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TENSOR PRODUCTS OF
NON-SELF-ADJOINT OPERATOR ALGEBRAS

V.I. PAULSEN* AND S.C. POWER**

1. Introduction. In this paper we study several norms that can
be introduced on the algebraic tensor product of two, not necessarily
self-adjoint, algebras of operators on a Hilbert space.

Following the work of Arveson [2], we know that if A is an algebra
of operators on a Hilbert space H or, more generally, a subalgebra of
a C*-algebra B, then to fully understand .A we must also consider the
whole family of norms on the k by k matrix algebras over A, My(A).
That is, we must regard A as a matriz normed space in the sense of
Effros [4]. When A is an algebra of operators on #, then M (.A) is just
the algebra of k x k matrices with entries from .A. This can be regarded
as an algebra of operators on H @ ---®H (k times), denoted H*) | and
is endowed with the norm that it inherits as operators on #(*). When
A is a subalgebra of a C*-algebra B, then it is well-known that there
is a unique norm on My (B) which makes it into a C*-algebra, and we
endow My (A) with the norm that it inherits as a subspace.

For the above reasons, if we are given an arbitrary complex algebra A,
then we shall call A an operator algebra, if it is endowed with a family
of norms on My, (A) and a representation p of A on some Hilbert space
such that the norms on My, (A) are induced by the representation. Thus

[1(@ij)l| = [I(p(ai;))]

for all (a;;) in My(A) and all k. We call such a family of norms an
operator norm.

Given two unital operator algebras, A; and As, we define a complete
operator cross-norm to be any operator norm on A; ® A which is
a cross-norm, that is, |[a; ® az2|| = ||a1|| - ||az||, and which has the
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property that the natural inclusions of A; into A; ® Az, = 1,2, given
by a; — a1 ® 1 and as — 1 ® as, induce isometries of My (A;) into
M (A ® Ap), for all k.

In this paper we introduce and study three natural complete operator
cross-norms, which we call the spatial, minimal and maximal norms.
We prove some elementary properties about these norms and analyze
them for a variety of examples. In contrast to the C*-algebra theory
the general context is complicated by the fact that even for very
simple finite dimensional algebras A; C M,,,7 = 1,2, the minimal and
maximal norms may differ. Establishing the equality of the minimal
and maximal norms is usually equivalent to the ability to lift commuting
contractive representations p; and p2 of A; and As to commuting unital
dilations m; and 7o of C*-algebras B; which contain A;,7 = 1,2. Ando’s
dilation theorem for commuting contractions [1], and the closely related
commutant lifting theorem of Sz-Nagy and Foias [13], are key results
that we need to obtain the dilations m; and w9 in various contexts.
For the upper triangular matrix subalgebra 7 (n) of M,, we need the
lifting theorems for commuting contractive representations obtained in
an earlier paper [9], or the new methods given below in §3.

It is well known that a triple of commuting contractions need not
possess a dilating triple of commuting unitary operators (Parrott [7]).
We find an analogue of this in §3 for a triple of commuting contractive
representations of 7(2), and this leads to the distinction of || ||min and
[| |lmax o0 T(2) ® T(2) ® T(2). §2 contains some basic results about
the three complete operator cross-norms we consider.

Before closing the section we comment on some of the similarities
and distinctions between this theory and the theory for C*-algebras.
If A is a C*-algebra, then any #-monomorphism p of A into another
C*-algebra B is automatically a complete isometry, that is, ||(ai;)|| =
[|(p(as;))|| for all (a;;) in My(A) and all k. If A; and Ay are C*-
algebras, then any norm on A; ® Ay, such that the completion of
A; ® As in this norm is a C*-algebra and such that the inclusions
a; — a3 ®1 and az — 1 ® as are x-monomorphisms is called a C*-
norm. C*-norms are automatically cross-norms [14], and so by the
above remark are complete operator cross-norms.

Unlike the C*-algebra case the cross-norm property does not come for
free for operator algebras. That is, there are operator algebras A; and
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Az and a representation p of A; ® A5 on a Hilbert space such that the
operator norm induced by p on A; ® A, has the property that each of the
inclusion maps is a complete isometry, but ||p(a; ® as)|| < [|a1]] - ||az]|.

