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COMMON FIXED POINT THEOREMS
FOR WEAKLY COMPATIBLE MAPPINGS

M.A. AHMED

ABSTRACT. This work is a continuation of [18,19,26 28].
The concept of weak compatibility between a set-valued map-
ping and a single-valued mapping of Jungck and Rhoades [19]
is used as a tool for proving some common fixed point theo-
rems on metric spaces. Generalizations of known results, es-
pecially theorems by Fisher [7], are thereby obtained. As an
application of this generalization, one example is given.

1. Introduction. In 1922, the Polish mathematician, Banach,
proved a theorem which ensures, under appropriate conditions, the
existence and uniqueness of a fixed point. His result is called Banach’s
fixed point theorem or the Banach contraction principle. This theo-
rem provides a technique for solving a variety of applied problems in
mathematical science and engineering. Many authors have extended,
generalized and improved Banach’s fixed point theorem in different
ways. In [11], Jungck introduced more generalized commuting map-
pings, called compatible mappings, which are more general than com-
muting and weakly commuting mappings (Definition 1.4). This concept
has been useful for obtaining more comprehensive fixed point theorems
(see, e.g., [1, 2, 4, 5, 9 18, 20 25, 29, 32, 34, 35]).

Recently, Jungck and Rhoades [18, 19] defined the concepts of δ-
compatible and weakly compatible mappings which extend the concept
of compatible mappings in the single-valued setting to set-valued map-
pings. Several authors used these concepts to prove some common fixed
point theorems (see, e.g., [18, 19, 26 28]).

Throughout this paper, let (X, d) be a complete metric space unless
mentioned otherwise and B(X) is the set of all nonempty bounded
subsets of X. As in [6, 8], let δ(A,B) and D(A,B) be the functions
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defined by
δ(A,B) = sup {d(a, b) : a ∈ A, b ∈ B},
D(A,B) = inf {d(a, b) : a ∈ A, b ∈ B},

for all A,B in B(X).

If A consists of a single point a, we write δ(A,B) = δ(a,B). If B also
consists of a single point b, we write δ(A,B) = d(a, b).

It follows immediately from the definition that

δ(A,B) = δ(B,A) ≥ 0,
δ(A,B) ≤ δ(A,C) + δ(C,B),
δ(A,B) = 0 iff A = B = {a},
δ(A,A) = diamA,

for all A,B,C in B(X).

Definition 1.1 [6]. A sequence {An} of subsets of X is said to be
convergent to a subset A of X if

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An

for n = 1, 2, . . . , and {an} converges to a.
(ii) given ε > 0, there exists a positive integer N such that An ⊆ Aε

for n > N where Aε is the union of all open spheres with centers in A
and radius ε.

Lemma 1.1 [6, 8]. If {An} and {Bn} are sequences in B(X)
converging to A and B in B(X), respectively, then the sequence
{δ(An, Bn)} converges to δ(A,B).

Lemma 1.2 [8]. Let {An} be a sequence in B(X) and y a point in
X such that δ(An, y) → 0. Then the sequence {An} converges to the
set {y} in B(X).

Definition 1.2 [8, 33]. A set-valued mapping F of X into B(X)
is said to be continuous at x ∈ X if the sequence {Fxn} in B(X)
converges to Fx whenever {xn} is a sequence in X converging to x in
X. F is said to be continuous on X if it is continuous at every point
in X.
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Lemma 1.3 [8]. Let {An} be a sequence of nonempty subsets of X
and z in X such that

lim
n→∞ an = z,

z independent of the particular choice of each an ∈ An. If a self-map
I of X is continuous, then {Iz} is the limit of the sequence {IAn}.

Definition 1.3 [33]. The mappings F : X → B(X) and I : X → X
are said to be weakly commuting on X if IFx ∈ B(X) and

(1) δ(FIx, IFx) ≤ max{δ(Ix, Fx), diam IFx}

for all x in X.

Note that if F is a single-valued mapping, then the set IFx consists
of a single point. Therefore, diam IFx = 0 for all x ∈ X and condition
(1) reduces to the condition given by Sessa [31], that is,

(2) d(FIx, IFx) ≤ d(Ix, Fx)

for all x in X.

