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ON THE SPECTRUM OF A SECOND-ORDER
PERIODIC DIFFERENTIAL EQUATION

HASKIZ COŞKUN

ABSTRACT. In this paper we derive asymptotic approx-
imations for the periodic and semi-periodic eigenvalues for
a second-order periodic differential equation known as Hill’s
equation. Our results are sharper than the existing results in
the literature in that they give sharper error bounds whilst
relaxing the smoothness assumptions. For some particular
potentials, including that of Mathieu equation, we provide es-
timates for the corresponding eigenvalues using the symbolic
manipulator package, Maple.

1. Introduction. We consider the differential equation

(1.1) y′′(t) + (λ− q(t))y(t) = 0,

where λ is a real-parameter, q is a real-valued periodic function with
period π. For some N ≥ 2 we assume that q(N−1)(t) exists and is
integrable on [0, π].

We associate two types of boundary conditions with (1.1) on the
interval [0, π]. The periodic boundary conditions y(0) = y(π),
y′(0) = y′(π); the semi-periodic boundary conditions y(0) = −y(π),
y′(0) = −y′(π). We denote the periodic eigenvalues by {λn} and the
semi-periodic eigenvalues by {µn}. It is known [3] that the two sets of
eigenvalues satisfy the relation

−∞ < λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < · · · .
The instability intervals of (1.1) are defined to be I0=(−∞, λ0), I2m+1=
(µ2m, µ2m+1) and I2m+2 = (λ2m+1, λ2m+2).

We make the point that a more general second-order periodic differ-
ential equation

(1.2) {p(t)y′(t)}′ + {λs(t)− q(t)}y(t) = 0
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can be reduced to an equation of type (1.1) by using the Liouville
transformation if p′′ and s′′ exist and are piecewise continuous. In
this case, the periodic and the semi-periodic eigenvalues of the reduced
equation are the same as with those of (1.1), [3].

Many authors have computed estimates to the periodic and the semi-
periodic eigenvalues and used those to solve the forward and inverse
scattering problems. We refer in particular to [3] and [6]. A feature
of the estimates is that they become increasingly accurate the more
times that p(t), q(t) and s(t) are differentiable. In this paper, we derive
asymptotic estimates for the periodic and the semi-periodic eigenvalues
of (1.1) with an error term of order O(m−(N+1)) under the condition
that q(N−1)(t) exist and be integrable on [0, π]. The error term in the
corresponding estimates derived in [3] is o(m−N ) under the condition
that q(N−1)(t) exists and is piecewise continuous on the same interval.
Besides the improvement in the error term, the computations are
carried out to all orders in the spectral parameter and coefficients are
given recursively while a few of them are explicitly given in [3]. Also
examples including the Mathieu equation are carried out by Maple.

We suppose without loss of generality that q has a mean value zero,
i.e., ∫ π

0

q(t) dt = 0.

As an illustration of our results we show that if q(N−1)(t) exists and is
integrable on [0, π] then the periodic and the semi-periodic eigenvalues
of (1.1) satisfy, as m→ ∞

i) N is even

µ
1/2
2m , µ

1/2
2m+1 = (2m+1)+

i

π

N
2∑

k=1

1
(2m+1)2k−1

∫ π

0

α2k−1(t) dt

(1.3)

∓ 1
2Nπ(2m+1)N

[( ∫ π

0

q(N−1)(t) sin(2(2m+1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(2(2m+1)t) dt
)2]1/2

+O(m−(N+1))
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and

λ
1/2
2m+1, λ

1/2
2m+2 = 2(m+1)+

i

π

N/2∑
k=1

1
22k−1(m+1)2k−1

∫ π

0

α2k−1(t) dt

(1.4)

∓ 1
22Nπ(m+1)N

[( ∫ π

0

q(N−1)(t) sin(4(m+1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(4(m+1)t) dt
)2]1/2

+O(m−(N+1)).

ii) N is odd

µ
1/2
2m , µ

1/2
2m+1 = (2m+1)+

i

π

(N−1)/2∑
k=1

1
(2m+1)2k−1

∫ π

0

α2k−1(t) dt

(1.5)