For a simple example of this phenomenon, let Ay = Ay = T(2), fix r
and s, 0 < r,s < 1 and consider the maps p1,p2 : T(2) — Mg given

by
a rb 0 O a b 0 0
a b 0 ¢c 0 O 0 ¢c 0O
pl((o c>>_ 00 ar]®loo0abl]
0 0 0 ¢ 0 0 0 ¢
a 0 b O a 0 sb O
a b 0 a 0 b 0 a 0 sb
p2<<0 c>>_ 00 col% o0 ¢ 0
0 0 0 ¢ 0 0 0 ¢

It is easily checked that p; and p; are completely isometric isomor-
phisms and that their ranges commute. Hence, there is an induced
representation p of A; ® Az with p(a; ® az) = p1(a1)p2(az) and each of
the inclusion maps is a complete isometry. However, if {e;;} denotes the
usual matrix units in Mo, then ||p(e12®e;2)|| = max{r, s}-||e12||-]|e12]]-
Thus, p does not induce a cross norm, except when r or s is 1.

There are a number of fundamental questions that one could consider
about complete operator cross-norms. We focus, instead, on these
three particular cross-norms. However, it is clear that, before a
development can proceed which parallels somewhat the theory of C*-
norms, one needs an abstract characterization of operator algebras.
We are restricted by the fact that operator algebra norms can only be
defined via representations.

Recently, Ruan [12] has given an abstract characterization of those
matrix normed spaces which have linear embeddings as spaces of
operators which are completely isometric. Hopefully, this result can
lead to a characterization of operator algebras. For an example of
some of the difficulties, let B; and By be C*-algebras and consider
the Haagerup matrix norm on B; ® By introduced in [5] (see also
[11]). This algebra is an operator space, that is, there is a linear
map ¥ : By ® By — L(H) which is a complete isometry. However,
any completely contractive homormorphism 7 : By ® By — L(H) is
necessarily a *-homomorphism and hence is contractive in the maximal
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C*-norm on By ® Bs. This norm is strictly smaller than the Haagerup
norm. Thus B; ® Bz together with the Haagerup norms on My, (B; ®Bz)
is an operator space in the sense we have defined above but it is not an
operator algebra.

This is perhaps not a good example, for while B; ® By can be shown
to be a Banach algebra in the Haagerup norm, the Haagerup norm
on even My(B; ® B2) can fail to be a Banach algebra norm. For an
example let By = By = M.

2. The minimal, maximal and spatial complete operator
cross-norms. Let A; and Ay be unital operator algebras on the
complex Hilbert spaces H; and Ha, respectively. We do not assume
that these algebras are self-adjoint or closed in any particular topology.
In this section we introduce the spatial minimal and maximal complete
operator cross-norms and prove various results about these norms. We
assume throughout that our algebras have units and that all maps are
unital.

Recall that if A; and As are operators on H; and Hs, respectively,
then we have an operator A; ® Az on H; @ Ho with A1 ® Az(hy ® hg) =
(A1hy) ® (A2h2). Thus, if A; and Ay are algebras on H; and Hs
respectively, then we may regard A; ® Az as an algebra of operators on
H1®%Ho, and this identification endows A; ® A with an operator norm,
which is clearly a complete operator cross-norm. We call this norm the
spatial operator norm, and, for U in My (A; ®As3), we denote this norm
by [[U]lepar-

More generally, if A; and As are operator algebras and p; : A; —
L(H;), i = 1,2, are completely contractive homomorphisms, then we
obtain a homomorphism p; ® p2 : A1 ® A2 — L(H1 ® He) with
P1 ® pZ(Al X Az) = pl(Al) ® pQ(Az), for A1 in Al and A2 in Az.
We let Fui, denote the family of representations of A; ® A which can
be obtained in this manner. For U = (U;;) in My (A1 ® Asz), we set

[1U||min = sup{||(p1 ® p2(Us;))|| : pr ® p2 € Fmin}-

We call this family of norms the minimal operator norm on A; ® As,
and let A; ®min A2 denote A; ® Ay endowed with these norms.