Two commuting mappings F and I clearly weakly commute but two
weakly commuting F and I do not necessarily commute as shown in
[33].

In a recent paper, Jungck [11] generalized the concept of weakly
commuting for single-valued mappings as follows:

Definition 1.4. Two single-valued mappings f and g of a metric
space (X, d) into itself are compatible if limn→∞ d(fgxn, gfxn) = 0
whenever {xn} is a sequence in X such that

lim
n→∞ fxn = lim

n→∞ gxn = t

for some t in X.

It can be seen that two weakly commuting mappings are compatible
but the converse is false. Examples supporting this fact can be found
in [11].
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In [18], Jungck and Rhoades extended Definition 1.4 of compatibility
to set-valued mappings setting as follows:

Definition 1.5. The mappings I : X → X and F : X → B(X) are δ-
compatible if limn→∞ δ(FIxn, IFxn) = 0 whenever {xn} is a sequence
in X such that IFxn ∈ B(X),

Fxn → {t} and Ixn → t

for some t in X.

The following definition is given by Jungck and Rhoades [19].

Definition 1.6. The mappings I : X → X and F : X → B(X) are
weakly compatible if they commute at coincidence points, i.e., for each
point u in X such that Fu = {Iu}, we have FIu = IFu. (Note that
the equation Fu = {Iu} implies that Fu is a singleton).
It can be seen that any δ-compatible pair {F, I}is weakly compatible.

Examples of weakly compatible pairs which are not δ-compatible are
given in [19].

In [7], Fisher proved the following theorem:

Theorem 1.1. Let F,G be mappings of X into B(X) and I, J be
mappings of X into itself satisfying

δ(Fx,Gy) ≤ c max{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)},
for all x, y ∈ X, where 0 ≤ c < 1. If F commutes with I and
G commutes with J , G(X) ⊆ I(X), F (X) ⊆ J(X) and I or J is
continuous, then F,G, I and J have a unique common fixed point u in
X.

On the other hand, Fisher [7] proved the following fixed point theorem
on compact metric spaces:

Theorem 1.2. Let F,G be continuous mappings of a compact metric
space (X, d) into B(X) and I, J continuous mappings of X into itself
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satisfying the inequality

(3) δ(Fx,Gy) < max{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)},

for all x, y ∈ X for which the righthand side of the inequality (3) is
positive. If the mappings F and I commute and G and J commute and
G(X) ⊂ I(X), F (X) ⊂ J(X), then there is a unique point u in X such
that

Fu = Gu = {u} = {Iu} = {Ju}.

The aim of the present paper is to prove a common fixed point
theorem on complete metric spaces. Also, an example is given to
satisfy our theorem. The result extends and generalizes Theorem 12
of Sastry and Naidu [30] and Theorem 1.1, respectively. At the
end, a common fixed point theorem on compact metric spaces which
generalizes Theorem 1.2 is verified.

2. Main results.

Theorem 2.1. Let I, J be mappings of a metric space (X, d) into
itself and F,G : X → B(X) set-valued mappings such that

(4) ∪F (X) ⊆ J(X), ∪G(X) ⊆ I(X).

Also, the mappings I, J, F and G satisfy the following inequality:

(5)

δ(Fx,Gy) ≤ α

max{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)}+(1−α)[aD(Ix,Gy)+bD(Jy, Fx)],

for all x, y ∈ X, where

(6) 0 ≤ α < 1, a+ b < 1, a ≥ 0, b ≥ 0, α|a− b| < 1− (a+ b).

Suppose that one of I(X) or J(X) is complete. If both pairs {F, I}
and {G, J} are weakly compatible, then there exists z ∈ X such that
{z} = {Iz} = {Jz} = Fz = Gz.
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Proof. Let x0 be an arbitrary point in X. By (4), we choose a point
x1 in X such that Jx1 ∈ Fx0 = Z0. For this point x1 there exists a
point x2 in X such that Ix2 ∈ Gx1 = Z1, and so on. Continuing in
this manner we can define a sequence {xn} as follows

(7) Jx2n+1 ∈ Fx2n = Z2n, Ix2n+2 ∈ Gx2n+1 = Z2n+1,

for n = 0, 1, 2, . . . . For simplicity, we put Vn = δ(Zn, Zn+1), for
n = 0, 1, 2, 3, . . . .