− 1
2π(2m+1)N

N−2∑
k=1

∫ π

0

αk(t)αN−1−k(t) dt

∓ 1
2Nπ(2m+1)N

[( ∫ π

0

q(N−1)(t) sin(2(2m+1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(2(2m+1)t) dt
)2]1/2

+O(m−(N+1))

and

λ
1/2
2m+1, λ

1/2
2m+2 = 2(m+1)+

i

π

(N−1)/2∑
k=1

1
22k−1(m+1)2k−1

∫ π

0

α2k−1(t) dt

(1.6)

− 1
2N+1π(m+1)N

N−2∑
k=1

∫ π

0

αk(t)αN−1−k(t) dt

∓ 1
22Nπ(m+1)N

[( ∫ π

0

q(N−1)(t) sin(4(m+1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(4(m+1)t) dt
)2]1/2

+O(m−(N+1)),
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where
α1(t) =

−i
2
q(t)

and for n = 1, 2, . . . , N − 1

(1.7) αn+1(t) = i
[
α′

n(t) +
n−1∑
k=1

αk(t)αn−k(t)
]
,

with i2 = −1. As a result of these estimates, instability intervals are
given explicitly as follows:

I2m+1 =
1

2N−1π(2m+1)N−1

[( ∫ π

0

q(N−1)(t) sin(2(2m+1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(2(2m+1)t) dt
)2]1/2

+O(m−N )

I2m+2 =
1

22N−1π(m+1)N−1

[( ∫ π

0

q(N−1)(t) sin(4(m+1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(4(m+1)t) dt
)2]1/2

+O(m−N ).

Central to our analysis is the following theorem of Hochstadt [5],
which involves Λn(τ ), the eigenvalues of (1.1) considered on the interval
[τ, τ + π], where 0 ≤ τ < π, with the Dirichlet boundary conditions

(1.8) y(τ ) = y(τ + π) = 0.

Theorem A. The ranges of Λ2m(τ ) and Λ2m+1(τ ), as function of τ
for τ ∈ [0, π] are [µ2m, µ2m+1] and [λ2m+1, λ2m+2], respectively.

We also note (see [5]) that (1.1) with (1.8) is equivalent to

(1.9) y′′(t) + (λ− q(t+ τ ))y(t) = 0

with the boundary condition

(1.10) y(0) = y(π) = 0.
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The method is an exploitation of the well-known Ricatti equation
associated to Hill’s equation, to compute the expansion of Λn(τ ) and
then use Theorem A.

2. The technique. We only consider the case that N is even and
define

(2.1) vτ (t,Λ) =
y′(t,Λ)
y(t,Λ)

− rτ (t,Λ),

where rτ (t,Λ) is a complex-valued differentiable function which will
be determined, and y(t,Λ) is a complex-valued solution of (1.9) with
y′(0,Λ)/y(0,Λ) = rτ (0,Λ). Substitution of (2.1) into (1.9) yields

(2.2) v′τ = −v2τ − 2vτ rτ −Qτ ,

where

(2.3) Qτ = r2τ + r′τ + (λ− q(t+ τ )).
Let

(2.4) rτ (t,Λ) = iΛ1/2 +
N−1∑
n=1

Λ−n/2αn(t+ τ ) + ρτ (t,Λ)

with ρτ (0,Λ) = 0. We choose

α1(t+ τ ) = − i
2
q(t+ 2),

α2(t+ τ ) =
i

2
α′

1(t+ τ ) =
1
4
q′(t+ τ )

and for n = 2, . . . , N − 2,

(2.5) αn+1(t+τ ) =
i

2

[
α′

n(t+τ )+
n−1∑
k=1

αk(t+τ )αn−k(t+τ )
]
.