If py : Ay — L(H) and py : Ay — L(H) are completely contractive
homomorphisms into the algebra of operators on the same Hilbert
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space and if the range of p; commutes with the range of p3, then
we obtain a homomorphism p; ® ps : A; ® A2 — L(H) by setting
p1 © p2(A; ® As) = p1(A1)p2(As). We let Frax denote the family of
representations of A; ® A which can be obtained in this manner. For
all U = (U;5) in M(A1 ® Asz), we set

|Ullmax = sup{[(p1 © p2(Uij))| : p1 © p2 € Finax},

and we call this family of norms the mazimal operator norm, and let
A1 ®max Az denote A; ® Ay endowed with these norms.

Finally, if p : A1 ® As — L(H) is any homomorphism, for U = (U;;)
in Mgp(A4; ® As), we set

U] = 11(p(Ui))II-

LEMMA 2.1. Let A; and Az be operator algebras. Then the minimal
and mazimal operator norms are complete operator cross-norms on

A ® Aa. Moreover, for any U in My(A; ® As),

U min < [|U]]max-

PROOF. The inequality is true since F,,,x contains Fp,i,. Clearly each
of these norms has the property that the inclusion maps, A; — A1 ® A
are completely contractive.

If A; and A; are concrete algebras of operators on Hilbert spaces,
then since clearly ||U||spat < [|U||min for U in My (A; ® Asz), we have
that the inclusions are completely isometric and that these are cross-
norms. More generally, if A; are contained in B;, we may take x-
monomorphisms, m; : B; — L(#H;) and let p; denote the restriction of
m; to p;,i = 1,2. Then || - ||,,8p, s a complete operator cross-norm
and is dominated by the minimal norm.

Finally, to see that the minimal and maximal norms are operator
norms, it is enough to observe that if one chooses sufficiently large sub-
sets of Fin and Fnax and considers, respectively, the direct sums of
the representations in these subsets, then one can obtain representa-
tions of A; ® A3 on two Hilbert spaces which are completely isometric
in the minimal and maximal norms, respectively. O
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THEOREM 2.2. Let A; and As be operator algebras, and let p; :
A; = L(H;) be completely isometric isomorphisms, i = 1,2. Then the
minimal operator norm coincides with the operator norm induced by
P1® p2.

PROOF. We use the fact that if B; are C*-subalgebras of £(H;),i =
1,2, then the minimal operator norm on B; ® By coincides with the
spatial norm [14]. Thus, if we let B; denote the C*-subalgebra of
L(HM;) generated by p;(A;), then the operator norm induced by p; ® po
is the norm induced by the inclusion

p1® p2: A1 @ Az — Bi @min Ba.

Now, let ¥; : A, — L(K;),i = 1,2, be completely contractive
homomorphisms. By Arveson’s extension theorem there exist unital
completely positive maps, 6; : B; — L(K;) which extend ; o p; ! :
pi(A;) = L(K;),i = 1,2. These unital completely positive maps define
a unital completely positive map 61 ®62 : By @min B2 — L(K1QK2) (see
[8, Theorem 10.3] for example). Since 61 ® 02 is unital, it is completely
contractive and, thus for any U = (U;;) in My(A; ® Az),

(%1 @ %2(Uss))|| = [|(61 @ O2(p1 ® p2(Uij))I| < [I(p1 @ p2(Uij))ls
where the later norm can be taken in My (By ®muin B2) or spatially.

This inequality shows that |[Ul||min < ||U||p @p., and, since the

reverse inequality is obvious, we have that the minimal operator norm
and the operator norm induced by p; ® p2 agree. O

COROLLARY 2.3. Let A; and B; be operator algebras with A; a
subalgebra of B;,1 = 1,2. Then the inclusion of A; ® Az into B1 ® By is
a complete isometry when both algebras are endowed with their minimal
norms. If C1 and C2 are operator algebras and p; : A; — C; are
completely contractive homomorphisms, then p1 Q@ p2 : A1 ® Az —
C1 ® Cy is a completely contractive homomorphism when both algebras
are endowed with their minimal norms.

Clearly, the maximal operator norm is the maximum of all complete
operator cross-norms. When both algebras are C*-algebras then it is
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known that the minimal norm is the minimum of all complete operator
cross-norms [14]. We do not know if the minimal norm is the minimum
of all complete operator norms for general operator algebras. The
example of §1 leads us to believe that this question is quite hard.

Unlike C'*-algebras, the minimal and maximal operator norms can
differ even for finite dimensional algebras.