By (5) and (7), we have

V2n = δ(Z2n, Z2n+1) = δ(Fx2n, Gx2n+1)
≤ αmax{d(Ix2n, Jx2n+1), δ(Ix2n, Fx2n), δ(Jx2n+1, Gx2n+1)}
+ (1− α)[aD(Ix2n, Gx2n+1) + bD(Jx2n+1, Fx2n)]

≤ αmax{δ(Gx2n−1, Fx2n), δ(Fx2n, Gx2n+1)}
+ (1− α)aδ(Gx2n−1, Gx2n+1)

≤ αmax{V2n−1, V2n}+ (1− α)a(V2n−1 + V2n) ≤ βV2n−1,

for n = 1, 2, 3, . . . , where β = max{(α+ (1− α)a/1− (1− α)a),
(a/1− a)}. The last inequality above, ≤ βV2n−1, follows easily upon
considering the cases: V2n ≤ V2n−1 and V2n−1 ≤ V2n. Similarly, one
can show that

V2n+1 ≤ γV2n,

for n = 0, 1, 2, . . . , where γ = max{(α+ (1− α)b/1− (1− α)b),
(b/1− b)}. Let c = βγ. If a, b ∈ [0, (1/2)), then β < 1 and γ < 1.
So that 0 ≤ c < 1.

If max{a, b} ≥ 1/2, then, since

α+ (1− α)x
1− (1− α)x

≤ x

1− x
⇐⇒ 1

2
≤ x ∀x ∈ [0, 1),

by hypotheses (6), it is easily seen that 0 ≤ c < 1. Then we deduce
that
(8)

V2n = δ(Z2n, Z2n+1) = δ(Fx2n, Gx2n+1) ≤ cnδ(Fx0, Gx1) = cnV0
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and
(9)

V2n+1= δ(Z2n+1, Z2n+2)=δ(Gx2n+1, Fx2n+2)≤cnδ(Gx1, Fx2)=cnV1,

for n = 0, 1, 2, . . . . We put

M = max{δ(Fx0, Gx1), δ(Gx1, Fx2)}.

By inequalities (8) and (9), then if zn is an arbitrary point in the set
Zn, for n = 0, 1, 2, 3, . . . , it follows that

d(z2n+1, z2n+2) ≤ δ(Z2n+1, Z2n+2) ≤ cn.M,

d(z2n+2, z2n+3) ≤ δ(Z2n+1, Z2n+2) ≤ cn.M.

Therefore the sequence {zn}, and hence any subsequence thereof, is a
Cauchy sequence in X.

Suppose that J(X) is complete. Let {xn} be the sequence defined by
(7). But Jx2n+1 ∈ Fx2n = Z2n, for n = 0, 1, 2, . . .

d(Jx2m+1, Jx2n+1) ≤ δ(Z2m, Z2n) < ε,

for m,n ≥ n0, n0 = 1, 2, 3, . . . . Therefore by the above, the sequence
{Jx2n+1} is Cauchy and hence Jx2n+1 → p = Jv ∈ J(X), for some
v ∈ X. But Ix2n ∈ Gx2n−1 = Z2n−1 by (7), so that we have

d(Ix2n, Jx2n+1) ≤ δ(Z2n−1, Z2n) = V2n−1 → 0.

Consequently, Ix2n → p. Moreover, we have for n = 1, 2, 3, . . .

δ(Fx2n, p) ≤ δ(Fx2n, Ix2n) + δ(Ix2n, p) = δ(Z2n, Z2n−1) + d(Ix2n, p).

Therefore, δ(Fx2n, p)→ 0. In like manner it follows that δ(Gx2n−1, p)→
0.

Since, for n = 1, 2, 3, . . . ,

δ(Fx2n, Gv) ≤ αmax{d(Ix2n, Jv), δ(Ix2n, Fx2n), δ(Jv,Gv)}
+ (1− α)[aD(Ix2n, Gv) + bD(Jv, Fx2n)]

≤ α max{d(Ix2n, Jv), δ(Ix2n, Fx2n), δ(Jv,Gv)}
+ (1− α)[aδ(Ix2n, Gv) + bδ(Jv, Fx2n)]
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and since δ(Ix2n, Gv)→ δ(p,Gv) when Ixn → p, we get as n → ∞

δ(p,Gv) ≤ αδ(p,Gv)+(1−α)aδ(p,Gv) =⇒ (1−α)(1−a)δ(p,Gv) ≤ 0.