Then (2.3) becomes

Qτ (t,Λ) =
2N−2∑
n=N−1

Λ−n/2
( ∑

r+s=n

αr(t+τ )αs(t+τ )
)(2.6)

+ Λ−(N−1)/2α′
N−1(t+τ )+2ρτ (t,Λ)

×
( N−1∑

n=1

Λ−n/2αn(t+τ )
)
+ρ2τ (t,Λ)+2iΛ1/2ρτ (t,Λ)+ρ′τ (t,Λ).
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To determine ρτ (t,Λ) we solve the following first-order linear differen-
tial equation

ρ′τ (t,Λ)+2
(
iΛ1/2 +

N−1∑
n=1

Λ−n/2αn(t+τ,Λ)
)
ρτ (t,Λ)

(2.7)

= −
[
Λ−(N−1)/2α′

N−1(t+τ )+
2N−2∑

n=N−1

Λ−n/2
( ∑

r+s=n

αr(t+τ )αs(t+τ )
)]

and find that

(2.8)

ρτ (t,Λ) = −
∫ t

0

[
Λ−(N−1)/2α′

N−1(x+τ )

+
2N−2∑

n=N−1

Λ−n/2
( ∑

r+s=n

αr(x+τ )αs(x+τ )
)]

× e−2
∫ t

x
(iΛ1/2+

∑N−1

n=1
Λ−n/2αn(s+τ)) ds

dx.

After ρτ (t,Λ) has been determined, (2.6) reduces to

(2.9) Qτ (t,Λ) = ρ2τ (t,Λ).

Since αi(t+τ ) involves no derivative of q(t+ τ ) and hence of q(t) with
a degree greater than i− 1, ρτ (t,Λ) given by (2.8) is bounded. Hence
there exists a KN <∞ such that

(2.10) |ρτ (t,Λ)| < KNΛ−(N−1)/2

and

(2.11) Qτ (t,Λ) = ρ2τ (t,Λ) < K
2
NΛ−(N−1) = CNΛ−(N−1).

Using this bound on Qτ (t,Λ) we prove that vτ (t,Λ) is bounded. First,
we define the following functions:

Aτ (x,Λ) := sup
0≤ξ≤x

∣∣∣∣
∫ ξ

0

Qτ (t,Λ)e
−2

∫ x

t
rτ (s,Λ) ds

dt

∣∣∣∣,
Bτ (x,Λ) :=

∫ x

0

|e−2
∫ x

t
rτ (s,Λ) ds| dt,

Vτ (x,Λ) := sup
0≤t≤x

|vτ (t,Λ)|.
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Lemma 1. |vτ (t,Λ)| < 2Aτ (π,Λ) = O(Λ−(N−1)), 0 ≤ t ≤ π.

We prove the lemma in two steps.

Step 1.

(2.12) 4Aτ (π,Λ)Bτ (π,Λ) < 1

for sufficiently large Λ.

Proof of Step 1. We note that rτ (t,Λ), given by (2.4), is a complex-
valued function and hence can be written as

(2.13) rτ (t,Λ) = r1,τ (t, λ) + ir2,τ (t,Λ),

where both r1,τ (t,Λ) and r2,τ (t,Λ) are real-valued. Now, by construc-
tion rτ (t,Λ), and hence r1,τ (t,Λ), is the sum of powers of derivatives
of q(t+ τ ). Because of the assumptions on q(t+ τ ), rτ (t,Λ), hence of
r1,τ (t,Λ), is bounded. Therefore, for some M > 0

(2.14) −2r1,τ (t,Λ) < M.

Using (2.14) we bound Bτ (x,Λ) for any x in [0, π] as follows:

(2.15)

Bτ (x,Λ) =
∫ x

0

|e−2
∫ x

t
rτ (s,Λ) ds| dt

=
∫ x

0

|e−2
∫ x

t
(r1,τ (s,Λ)+ir2,τ (s,Λ)) ds| dt

=
∫ x

0

|e−2
∫ x

t
r1,τ (s,Λ) ds| dt

<

∫ x

0

|e
∫ x

t
M ds| dt

=
∫ x

0

eM(x−t) dt < eMπ

∫ x

0

dt

< πeMπ.