ExXAMPLE 2.4. Let A C My be the two dimensional operator algebra
spanned by the identity and the matrix unit e;;. Let p; = p2 be the
identity representation and note that the matrix e;o @ I + I ® ejo has
the form

10
0 1
0 1}’
0 0

O O OO
OO O

which has norm /2. On the other hand, if p is the representation of
A ® A such that at p(Al X Ag) = pP1 (Al)pg(Ag), for Al, A2 in A, then
the image of this matrix under p is

0 2

0 of’
which has norm 2. In particular, the spatial norm and the maximal
norm differ, and so the minimal and maximal norms do not even agree

on A® A.

The equality of the minimal and maximal norms is closely related to
the ability to lift each pair of commuting completely contractive repre-
sentations of the coordinate algebras, to commuting *-representations
of containing C*-algebras. The next proposition states this more pre-
cisely. We write A; ®min A2 = A1 @max A2 to mean that ||U||min =
[|U]|max for all U in My (A; ® Ay), for all k.

PROPOSITION 2.5. Let B; be C*-algebras and A; unital subalgebras,
1=1,2. Then the following are equivalent:

(1) Al Qmin A2 = Al Qmax A27
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(ii) for any pair of commuting completely contractive homomor-
phisms p; : A; — L(H), there is a Hilbert space K containing H and a
x-homomorphism m : B1 ®min Bz = L(K) such that

pi(a1)pz(az) = Pyp(ar ® az)lx,

where Pj3; denotes projection onto .

PROOF. Assume (i). Then the map p; ® ps is completely contractive
on A; Quin Az2. By Corollary 2.3 and Arveson’s extension theorem,
p1 © p2 can be extended to a unital completely positive map 6 :
Bi ®min B2 — L(H). Apply Stinespring’s dilation theorem to 6 to
deduce (ii).

Conversely, if we assume (ii) then we see that the operator norm
induced by p; ® p is dominated by the restriction of the operator
norm on B ® iy B2 to A1 ® As. Again by Corollary 2.3, this restricted
norm coincides with the minimal operator norm. Thus, the operator
norm induced by any homomorphism in Fp,x is dominated by the
minimal operator norm, and so the maximal and minimal operator
norms coincide. O

Let P(D) be the usual algebra of complex polynomials on the
unit disk, normed by the supremum norm. We may regard it as an
operator algebra by viewing it as a subalgebra of C(T'), the continuous
functions on the circle. We know that any contraction operator T,
gives rise to a completely contractive representation of P(D). Note
that C(T) ®min C(T) = C(T?), the continuous functions on the
torus, and any *-homomorphism of this algebra is determined by a
pair of commuting unitaries. Thus Ando’s theorem [1] that pairs
of commuting contractions dilate to pairs of commuting unitaries is,
by Proposition 2.5, the statement that the minimal and maximal
operator norms coincide for P(D) ® P(D). Thus we may identify
P(D) @max P(D),P(D) @min P(D ), and P(D ?) as operator algebras.

We may also identify P(D ?) @mpin P(D) with P(D?), regarded as a
subalgebra of C'(7) The examples of Crabbe-Davie [3] and Varopolos
[15] of three contractions which violate von Neumann'’s inequality, show
that commuting completely contractive representations of P(D?) and
P(D ) need not be contractive on P(D ?)®.,;, P(D ). Parrott’s example
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[7] shows that three commuting contractions can be found such that the
operator norm they induce on P(D2?)® P(D) agrees with the minimal
for scalar matrices, but is still larger than the minimal operator norm
on My(P(D?)® P(D)), for some k. Thus, as ordinary norms this
induced norm and the minimal norm would agree, but not as operator
norms.

From Proposition 2.5 we see that the statement that the minimal
and maximal operator norms coincide on A ® P(D) is equivalent to a
statement about being able to lift a contraction that commutes with
a completely contractive representation to a unitary that commutes
with some dilation of the representation. Furthermore, this lifting also
works for all powers of the contraction.

There is a result very closely related to Ando’s theorem, the Sz-Nagy-
Foias commutant lifting theorem [13]. In fact, for two contractions,
these results are equivalent. We wish to give an operator algebra
interpretation of this result as well. We shall see that it and its
generalizations are best construed as statements that the minimal and
maximal operator norms agree on A4 ® T (2), where 7(2) denotes the
upper triangular 2 x 2 matrices.

