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PERIODIC PERTURBATIONS OF LINEAR PROBLEMS
AT RESONANCE ON CONVEX DOMAINS

RENATE SCHAAF AND KLAUS SCHMITT

ABSTRACT. We consider Dirichlet problems for semilinear
elliptic equations whose nonlinear term is periodic and whose
linear part is resonance. We show that such problems have
infinitely many positive and infinitely many negative solutions
on domains in the plane which are convex. The arguments
used do not carry over to dimension greater than three. This
work complements some earlier work of ours.

1. Introduction. Let Q be a bounded domain in R"™ with smooth
boundary. As is well known, the principle eigenvalue A; of the Dirichlet
problem

Au+Aiu=0, x€qQ,

1
(1) u=0, xe€od,

is simple and has an associated eigenfunction ¢ with the properties

0¢(z)
Ov

¢(z) >0, zeq, <0, =€,

where 0/0v is the exterior normal derivative to 02. (We normalize ¢
so that ¢max = 1.)

In this paper we consider the resonant nonlinear problem

Au+ Mu+g(u) =h(z), x€Q,

2
@ u=0, xe€odQ,

where h: @ — R and g : R — R are Holder continuous functions and
satisfy

(3) /Q ho dz =0,
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(4) g(s+T)=g(s), —o0<s<oo, /0 g(s)ds =0, g #0,

where T is the period of g.

Problems of this type have been considered in our earlier work [5]
and [10], where we have shown that such problems have infinitely
many positive and infinitely many negative solutions in case x is a one-
dimensional variable and also in higher dimensions, whenever € is an
annular domain whose inner and outer radii satisfy certain restrictions.
In the case where x is a two-dimensional variable, we were also able
to show in [5] that the result holds whenever Q is a disc. Numerical
experiments [5] indicate that the latter result does not hold for {2 a ball
in dimensions greater than 3. For more numerical experiments which
support this conjecture, see [11].

This paper complements our work [5] and [10] cited above. We show
that our earlier approach and a somewhat more intricate analysis allow
us to obtain results about the existence of infinitely many solutions in
the case of two space dimensions and for domains € which are convex
or more generally are such that the eigenfunction ¢ satisfies certain
geometric properties. Again our method of proof does not work in
higher dimensions.

Our method of attack is to embed problem (2) into the one parameter
family of problems

Au+Au+g(u) =h(z), zeQ

5
(5) u=0, xe€d

We then employ bifurcation and continuation techniques to study the
solution set of (5) and then consider A;-sections of this solution set to
obtain the desired result.

To make this paper somewhat self-contained, we state the necessary
tools from bifurcation theory in the next section.

E. N. Dancer has pointed out to us that, in his paper [6], he
has obtained results very similar to ours by studying the asymptotic
behavior of certain integrals. We thank him for pointing out his paper
to us.
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2. On bifurcation from infinity. In this section we shall state an
abstract result about bifurcation from infinity which we shall need in
our discussion. We refer to [10] for proofs (see also [8] and [9]).

Let X be a real Banach space with norm || - ||. We consider the
equation
(6) u=KMNu+k(\u), ueX,

where K : [a,b] C R — B(X) is a differentiable family of compact
linear operators on X and k : [a,b] x X — X is a completely continuous
mapping satisfying

E(\ u)
[l

(7)

— 0 as|ul| = oo,

uniformly on [a, b].

In this setting we have

LEMMA 1. Let A\; € (a,b) be such that

(8) ker (id — K (A1) = spang, [9]| = 1,
(9) K'(A)é ¢ range (id — K (M),

and P C X is an open cone containing ¢. Then there exists €y and a
continuum (i.e., a closed, connected set) C C [a,b]x P of solutions of (6)
with the property that, for any 0 < € < €y, we can find a subcontinuum
C. C C such that

Co C U= {(\u): A= | <e, [Jull > 1/e},

and C. connects (A1,00) to OU.. Moreover, if {(An,un)} C CNU. is
such that ||u,| — oo, then

(10) An = A1 and HZ—HH — ¢

COROLLARY 2. Let the assumptions of Lemma 1 hold and assume
that K(X), k(A,-) map X continuously into a Banach space Y C X



1122 R. SCHAAF AND K. SCHMITT

which is compactly embedded in X and that K : [a,b] — B(X,Y),
k:la,b] x X =Y are continuous with

k(A u)

(1D Tl

=0, Y, as|u|| = oo,

uniformly on [a,b]. Then, if {(An,un)} CCNU, is such that ||u,| —
00, we get

Un

[[n|

— 0.
Y

(12) An = A1 and ‘ o)

In particular, if P CY is any open cone containing ¢, then, by
decreasing €y > 0 if necessary, we obtain that

(13) C C [a,b] x P.