Next, we bound Aτ (x,Λ) for any x in [0, π]. From (2.11) and (2.14) we
see that

(2.16)
Aτ (x,Λ) < CNΛ−(N−1)

∫ ξ

0

eMπ dt

< CNΛ−(N−1)πeMπ.
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From (2.15) and (2.16) we conclude that

(2.17) Aτ (x,Λ)Bτ (x,Λ) < π2CNΛ−(N−1)e2Mπ.

Now, by choosing Λ large enough we find that

Aτ (x,Λ)Bτ (x,Λ) <
1
4
.

Letting x = π we get (2.12).

Step 2. If 4Aτ (π,Λ)Bτ (π,Λ) < 1, then

(2.18) |vτ (x,Λ)| < 2Aτ (π,Λ).

Proof of Step 2. First, solving the equation (2.2) with vτ (0,Λ) = 0
we find that

(2.19)
vτ (x,Λ) = −

[ ∫ x

0

Qτ (t,Λ)e
−2

∫ x

t
rτ (s,Λ) ds

dt

+
∫ x

0

v2τ (t,Λ)e
−2

∫ x

t
rτ (s,Λ) ds

dt
]
.

Therefore

(2.20)

|vτ (x,Λ)| ≤
∣∣∣
∫ x

0

Qτ (t,Λ)e
−2

∫ x

t
rτ (s,Λ) ds

dt
∣∣∣

+
∣∣∣
∫ x

0

v2τ (t,Λ)e
−2

∫ x

t
rτ (s,Λ) ds

dt
∣∣∣

≤ Aτ (π,Λ) +
[

sup
0≤t≤x

|vτ (t,Λ)|
]2

×
∫ x

0

|e−2
∫ x

t
rτ (s,Λ) ds| dt

≤ Aτ (π,Λ)+V 2
τ (x,Λ)Bτ (π,Λ)

for any x in [0, π].

We now claim that if 4Aτ (π,Λ)Bτ (π,Λ) < 1, then |vτ (x,Λ)| <
2Aτ (π,Λ). We need to establish that

Vτ (x,Λ) < 2Aτ (π,Λ).
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Clearly, Vτ (0,Λ) = 0. Assume that the claim is false, and let x0 ∈ (0, π]
be the smallest such that

(2.21) Vτ (x0,Λ) = 2Aτ (π,Λ).

Using (2.20) and the definition of Vτ (x,Λ) we see that

(2.22) Vτ (x0,Λ) ≤ Aτ (π,Λ) + V 2
τ (x0,Λ)Bτ (π,Λ).

Substituting (2.21) into (2.22) we observe that

(2.23) 2Aτ (π,Λ) ≤ Aτ (π,Λ)(1 + 4Aτ (π,Λ)Bτ (π,Λ)).

From (2.12) and (2.23) we get that

2Aτ (π,Λ) < 2Aτ (π,Λ),

which is a contradiction, and therefore the proof of Step 2 follows.

We also know from (2.16) that

Aτ (x,Λ) = O(Λ−(N−1)).

This together with Step 1 and Step 2 proves the lemma.

Combining the lemma with (2.1) we find that

(2.24)
y′(t,Λ)
y(t,Λ)

= rτ (t,Λ) +O(Λ−(N−1))

= r1,τ (t,Λ) + ir2,τ (t,Λ) +O(Λ−(N−1)).

On the other hand y(t,Λ) is a complex-valued solution of (1.9) which
can be written as

(2.25) y(t,Λ) = R(t,Λ) exp(iθ(t,Λ)),

where R(t,Λ) and θ(t,Λ) are both real-valued. It follows from (2.25)
that

(2.26)
y′

y
=
R′

R
+ iθ.
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Substitution of (2.26) into (2.24) yields

R′(t,Λ)
R(t,Λ)

= r1,τ (t,Λ) +O(Λ−(N−1)),(2.27)

Θ′(t,Λ) = r2,τ (t,Λ) +O(Λ−(N−1)).(2.28)

From (2.28)

(2.29) (n+ 1)π =
∫ π

0

r2,τ (t,Λ) +O(Λ−(N−1)),

where r2,τ (t,Λ) is the imaginary part of rτ (t,Λ). (For details, see
[4], [2]). To separate rτ (t,Λ) into the real and imaginary parts, we
need to know which elements of the sum in (2.4) are real and which
are imaginary. We also need to separate ρτ (t,Λ) into the real and
imaginary parts. To this end we give the following lemma:

Lemma 2. αk(t + τ ) is real if k = 2m and pure imaginary if
k = 2m+ 1.