PROPOSITION 2.6. Let A be a subalgebra of the C*-algebra B. Then
the following are equivalent:

(i) A1 @min T(2) = A @max T(2),

(i) for any pair of completely contractive homomorphisms p; : A —
L(H;),i = 1,2, and contraction T : Ho — Hy with p1(A)T = Tpa(A)
for all A in A, there exist x-homomorphisms, m; : B — L(K;) with H;
contained in KC; and a unitary U : Ko — K1 such that

pl(a) = P’H,-ﬂ-i(a)b{iv 1= 1727

and
pl(A)T = PH17T1(a)U|7'12 = PH1U7T2(A)|7{27

for all A in A.
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PROOF. Assuming (i), let p : A — L(H1 ® Hz2) and v : T(2) —
L(H1 @ Ha) be defined by

p(A) = (”18‘4) p2?A)>

(G 0)- (% )

It is easily checked that p is completely contractive, and that the
ranges of p and v commute. The fact that v is completely contractive
was proved in [9]. Thus, applying Proposition 2.5, we have a x-
homomorphism 7 : B® My — L(K) with H = H; & H2 C K such
that v © p(U) = Py (U)|y for all U in A® T (2).

Let {e;;} be the matrix units in My, and let K; = 7(I ® e;;)K, i =
1,2. Then w(I ® e12) is determined by a unitary U : Ko — K,
and 7 : B®I — L(K) is given by 7(B) = m(B) & m2(B) where
TG . B— ,C(]CZ),Z = ].,2

It is now easily checked that 71,73 and U have the desired properties.

and

Conversely, given any pair of commuting completely contractive maps
p: A= L(H),y:T(2) = L(H), there is a decomposition H = H1DH2
such that p and « have the above form. Thus we have 71,72 and U as
in (ii).

Defining K = Ky & Ko,m : B — L(K) viam = 7y & m and
o: Mz — L(K) via

U( (a b>> B <aI;c1 U >

c d cU* dig, )’
we have that p©y(V) = Pym © o(V)|y for any V in A® T (2). Thus,
we have that the norm on A ® 7 (2) induced by p and v is dominated
by the one induced by 7 and ¢. But since the minimum and maximum
norms agree on B® M, the norm induced by 7 and ¢ is the minimum

norm on A®7 (2). Hence, the minimum and maximum operator norms
coincide. O

In [9] the authors proved a number of theorems which are equivalent
to the assertion that the minimal and maximal operator norms agree
for certain algebras. We summarize those here.
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By a nest algebra we mean a subalgebra of L(H) consisting of
all operators which leave invariant the subspaces in a preassigned
nest of subspaces of H. We call it finite dimensional if # is finite
dimensional. Thus, with respect to some basis and block structure, a
finite dimensional nest algebra consists of all the block upper triangular
matrices.

THEOREM 2.7. Let A and B be finite dimensional nest algebras, then
A @min B=A @max B and AQmpin P(D) = A Quax P(D).

PROOF. These are restatements of [9, Theorem 2.1] and [9, Theorem
1.2], respectively. O

We give a new proof of this result in §3.

If the algebras in question are also endowed with some weaker topol-
ogy, then one may wish to restrict attention to completely contrac-
tive representations which are continuous in that weaker topology. If
A; are subalgebras of von Neumann algebras, ¢ = 1,2, then we write
A; @7, Az and A; ®9,. As to denote the complete operator cross-

norms that one obtains by restricting the homomorphisms used in the
definitions to be continuous from the weak* to o-weak topologies.

Thus, [9, Theorem 3.3] and [9, Theorem 3.1] imply

THEOREM 2.8. Let A; and A be nest algebras on separable Hilbert
spaces, then

Ai @pin A2 = A1 @7y A2 and A; @7, P(D) = A ®7,,, P(D).

For the second result, it was only necessary to assume that the repre-
sentation of the nest algebra is o-weakly continuous, the representation
of P(D ) need not be o-weakly continuous.

We close this section with one last result which relates the C*-algebra
theory to the cases that we are interested in. A C*-algebra B is called
nuclear if, for every C*-algebra A, A Qmin B = A Qmax B.
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PROPOSITION 2.9. Let A be an operator algebra, and let B be a
nuclear C*-algebra, then A @max B = A Quin B.