Hence Gv = {p} = {Jv}, since a < 1. But ∪G(X) ⊆ I(X), so u ∈ X
exists such that {Iu} = Gv = {Jv}. Now if Fu �= Gv, δ(Fu,Gv) �= 0,
so that we have

δ(Fu,Gv) ≤ αmax{d(Iu, Jv), δ(Iu, Fu), δ(Jv,Gv)}
+ (1− α)[aD(Iu,Gv) + bD(Jv, Fu)]

≤ αmax{d(Iu, Jv), δ(Iu, Fu), δ(Jv,Gv)}
+ (1− α)[aδ(Iu,Gv) + bδ(Jv, Fu)].

So, we have

δ(Fu, p) ≤ αδ(Fu, p)+ (1−α)bδ(Fu, p) =⇒ (1−α)(1− b)δ(Fu, p) ≤ 0

and b < 1; it follows that Fu = {p} = Gv = {Iu} = {Jv}.
Since Fu = {Iu} and the pair {F, I} is weakly compatible, we obtain

Fp = FIu = IFu = {Ip}.
Using inequality (5), we have

δ(Fp, p) ≤ δ(Fp,Gv)
≤ αmax{d(Ip, Jv), δ(Ip, Fp), δ(Jv,Gv)}
+ (1− α)[aD(Ip,Gv) + bD(Jv, Fp)]

≤ αδ(Fp, p) + (1− α)(a+ b)δ(Fp, p)
=⇒ (1− α)[1− (a+ b)]δ(Fp, p) ≤ 0,

and since a + b < 1, it follows that {p} = Fp = {Ip}. Similarly,
{p} = Gp = {Jp} if the pair {G, J} is weakly compatible. Therefore,
we obtain {p} = {Ip} = {Jp} = Fp = Gp.

To see the p is unique, suppose that {q} = {Iq} = {Jq} = Fq = Gq.
If p �= q, then

d(p, q) ≤ δ(Fp,Gq) ≤ αd(p, q) + (1− α)[ad(p, q) + bd(p, q)]
=⇒ (1− α)[1− (a+ b)]d(p, q) ≤ 0,

and, since a+ b < 1, it follows that p = q.
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Remark 2.1. In Theorem 2.1, if F and G are single-valued mappings,
then we obtain a generalization of Theorem 12 of Sastry and Naidu
[30] for four single-valued mappings.

Remark 2.2. If we put a = b = 0 in Theorem 2.1, we obtain a
generalization of Theorem 1.1.

Remark 2.3. As another generalization of Theorem 1.1, the authors
[26, Theorem 2.1] proved a theorem by using the inequality

(10)

δ(Fx,Gy) ≤ φ(d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy), D(Ix,Gy), D(Jy, Fx)),

for all x, y ∈ X, where φ : [0,∞)5 → [0,∞) is a function which satisfies
the following conditions.

(i) φ is upper semi-continuous from the right and nondecreasing in
each coordinate variable,

(ii) for each t > 0

Ψ(t) = max{φ(t, t, t, t, t), φ(t, t, t, 2t, 0), φ(t, t, t, 0, 2t)} < t.

Condition (5) is not deducible from condition (10) since the function h
of [0,∞)5 into [0,∞) defined as

h(t1, t2, t3, t4, t5) = αmax{t1, t2, t3}+ (1− α)[at4 + bt5],

for all t1, t2, t3, t4, t5 in [0,∞), where a, b, α are as in condition (6), does
not generally satisfy condition (ii). Indeed, we have that

Ψ(t) = tmax{α+ (1− α)(a+ b), α+ (1− α)(2a), α+ (1− α)(2b)},

for all t > 0 and this does not imply Ψ(t) < t for all t > 0.