We prove the lemma by induction. Clearly the lemma is true for
k = 1 and k = 2 since

α1(t+ τ ) = − i
2
q(t+ τ )

is pure imaginary, and

α2(t+ τ ) = − 1
2i
α′

1(t+ τ ) =
1
4
q′(t+ τ )

is real. We assume that the lemma is true for k ≤ n, and we prove that
it is also true for k = n+ 1. For the case of n = 2m, from (1.7)

α2m+1(t+ τ ) =
i

2

[
α′

2m(t+ τ ) +
2m−1∑
s=1

αs(t+ τ )α2m−s(t+ τ )
]
.

Now, α′
2m(t+τ ) is real since α2m(t+τ ) is so by the induction hypothesis.

It suffices to show that each term of the sum is also real. To see this:
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• if s is even, so is 2m− s. Hence both αs(t+ τ ) and α2m−s(t+ τ )
are real and so is their product.

• if s is odd, so is 2m − s. Hence both αs(t + τ ) and α2m−s(t + τ )
are pure imaginary and hence their product is real.

The other case is similar.

We also find Im (ρτ (t,Λ)) with an error term O(Λ−(N+1)/2) which is
(see [1])

Im (ρτ (t,Λ)) = Λ− (N−1)
2

∫ t

0

[
iα′

N−1(x+τ )

(2.30)

+ i
N−2∑
k=1

αk(x+τ )αN−1−k(x+τ )
]
cos(2Λ

1
2 (t−x)) dx

−2Λ−N/2

∫ t

0

[
α′

N−1(x+τ )+
N−2∑
k=1

αk(x+τ )αN−1−k(x+τ )
]

×
( ∫ t

x

α1(s+τ ) ds
)
sin(2Λ1/2(t−x)) dx

+Λ−N/2

∫ t

0

( N−1∑
k=1

αk(x+τ )αN−k(x+τ )
)
sin(2Λ1/2(t−x)) dx

+O(Λ−(N+1)/2)

and hence

r2,τ (t,Λ) = Λ1/2−i
N/2∑
k=1

α2k−1(t+τ )Λ−(2k−1)/2

+Λ−(N−1)/2

∫ t

0

[
iα′

N−1(x+τ )+i
N−2∑
k=1

αk(x+τ )αN−1−k(x+τ )
]

cos(2Λ1/2(t−x)) dx
(2.31)

−2Λ−N/2

∫ t

0

[
α′

N−1(x+τ )+
N−2∑
k=1

αk(x+τ )αN−1−k(x+τ )
]
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×
(∫ t

x

α1(s+τ ) ds
)
sin(2Λ1/2(t−x)) dx

+Λ−N/2

∫ t

0

[ N−1∑
k=1

αk(x+τ )αN−k(x+τ )
]
sin(2Λ1/2(t−x)) dx

+O(Λ−(N+1)/2).

Substituting (2.4) into (2.29) and rearranging yields

(n+1)π = Λ
1
2 π−i

N
2∑

k=1

Λ−
2k−1

2

∫ π

0

α2k−1(t+τ ) dt

+Λ−
N−1
2

∫ π

0

(∫ t

0

iα′
N−1(x+τ ) cos(2Λ

1
2 (t−x)) dx

)
dt

+Λ−
N−1
2

∫ π

0

(∫ t

0

(i
N−2∑
k=1

αk(x+τ )αN−1−k(x+τ )
)

cos(2Λ
1
2 (t−x)) dx) dt

−2Λ−
N
2

∫ π

0

( ∫ t

0

α′
N−1(x+τ )

(∫ t

x

α1(s+τ ) ds
)

sin(2Λ
1
2 (t−x)) dx

)
dt

−2Λ−
N
2

∫ π

0

( ∫ t

0

[ N−2∑
k=1

αk(x+τ )αN−1−k(x+τ )
]

×
( ∫ t

x

α1(s+τ ) ds
)
sin(2Λ

1
2 (t−x)) dx

)
dt(2.32)

+Λ−
N
2

∫ π

0

( ∫ t

0

[ N−1∑
k=1

αk(x+τ )αN−k(x+τ )
]

sin(2Λ1/2(t−x)) dx
)
dt

+O(Λ−(N+1)/2).