PROOF. Let A be contained in a C*-algebra C. Given a pair of
commuting completely contractive homomorphisms, p : A — L(H), 7 :
B — L(H), we have that m(B) is a nuclear C*-subalgebras of L(H),
since quotients of nuclear C*-algebras are nuclear [6]. This implies
that the commutant 7(B)’ is injective [6], which means that the map
p can be extended to a completely positive map 0 : C — w(B)’.

It follows that there is a unital completely positive map 6 ® 7 :
C Qmax B — L(H) with 8 © n(c ® b) = 6(c)n(b) [8]. Since B is
nuclear, C ® yax B = C ®min B, which contains A ® i, B as a subalgebra.
Thus, 6§ ® 7 is completely contractive on A ®min B, which implies that
the operator norm induced by 7 and p is dominated by the minimum
operator norm. O

3. Further results. In this section we consider some further results
on the minimal and maximal operator norms. We first show that
the minimal and maximal operator norms do not agree on 7(2) ®
T(2) ® T(2). This is a discrete version of Parrott’s example [7]
of three commuting contractions with no simultaneous commuting
unitary dilation. We also prove a general result on tensor norms which
implies, in particular, that P(D ) Qmpin 7(m) = P(D ) ®max T (n) and
T(n) @min T(M) = T(n) @max T(m), for all n and m, where T (n)
denotes the upper triangular n X n matrices. These results are special
cases of Theorem 2.7, which was proved in [9]. The proof in [9] was
constructive, while the above results follow from general tensor product
considerations. We should also point out that the proof of Theorem
2.7 in [9] reduced the case of a general finite dimensional nest algebra
to the case of 7(n). Here we perform this reduction again, in Theorem
3.4, with different arguments.

The maximal and minimal complete operator cross-norms are defined
on multiple tensor products in a manner analogous to the case of
two algebras. In analogy with Parrott’s example [7] of a triple of
commuting contractions which does not admit a triple of commuting
unitary dilations we have the following theorem.
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THEOREM 3.1. The mazimal and minimal complete operator cross

norms differ for the algebra T(2) @ T(2) ® T(2).

PROOF. Let U and V be unitary operators in My and consider the
operators

0 U 0 I 0oV
R—[O 0], S—[O 0] and T—[O 0]

in My. Let pg, ps, pr be the contractive representations of 7(2) into
M3y = My ® My @ My ® My given by

pr(e12) =e2®@IRI®R
prein) =en®IRIRI
pr(e22) =en®@I®IRI
pslerz) =I®e2®@I®S
pslern) =I®e ;1 @IRIT
ps(eaz) =I®enp@I®I
pT(€12) =IRI®Qes®T
pr(ein) =I®1IQe1 @I
priex) =IR@1®en®I.

Then pr, ps, pr are contractive representations and are mutually com-
muting since all products of R, S, T are zero. Furthermore, pr®ps®pr
can be interpreted as the mapping which transports the 8 x 8 matrix
(ai;) in T(2) ® T(2) ® T(2) to the inflated Schur product

rl TS
I

0O R 0 O
S R
I T R
1

~
N
[95)
~NNhomooo
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where I is the 4 x 4 identity matrix and where undefined entries are also
zero. Notice that the inflated Schur product map has norm dominating
the norm of the submap

a b 0 aS bR O
c 0 d|—=|cI" 0 dR
0 e f 0 €T tS

Considering the special form of R, S, T, this submap has norm agreeing
with the norm of the inflated Schur map

a b 0 al BU 0O
c 0 d|—=|cV 0 dU
0 e f 0 eV fI

The norm of the image matrix agrees with the norm of

al bl 0
cd 0 dI
0 o fUVU*V

(Multiplying left and right by appropriate diagonal unitaries.) Now
make the choice
0 1 -1 0
vefia] e [

0 I T 0
1 — I 0 I
-1 0 I +I

and note that

e
—_ O

The first matrix has norm +/2 while the latter has norm 2. Hence
PR ® ps ® pr is not contractive. O

We thank Ken Davidson for simplifying an earlier proof of Theorem
3.1.