It suffices to consider α = 1/4, a = 2/3, b = 1/6 and then a, b, α
satisfy

0 ≤ α < 1, a ≥ 0, b ≥ 0, a+ b < 1, α|a− b| < 1− (a+ b)

but Ψ(t) = (5t/4) > t, for all t > 0. Therefore Theorem 2.1 in [26] and
Theorem 2.1 are two different generalizations of Theorem 1.1.
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Now, we give an example to show that Theorem 2.1 is more general
than Theorem 1.1.

Example. Let X = [0,∞) endowed with the Euclidean metric d.
Define

Fx = [0, (x6/6)], Gx = [0, (x3/6)],

Ix = x6 + 6x3, Jx =
x12

2
+ x6 +

x3

2

for all x ∈ X. We have

⋃
F (X) = J(X) =

⋃
G(X) = I(X) = X.

For any sequence {xn} in X, we have

Ixn → 0 as xn → 0, Fxn → {0} as xn → 0,

and

δ(FIxn, IFxn) = max
{
(x6

n + 6x3
n)6

6
,

(
x6

n

6

)6

+ 6
(
x6

n

6

)3}
−→ 0

as xn → 0,

IFxn ∈ B(X), thus F and I are δ-compatible and so they are weakly
compatible. Similarly, G and J are δ-compatible and so they are weakly
compatible.

For any x, y ∈ X, x �= y

δ(Fx,Gy) = max
{
x6

6
,
y3

6

}

= max
{
1
3
x6

2
,
1
3
y3

2

}

≤ max
{
1
3
(x6 + 6x3),

1
3

(
y12

2
+ y6 +

y3

2

)}
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≤ 1
3
max

{∣∣∣(x6 + 6x3)−
(
y12

2
+ y6 +

y3

2

)∣∣∣,
(x6 + 6x3),

(
y12

2
+ y6 +

y3

2

)}

=
1
3
max{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)}

≤ 1
3
max{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)}

+
(
1− 1

3

)[
1
4
D(Ix,Gy) +

1
5
D(Jy, Fx)

]
.

We see that the inequality (5) holds with a = 1/4, b = 1/5, α = 1/3
and 0 is the unique common fixed point of I, J, F and G. Hence the
hypotheses of Theorem 2.1 are satisfied. Theorem 1.1 is not applicable
because F and G do not commute with I and J , respectively.

According to the technique of Chang [3], we prove the following
theorem on compact metric spaces:

Theorem 2.2. Let I, J be functions of a compact metric space
(X, d) into itself and F,G : X → B(X) two set-valued functions with
∪F (X) ⊆ J(X) and ∪G(X) ⊆ I(X). Suppose that the inequality

(11)
δ(Fx,Gy) < αmax{d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy)}

+ (1− α)[aD(Ix,Gy) + bD(Jy, Fx)],

for all x, y ∈ X, where 0 ≤ α < 1, a ≥ 0, b ≥ 0, a ≤ 1/2, b < 1/2,
α|a − b| < 1 − (a + b), holds whenever the righthand side of (11) is
positive. If the pairs {F, I} and {G, J} are weakly compatible, and if
the functions F and I are continuous, then there is a unique point u in
X such that

Fu = Gu = {u} = {Iu} = {Ju}.

Proof. Let η = infx∈X{δ(Ix, Fx)}. Since X is a compact metric
space, there is a convergent sequence {xn} with limit x0 in X such
that

δ(Ixn, Fxn)→ η as n → ∞.



1200 M.A. AHMED

Since

δ(Ix0, Fx0) ≤ d(Ix0, Ixn) + δ(Ixn, Fxn) + δ(Fxn, Fx0),

by the continuity of F and I and limn→∞ xn = x0 we get δ(Ix0, Fx0) ≤
η and thus δ(Ix0, Fx0) = η.

Since ∪F (X) ⊆ J(X), there exists a point y0 in X with Jy0 ∈ Fx0

and d(Ix0, Jy0) ≤ η.

If η > 0, then

δ(Jy0, Gy0) ≤ δ(Fx0, Gy0)
< αmax{d(Ix0, Jy0), δ(Ix0, Fx0), δ(Jy0, Gy0)}
+ (1− α)[aD(Ix0, Gy0) + bD(Jy0, Fx0)]

≤ αmax{η, δ(Jy0, Gy0)}
+ (1− α)a[d(Ix0, Jy0) + δ(Jy0, Gy0)]

≤ αmax{η, δ(Jy0, Gy0)}+ (1− α)a[η + δ(Jy0, Gy0)].