3. The semilinear problem. We shall now consider the resonant
Dirichlet problem (2) given in the introduction with all terms satisfying
the hypotheses stated there. We embed (2) into the one parameter
problem

Au+Au+g(u) =h(z), ze€Q

(14)
u=0, xe€d

Let K : C(©2) — C() denote the operator defined by K f = u if and
only if u solves

Au=f, ze€Q
u=0, x¢€d.

As is well known, K is a bounded linear operator from C(Q) to C3(Q),
and, hence _ _
K:C(Q)—C(Q)

is compact. Further, by regularity theory, we have

K : C*Q) — C:HH(Q),
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continuously. Our problem (14) is hence equivalent to the operator
equation

(15) u=AKu+ K(g(u) + h),

in the space X = Cy(Q2). We may hence apply Lemma 1 and Corollary
2 with K(\) = AK and k(\,u) = K(g(u)+h), and, letting Y = C(Q2),
P={ueX: [jupdr >0}, P={u€eY :u>0,in9Q % <0on
d9}. We hence obtain ¢y > 0 and a continuum C C R x P of solutions
of (15) such that C NU. # &, for any 0 < € < €y, and such that if
(An, un) € C, with |\, — A1] < € and ||u,|| = max Ju,| — oo, then

An = A1 and — ¢, in CH(9).

max Uy

In fact, regularity theory and arguments as used in Corollary 2 imply

Un

(16) — ¢ in CITH(Q).

max

We may now prove our main result.

THEOREM 3. Consider the boundary value problem (2), where Q is
a conver bounded domain in R? and \i is the principle eigenvalue
of (1). Further, let g and h be Hélder continuous and satisfy (3)
and (4). Then the problem (2) has an infinite number of solutions
{un}2, © C2H*(Q), with up, > 0 in Q, du, /dv < 0 on dQ and such
that maxu,, — co and u,/ maxu, — ¢ in Cy*(Q), as n — co. Also,
there exist infinitely many negative solutions with similar properties.

PROOF. Since most of the arguments to follow are valid in arbitrary
dimensions, we proceed with the general case until it becomes necessary
to restrict the dimension to the case n = 2. We embed (2) into the
one parameter problem (14) and use the setup discussed before the
statement of the theorem. If (A\,u) € C. we multiply (14) by ¢ and
integrate by parts to obtain

(17) (M f)\)/guqﬁdx:/gg(u)qﬁdx.
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Since u € P it follows that the right-hand side of (17) determines the
sign of A\ — .

Let ||u|| = maxu denote the norm in the space X and, instead of
(17), we shall consider

(18) lull2(n — ) / s =l / g(u)pde

and determine the sign of that quantity for large ||u||. Let us now
consider a sequence of solutions {(ug, A\x)} C C. with

|ugl| = ar + kT, 0<ap<T, k>2,

where aj will be chosen appropriately and 7" is the period of g.

We let
U,
vp = ——,
[|ull

and recall that vy — ¢ in Ca T (Q).

Since 2 is assumed convex it follows from a result in [2, 7] that V¢
only vanishes at a single point, where ¢ assumes its maximum and D?¢
is negative definite there. Therefore, the same will be true for vy for all
sufficiently large k. (This is the only consequence of convexity which
is needed in our discussion, and hence we could replace the convexity
assumption by this implication as an assumption, certainly a somewhat
less restrictive requirement. Certain types of symmetry conditions on
that domain, as used in [4], for example, will also be sufficient.) We
now use the co-area formula (see [1] or [3]) and find that

[Jug ||
19) el / 9(u) dz = [lux| / o(t) / 04, dt,

r=t |vuk‘

where dS; denotes the Riemannian n — 1-density on the level sets
{ur, = t}. The latter may be rewritten as

(20) [lull (0 ¢
20 / ot / 0 4s, dt.
0 on=t/|us| |V Vkl !

If we define 5
s) = dSs,
ZCRY
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then (20) becomes

(21) / "y (ﬁ) dt.

The latter integral we now write as the sum of the integrals

(22) /OkTg(t)fk (ﬁ) dt = I

and

(23) / " e (L) dt = I

T [l |

We first consider the integral I5. Using the periodicity of g we find that
(23) may be rewritten as

Gk kT
(24) = [ a0 (ﬁ) dt.

We next observe that each fj for k sufficiently large will be of class
C'*# on any given compact subinterval of [0, 1) (recall ¢max = 1), and
we may conclude that

fe—= f

in C! on any compact subinterval of [0,1), where f is given by

_ ¢
f(s) = /¢_S o5 45+

It follows also from the nondegeneracy of vy and ¢ at their maxima that

f is continuous and that fp — f in C°[0,1]. From these observations
it follows that we may pass to the limit in (24) and conclude that

(25) J / " 9(2) dzf (1),

where a has been preassigned in [0, 7] and the sequence {ay} was chosen
so that a — a.
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We next consider the integrals I;. We first integrate by parts and
obtain

kT 1 / ;
I = —
! A G(t)ak-f—kak (ak—i-kT) dt

(26) e
_ 7/0“” G(s(an + KT))fL(s) ds,

where

is periodic.