THEOREM 3.2. Let A be an operator algebra. Then A @i, P(D) =
A Qmax P(D) if and only if A @min T(n) = A Qmax T (n), for all n.
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PROOF. Assume the latter condition, and let A C L(K). Since
A ®umin P(D) inherits its norm from A Qmuin C(T), we see that,
for U = > 7"a; ® 2° in A @uin P(D), we have that [|Ul|min =
sup{|| 1" o Aa;||xc : |A| = 1}, where || - || is the operator norm on K.
Let p: A — L(H) and let T € L(H),||T|| < 1, which commutes with
p(A); then p and T determines a representation pr : AQP(D) — L(H)
and ||U||max is the supremum of ||p7(U)|| over all such p and T. We
must show that, for U = (U;;) in My(A® P(D)), ||(pr(Usj))l] <
[|U||min- We only argue the case of k = 1.

For U as above, pr(U) = i~ p(a;)T". Let S denote the bilateral
shift on /5. Identifying S with the operator M, of multiplication by z
on L?(T) we have that,

:\z|:1}

o2 @)1 < sup {|| 32 pla)'T

)

- [ ptap e sy

=0

where the latter norm is taken as an operator on H ® ¢5. The operator
> pla;)(T®S)" = X is an infinite operator-valued upper triangular
Toeplitz matrix on % @& H @ --- (infinitely many copies). The i-th
super-diagonal of this Toeplitz operator is constantly p(a;)T*. Let
n > m, and let X,, be the Toeplitz operator on H(™ = H & --- & H
(n copies) whose i-th super-diagonal is p(a;)T%. Then we have that
[1X]] = limp o0 [| Xanl]-

Consider the representation y : 7(n) — L(H ™) defined by v((\i;)) =
(\i;T797%),5 > 4, and (\;;) in T(n). Also, let p(™ : A — L(H™) be
defined by p(™ (a) = p(a)®---® p(a). Define U,, in AT (n) by setting

Un = a; @ S:m

=0

where S,, is the matrix whose (%,:+1) entry is 1 for all i and 0 elsewhere.
Since p(™) and v commute we have a representation

p™M oy AT () = LH™) and X, = p™ ©~(U,).
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Hence, || X,|| < [|Unllmax = [|Unllmin = ||Un|licn), where the latter
norm is the operator norm on K. Clearly,

n n
1Unllicen < 11D ai ® §*lkae. = sup{ll Y aiz’[lic: |2 = 1} = U] |min,

=0 =0

where the first equality is obtained by identifying S with M, and L?(T).
Thus, we have that ||pr(U)|| < ||X]|| < [|U||lmin, proving the first
implication.

Conversely, assume that A ®pin P(D) = AQmax P(D). Let p: A —
L(H) and v : T(n) — L(H) be commuting completely contractive
homomorphisms. Set H; = v(e;)H, so that H = H; & -+ @ Hop.
Relative to this decomposition there exist p; : A — L(H;) so that
pla) = p1(a)®-- ®pn(a). Also, y(e;i+1) is determined by contraction
operators X; : H;11 — H;,1 <i < n—1. The fact that p(a) commutes
with v(7(n)) is equivalent to the intertwining relations,

pi(a)Xi = Xipi+1(a), 1 < 3 <n-— 1.

Set X = 7(S,), and define 7 : T(n) — L(H™) by 7((\ij)) =
(A\ij X771 for (\;;) in T(N). Also, let p : A — L(H™) be defined
by pla) = p(a) ® .-+ ® p(a), so that p(a) commutes with (7 (n))
and defines pOF : A® T(n) — L(H™). Define V : H — H™ by
Vh=h1®D---®h,, where h = h; + --- + h,, in the decomposition
H=Hi+- -+ Hy, Itis easily checked that, for U in A® T(n),p ®
y(U) =V*(p®5(U))V. Thus, to prove that ||[p ® y(U)|| < ||U]|min, it
will suffice to show that || ® (U)|| < ||U]|min-

Now if U = 37, aij ® eij, then p © §(U) = (p(Aij)X77%). Since X
is a contraction which commutes with p(A), we have that

160 ¥ < 1(a55 ® 27| lmax = [1(aij @ 27| lmin
= sup{|[(aij X’ )||ar, () 1A = [}

= @il = || Y ais @ ey
i<j

, in AQmin T (n).

min

Since p and «y were arbitrary, these inequalities show that ||U||max <
[|U||min for U in A® T(n). The argument for U in My(A® T(n)) is
identical. Thus, we have that A ®mpin 7 (1) = A Qmax T (n), for all n. O
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We can now present a simpler proof of an important special case of
Theorem 2.7.