If δ(Jy0, Gy0) > η in the last inequality, then we obtain from 0 ≤ α < 1
and a ≤ 1/2 that

δ(Jy0, Gy0) < [α+ 2(1− α)a]δ(Jy0, Gy0) ≤ δ(Jy0, Gy0).

This contradiction implies that δ(Jy0, Gy0) ≤ η.

Since ∪G(X) ⊆ I(X), then there is a point z0 in X such that
Iz0 ∈ Gy0 and d(Iz0, Jy0) < η. Hence we have from 0 ≤ α < 1
and b < 1/2 that

η ≤ δ(Iz0, F z0) ≤ δ(Fz0, Gy0)
< αmax{d(Iz0, Jy0), δ(Iz0, F z0), δ(Jy0, Gy0)}
+ (1− α)[aD(Iz0, Gy0) + bD(Jy0, F z0)]

≤ αδ(Iz0, F z0) + (1− α)bδ(Jy0, F z0)
≤ αδ(Iz0, F z0) + (1− α)b[d(Jy0, Iz0) + δ(Iz0, F z0)]
< αδ(Iz0, F z0) + (1− α)b[η + δ(Iz0, F z0)]
≤ [α+ 2(1− α)b]δ(Iz0, F z0) < δ(Iz0, F z0).

This contradiction demands that η = 0. Therefore, we have Gy0 =
{Jy0} = Fx0 = {Ix0} = {Iz0}.
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Since F and I are weakly compatible and Fx0 = {Ix0}, we get
F 2x0 = FIx0 = IFx0 = {I2x0}.
If I2x0 �= Ix0, then we have

d(I2x0, Ix0) = δ(F 2x0, Gy0)
< αmax{d(IFx0, Jy0), δ(IFx0, F

2x0), δ(Jy0, Gy0)}
+ (1− α)[aD(IFx0, Gy0) + bD(Jy0, F

2x0)]
= αd(I2x0, Ix0) + (1− α)(a+ b)d(I2x0, Ix0)
= [α+ (1− α)(a+ b)]d(I2x0, Ix0)

and since [α + (1 − α)(a + b)] < 1, then we have I2x0 = Ix0 . Hence
FIx0 = {Ix0} = {I2x0}. Similarly, we have GJy0 = {Jy0} = {J2y0}.
Let u = Ix0 = Jy0. Then Fu = {u} = {Iu} = {Ju} = Gu.

Suppose that the point y in X is a common fixed point of F,G, I and
J with y �= u. If either δ(y, Fy) �= 0 or δ(y,Gy) �= 0, then we have that

δ(y, Fy) ≤ δ(Fy,Gy) < αmax{d(y, y), δ(y, Fy), δ(y,Gy)}
+ (1− α)[aD(y,Gy) + bD(y, Fy)]

= αmax{δ(y, Fy), δ(y,Gy)}
+ (1− α)[aδ(y,Gy) + bδ(y, Fy)]

≤ λδ(y,Gy),

where λ = max
{
α+ (1− α)a
1− (1− α)b

,
a

1− b

}
< 1, it follows that δ(y, Fy) <

δ(y,Gy).

By symmetry, we have that δ(y,Gy) < δ(y, Fy), which is impossible.
So δ(y, Fy) = δ(y,Gy) = 0, that is, Fy = Gy = {y}.
Now

d(y, u) = δ(Fy,Gu) < αmax{d(y, u), δ(y, Fy), δ(u,Gu)}
+ (1− α)[aD(y,Gu) + bD(u, Fy)]

= αd(y, u) + (1− α)(a+ b)d(y, u)
= [α+ (1− α)(a+ b)]d(y, u)

and since α+ (1−α)(a+ b) < 1, it follows that u = y, whence u is the
unique common fixed point of F,G, I and J .
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Remark 2.4. If we put a = b = 0 in Theorem 2.2, we obtain a
generalization of Theorem 1.2.
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