As k — o0, I; has the same limit as

=— t dit
J1 /0 G( )ak—i-ka (ak—i—kT)

T /W G(s(ak + kT))f'(s) ds,
0

(27)

provided we can show

ap+RT

(28) lim |[fi(s) = £'(s)| ds = 0.

k—oo Jo

Since, in case n = 2, the convergence of the sequence {f}} in the norm
of HY1 is not obvious, we prove (28) in the appendix.

We next use the periodicity of G to rewrite (27) as
k

(29) —%/OTG(t)Z T f’<t+(j_1)T>dt.

o a + kT ar + kT

Letting k£ — oo in (29) obtains

%/OTG(t) /01 f'(r)drdt,

T
7 | eoun - oy

which equals
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‘We hence have that

(30) I1+Ig—>f(l){/0a9(5)ds%/OTG(S)ds}
= f(1)[G(a) - G,

where G is the mean value of G, since f(0) = 0. We, therefore, may,
once we know that f(1) # 0, determine the sign of A — A\; by examining
the sign of G(a) — G. On the other hand, as a varies from 0 to T,
the function G(a) — G will change sign and we will consequently find
infinitely many positive solutions of (2) on the continuum C,.

To determine whether f(1) # 0 we proceed as follows. Since ¢(z) > 0,
x € (Q, it suffices to consider the function

1
q(s) = /¢—s sts,

since f(s) = sq(s). That ¢(1) > 0, for n = 2, and ¢(1) = 0, for n > 3,
follows immediately from the fact that D?¢ is negative definite, where
¢(z) = 1. But the result, for n = 2, also holds without this assumption.

We introduce the notation

and

V(s) = /¢ e

The isoperimetric inequality (see [1]) states that

A%(s) > nzwf V2=2n(s),
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where w,, is the volume of the unit ball in R". Hence, we obtain

nzwf/"V272/" (5) < A%(s)

()

1
< — 48, V4| dS,
/¢_s |V¢‘ ¢p=s | |

(31) :q(s)/d’ -V -Vodz

= A1q(s) ¢ dx
¢>s

< Aig(s) Pmax dz
< A1q(s)V(s).

From (31) it follows that

(32) n2w?/mVi=n(s) < Ayq(s),

which, in case n = 2, implies
(33) ~— < q(s).

Inequality (33) implies that ¢(1) > 0, which implies the desired result.

Since f(1) =0, for n > 3 and convex domains, we can only conclude
in this case that
lull* (A = A) = 0,

as ||ul]| = oo, as an estimate for the order of convergence as A — ;.

Acknowledgment. This paper was written while Renate Schaaf
was a visiting professor at University of Utah.
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APPENDIX

Here we shall give a proof of (28).

If n > 3 it follows immediately that fx — f in the norm of H11[0,1],
since the measure of the level sets decreases fast enough (see (32)). We
next consider the case that n = 2. If we can show that

(34) In(ax + ET)(1 = s)|fr(s) = f'(s)] = 0

uniformly for s € [0,1], as k — oo, then (28) results from the
computations to follow.

Choose € > 0 small. Then, for all large enough k, we obtain, from
(34),

k-:g;cT 1 ’fkT 1
ap / / € QK

— ds< —————— —d
/0 [fi(s) = F(s)]ds < ln(ak+kT)2/0 1—5%

Hence, it suffices to prove (34). Without loss, we may consider the
functions

N

1 1
qr(s) = —dSs, q(s :/ ——dS,,
(e) /_ Vo] )=, vd

instead of the functions fi, and f. Then

1-— Vk
’ _ 2
#) 0= (e 2bu)as,
with
O2vp = v D*uv
and
. Vvk
|V’Uk| ’

the outward normal. Then (1 — s)g},(s) converges uniformly on [0, 1] to
(1 —s)¢'(s), since v, — ¢ in Ca¥. (Note that (1 — vg)/|Vug|? is well
behaved as s — 1 since D?vy, is negative definite where vy = 1.)

vV =
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If we can show that
(36) In([lug ) (v — ¢) — 0,

as k — oo in C2*, then (34) will follow in a similar manner.
To prove (36), we write uy, = ¢ + wg, with fQ ¢wp dr = 0. Then
(5) becomes

(37) Awy, + Mw, = h — g(ug) + (Mg — A1) ug.

It follows from (18) that ||uk||(Ax — A1) is bounded and, hence, that
the right-hand side of (37) is bounded in C*. Thus, the sequence
{wg} is bounded in Cg'“‘ by, say c, since wg belongs to the orthogonal
complement of span ¢. Thus, if xy is such that ¢(zg) = 1, it follows
that

T — ¢ < red(xo0) + wi(zo) < luk| < i+ ||wel| < re+c.

Thus, |||uk| — x| < c. Hence,

In([[u])
In(([ug|)) (v = ¢) = W(wk + (ri = lluxl)9) = 0
in Cg as k — oo.
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