After some calculations (changing the order of integration and using
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integration by parts repeatedly) (2.32) reduces to the following:

(2.33)

(n+1)π = Λ1/2π−i
N/2∑
k=1

Λ−(2k−1)/2

∫ π

0

α2k−1(t+τ ) dt

+
iN−2

2N
Λ−N/2

∫ π

0

q(N−1)(t+τ ) sin(2Λ1/2(π−t)) dt

+O(Λ−(N+1)/2).

Using reversion on (2.33) we get

(2.34)

Λ1/2
n (τ ) = (n+ 1) +

i

π

N/2∑
k=1

1
(n+ 1)2k−1

∫ π

0

α2k−1(t) dt

+
iN−2

2Nπ(n+1)N

∫ π

0

q(N−1)(t+τ ) sin(2(n+1)t) dt+O(n−(N+1)).

The following lemma will be needed to find the periodic and the
semi-periodic eigenvalues.

Lemma 3. Let

I1(n, τ ) :=
∫ π

0

q(N−1)(t+ τ ) sin(2(n+ 1)t) dt.

Then

(2.35)

min
0≤τ<π

I1(n, τ ) = −
[( ∫ π

0

q(N−1)(t) sin(2(n+ 1)t) dt
)2

+
( ∫ π

0

q(N−1)(t) cos(2(n+ 1)t) dt
)2

]1/2

and

(2.36)

max
0≤τ<π

I1(n, τ ) =
[( ∫ π

0

q(N−1)(t) sin(2(n+ 1)t) dt
)2

+
(∫ π

0

q(N−1)(t) cos(2(n+ 1)t) dt
)2

]1/2

.
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Proof. By a change of variable, t+ τ = u, we see that

(2.37)

I1(n, τ ) = cos(2(n+1)τ )
∫ τ+π

τ

q(N−1)(t) sin(2(n+1)t)) dt

− sin(2(n+1)τ )
∫ τ+π

τ

q(N−1)(t) cos(2(n+1)t)) dt

= cos(2(n+1)τ )
∫ π

0

q(N−1)(t) sin(2(n+1)t)) dt

− sin(2(n+1)τ )
∫ π

0

q(N−1)(t) cos(2(n+1)t)) dt.

The last equality holds since

q(N−1)(t)
cos
sin(2(n+ 1)t))

is periodic with period π.

Let

B1(n) :=
∫ π

0

q(N−1)(t) sin(2(n+ 1)t)) dt,

B2(n) :=
∫ π

0

q(N−1)(t) cos(2(n+ 1)t)) dt.

Then (2.37) becomes

(2.38)
I1(n, τ ) = B1(n) cos(2(n+ 1)τ ))−B2(n) sin(2(n+ 1)τ ))

=
√
B2

1(n) +B2
2(n) sin(2(n+ 1)τ ) + ψ),

where ψ is chosen so that

sinψ =
B1(n)√

B2
1(n) +B

2
2(n)

, cosψ =
−B2(n)√

B2
1(n) +B

2
2(n)

.

Hence a value of τ which makes (2.38) a minimum is given by

τmin(n) =
1

2(n+ 1)

(3π
2

− ψ
)
,
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and a value of τ that makes (2.38) a maximum is given by

τmax(n) =
1

2(n+ 1)

(π
2
− ψ

)
.

Replacing τ in (2.38) by τmin(n) and τmax(n) the lemma is proved.

Finally, asymptotic estimates for the periodic and the semi-periodic
eigenvalues stated at the beginning follow from (2.34) (2.36).

