\frac{A'}{G'}\right)^{A'} < \left(\frac{A}{G}\right)^{A}.$$

Also, using Proposition 3, one can obtain bounds for (G'/H')/(G/H) in a similar way and, using Propositions 1 and 4, one can obtain bounds for (A'-G')/(A-G) and (A'-H')/(A-H), respectively. The interested reader may consult [1, 2, 8, 9] as well.

Acknowledgment. The author is grateful to Rex Mercer for valuable suggestions and encouragement.

REFERENCES

- 1. H. Alzer, An inequality of W.L. Wang and P.F. Wang, Internat. J. Math. Math. Sci. 13 (1990), 295–298.
- 2. —, On an additive analogue of Ky Fan's inequality, Indag. Math. N.S. 8 (1997), 1–6.
- 3. ———, A new refinement of the arithmetic-geometric mean inequality, Rocky Mountain J. Math. 27 (1997), 663–667.
 - ${\bf 4.}$ E.F. Beckenbach and R. Bellman, ${\it Inequalities},$ Springer, Berlin, 1961.
- 5. D.I. Cartwright and M.J. Field, A refinement of the arithmetic mean–geometric mean inequality, Proc. Amer. Math. Soc. 71 (1978), 36–38.
- ${\bf 6.}$ G.H. Hardy, J.E. Littlewood and G. Polya, $\it Inequalities, 2nd$ ed., Cambridge University Press, 1966.
- 7. A.M. Mercer, Bounds for A-G, A-H, G-H, and a family of inequalities of Ky-Fan's type, using a general method, J. Math. Anal. Appl. 243 (2000), 162–173.
- 8. P.R. Mercer, A note on Alzer's refinement of an additive Ky Fan inequality, Math. Inequalities Appl. 3 (2000), 147–148.
- 9. D.S. Mitrinovic, J.E. Pecaric and A.M. Fink, Classical and new inequalities in analysis, Kluwer Acad. Press, Dordrecht, 1995.

DEPARTMENT OF MATHEMATICS, SUNY COLLEGE AT BUFFALO, NEW YORK 14222

 $E\text{-}mail\ address: \verb|mercerpr@math.buffalostate.edu|$