COROLLARY 3.3. We have that P(D) Qmin T(n) = P(D ) Qmax T (n)
and T (n) @min T(m) = T(n) @max T (m), for all m,n.

PROOF. By Ando’s theorem P(D ) Quin P(D) = P(D ) Qmax P(D).
Thus by Theorem 3.2, we have that P(D) ®min 7(n) = P(D) ®max
T (n), for all n. Applying the theorem to this last equality leads to

We can now use Theorem 3.2 to obtain the following more general
result.

THEOREM 3.4. Let A be an operator algebra. Then A ®@min P(D) =
A ®@max P(D) if and only if A @min B = A Qmax B for every finite
dimensional nest algebra.

PROOF. Consider first the case of the finite dimensional nest algebra
B = T(n) ® M,,, and note that T(n) ® M,, = T(n) ®min Mm =
T (n) ®max M. This follows from the fact that a representation p of
T(n) ® Mp,, with ||p(e;; ® fre)| < 1 for each matrix unit e;; ® fie, is
automatically completely contractive (see [10, Proposition 1.1]). Tt is
also a consequence of Proposition 2.9 above and the nuclearity of M,,
Using Theorem 3.2 it follows that

A ®Omax (T(n) @ M) = A @max (T(n) Omax Mm)
= (A @max T (1)) ®max Mum,
= (A ®min T (7)) ®max Mm
= (A Qmin T(n)) ®mm m
= A Qmin (T(n) @ My,).

To deal with the case of a general finite dimensional nest algebra B we
show that there is a completely isometric (nonunital) homomorphism
a: B — T(n) ® M,,, for some n,m such that every contractive
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representation of B can be regarded as the restriction of a contractive
representation of 7(n) @ M,,.

As before, let 7(n) ® M,, be spanned by the matrix units e;; ® fre,
for1 <i<j<n,and 1 <k, < m, and consider a block diagonal
projection P = Z?zl €ii ® q;, where g¢; is a non zero diagonal projection
in M,,. Then the subalgebra PB;P, where By = T(n) ® M, is a
typical finite dimensional nest algebra. That is, for some choice of
n,m and P the algebras B and PB;P are completely isometrically
isomorphic. We assume then that B = PB;P.

Let p : B — L(H) be a unital completely contractive representation.
The diagonal subalgebra BN B* has the form M,, &---® M, _, where
r; is the rank of ¢;, and we may assume that the restriction of p to
BN Ais a direct sum of inflations, that is, there is a decomposition

H:i{i@%i} -3 ek,
i=1  j=1 i=1

such that, for b = b1 @ ---® b, in BNB*,p(b) = (b1 @ [3,) D---
(bn, ® I3,). With this normalizing assumption it follows that one can
identify the contractions in the set

Sij = {p(eij ® fre) : €ij ® fre € B}

for each pair 7,j. That is, there is a contraction X;; : #; — H; such
that p(e;; ® fre) = Xij ® fre for all e;; @ fre in S;;. For a matrix (bijre)
in B we now have

p((bijre)) = Z bijke(Xij ® fre)-

ijke

With the natural identification of # as a subspace of H =
S 3", ®H;} it is clear that the formula above can be used to
define a representation j : By — £(H) such that p is the restriction of
p.

Consider now a completely contractive representation o : A — L(H)
which commutes with p. Then, with respect to the decomposition
of H above induced by p, we have o = 370 370" @o; for some
completely contractive representations o; : A — L(H;),1 < i < n.
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It is easily verified that the representation & : A — L(H) given by
=71 3" ®o; extends o and commutes with /.

It now follows that the maximal norm on A ® B is dominated by
the maximal norm on the containing algebra A ® B;. By our earlier
observation A @max B1 = A @uin B1 and s0 A @umin B = A Quax B, as
required. O

Thus we see that Theorem 2.7 can be deduced as a corollary of
Theorem 3.4 in the same fashion the Corollary 3.3 followed from
Theorem 3.2.
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