We also note that the error term at the end of (2.34) can be improved
to o(n−(N+1)) by further manipulations in (2.8). In this case

Λ1/2
n (τ ) = (n+ 1) +

i

π

N/2∑
k=1

1
(n+ 1)2k−1

∫ π

0

α2k−1(t) dt

+
iN−2

2Nπ(n+ 1)N

∫ π

0

q(N−1)(t+τ ) sin(2(n+1)t) dt

+
1

π(n+ 1)N+1

∫ π

0

α1(t)αN−1(t) dt

− 1
2π(n+ 1)N+1

N−1∑
k=1

∫ π

0

αk(t)αN−k(t) dt

+ o(n−(N+1))

as n→ ∞.

In the following examples we only find the semi-periodic eigenvalues.
The first equation is known as Mathieu equation.

Example 1. q(t) = 2a cos 2t, N = 2, a is constant.

√
µ2m =

1
8

64πm5+160πm4+144πm3+56πm2+8πm−√
2a∆

m(1+m)π(4m2+4m+1) +O(m−3),

√
µ2m+1 =

1
8

64πm5+160πm4+144πm3+56πm2+8πm+
√

2a∆
m(1+m)π(4m2+4m+1) +O(m−3),

where
∆ =

√
(1 +m+m2 − 4mcosπ − 4cosπm2).
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Example 2. q(t) = t− (π/2), N = 2.

√
µ2m =

64πm3 + 96πm2 + 48πm+ 8π
32πm2 + 32πm+ 8π

−
√
(−2 cos (4πm+ 2π) + 2)/(4m2 + 4m+ 1)

32πm2 + 32πm+ 8π
+O(m−3)

√
µ2m+1 =

64πm3 + 96πm2 + 48πm+ 8π
32πm2 + 32πm+ 8π

+

√
(−2cos (4πm+ 2π) + 2)/(4m2 + 4m+ 1)

32πm2 + 32πm+ 8π
+O(m−3).

Example 3. q(t) = t1/2 − 2/3π1/2, N = 2,

√
µ2m =

192πm3 + 288πm2 + 144πm+ 24π
96πm2 + 96πm+ 24π

− 3
√
(π(FresnelS(8m+4)+FresnelC(8m+4))/(2m+1))

96πm2 + 96πm+ 24π
+O(m−3),

√
µ2m+1 =

192πm3 + 288πm2 + 144πm+ 24π
96πm2 + 96πm+ 24π

+
3
√
(π(FresnelS(8m+4)+FresnelC(8m+4))/(2m+1))

96πm2 + 96πm+ 24π
+O(m−3),

where

FresnelS(8m+ 4) =
∫ 8m+4

0

sin
(π
2
t2

)
dt,

FresnelC(8m+ 4) =
∫ 8m+4

0

cos
(π
2
t2

)
dt.

Acknowledgments. The author is grateful to Prof. Bernard J.
Harris for introducing her to the field.



SPECTRUM OF A SECOND-ORDER EQUATION 1277

REFERENCES

1. H. Coskun, Topics in the theory of periodic differential equations, Ph.D.
Dissertation, NIU, 1994.

2. H. Coskun and B.J. Harris, Estimates for the periodic and semi-periodic
eigenvalues of Hill’s equation, Proc. Royal Soc. Edinburgh 130 (2000), 991 998.

3. M.S.P. Eastham, The spectral theory of periodic differential equations, Scottish
Academic Press, Edinburgh, 1973.

4. B.J. Harris, The form of the spectral functions associated with Sturm-Liouville
problems with continuous spectrum, Mathematika 44 (1997), 162 194.

5. H. Hochstadt, On the determination of a Hill’s Equation from its Spectrum,
Arch. Rat. Mech. Anal. 19 (1965), 353 362.

6. E.C. Titchmarsh, The theory of functions, Oxford Univ. Press, Amen House,
London, 1932.

Department of Mathematics, Karadeniz Technical University, 61080,
Trabzon, Turkey
E-mail address: haskiz@ktu.edu.tr


